
5 The InfoPAE Use Case 120

5
The InfoPAE Use Case

This chapter describes two software systems implemented with the objective

of improving the efficiency of emergency response actions in the oil and gas

industry. The first system is a plan simulator system that is responsible for

simulating the results of contingency plans stored in a database of emergency

response plans. It allows its users to import emergency scenarios and associated

response plans. The simulation engine is used to test the efficiency of the response

plans. The second system is a training game, which simulates emergency

situations in order to train people to make efficient decisions in such situations. In

the domain of emergency management, the term plan usually means a set of

actions structured in a workflow.

The two systems are based on the same simulation engine, which

implements the Process-DEVS framework described in chapter 3. This

architecture shows how simulation elements can be reused by different systems.

Section 5.1 gives an overview of planning for emergency situations. Section

5.2 describes the domain of contingency planning for oil leaks, for which the two

systems were designed. Section 5.3 describes the simulation models in terms of

the Process-DEVS formalism. Section 5.4 describes the architecture of the two

systems. Section 5.5 describes the time management technique developed for the

systems. Finally, Section 5.6 concludes the chapter and reports the achieved

results.

5.1
Planning for Emergency Situations

An emergency situation occurs when an unexpected incident has occurred

and its potential consequences involve damage to human health and to the

environment. In such situations, it is not only important to respond quickly in

order to minimize the damages, but the response must be conducted in a well

organized manner. The complexity of emergency management, coupled with the

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

5 The InfoPAE Use Case 121

growing need for multi-agency and multi-disciplinary involvement on these

situations, increased the need for standardized methodologies. Particularly, the

Incident Command System (ICS) (Bigley and Roberts 2001) standard is being

increasingly adopted by public safety and private sector organizations.

In the ICS methodology, the initial response steps consist of notifications,

initial assessment, command meeting, initial response and incident briefing using

specific ICS forms. After this initial response period, the emergency handling

process becomes cyclic. This kind of process is called Planning “P”. Each cycle

consists in a planning phase and an operational phase. The planning phase

consists of situation assessment meetings, objective updates, tactics definition,

planning, elaboration and approval of the incident action plan (IAP). The

operational phase consists of executing a response plan and assessing its progress,

after which a new cycle begins.

The InfoPAE system (Carvalho et al. 2001) was designed as a tool for

managing this complex emergency handling process, making incident response

quicker and more effective. It has been in use at Petrobras, a large Brazilian oil

company, for more than ten years. It also proved to be a valuable training tool.

The system offers a sophisticated database for response action plans and easy

access to vital information and resources allocated for different types of scenarios.

One of the difficulties of such systems is that, even though it is possible to

describe an emergency action plan at a reasonably detailed level, this is somewhat

limited with respect to the representation of dynamic aspects. In (Frasca 2003),

the author discusses two different approaches for modeling knowledge about

dynamic phenomena: representation and simulation. According to the author, the

main difference between both forms is that simulation attempts to model the

behavior of the elements involved in the phenomenon, while representation is

limited to retaining its perceptual characteristics. To make it clear, the author

gives the example of a plane landing procedure. A representation of a specific

landing could be a film, in which an observer would be incapable of interfering.

On the other hand, a flight simulator would allow the player to modify the

behavior of the system in a way that simulates the real plane. This flexibility is

only possible due to the simulation characteristic of modeling the behavior of the

elements independently of any specific scenario.

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

5 The InfoPAE Use Case 122

Traditionally, response action plans take a more representational form,

usually adopting workflows. Although response action plans contain response

strategies planned for different type of scenarios, one cannot tell whether the plans

are well suited for all the possibilities of evolution of an emergency situation. For

example, a plan can describe the action of sending two boats to intercept an oil

slick. However, it may not be possible to do that before the oil reaches the coast

under some specific conditions. If emergency managers were able to simulate the

whole process in a more realistic way, it would certainly make the emergency

plans more reliable.

Testing the quality of response action plans, as well as the performance of

emergency response teams, is mandatory to minimize the impact of the incident.

In addition to other initiatives such as field exercises, the use of computational

simulation can be a cost-effective and efficient mechanism to validating action

plans and training response teams. Simulation can take into account many details

that are difficult to consider if the planning is done exclusively by humans. For

example, it can take into consideration the location of the needed resources and

the specific spatial characteristics of the emergency scenario to estimate, in

advance, if there will be enough time to get the necessary resources in place for

executing a specific action.

Specifically, the main benefits that simulation may bring to the InfoPAE

system are:

• Simulation helps finding flaws in emergency plans.

• The spatial configuration of available resources can be evaluated and

optimized so that they can be deployed to handle any scenario

requirements as quickly as possible.

• Simulation-based games provide training that helps improving

personnel performance.

• Computer simulation cost is significantly lower than functional or

full scale exercises.

Simulations are commonly used for investigating physical phenomena, such

as those involving dispersion of chemical products in the environment

(Karafyllidis 1997; Chinmoy and Abbasi 2006). However, the pure simulation of

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

5 The InfoPAE Use Case 123

physical processes does not take into consideration the effects of contingency

actions. More generally, it is not enough to simulate a specific process of an

emergency situation in isolation. Essentially, one must concurrently simulate all

relevant processes, considering the interferences between them. For instance, a

response action plan modeled as a workflow may significantly interfere with the

dispersion of chemical products, which can be modeled as a cell space process.

The main problem is how to combine simulations of different processes modeled

in different formalisms. That is precisely how Process-DEVS and the techniques

described in chapter 3 can be of great help in equipping the InfoPAE system with

the necessary simulation capabilities. It can combine simulations of physical

phenomena with others processes related to Planning “P”.

5.2
A Motivating Example - Contingency Plans for Oil Leaks

Oil leak emergency situations constitute a common scenario that the

InfoPAE system has been used for. Accidents involving the spill of a considerable

volume of oil into the ocean are critical because of their potential environmental

impact. Additionally, oil removal from the environment is a costly process,

ranging from USD$20 to USD$200 per liter (Fingas 2000). This kind of scenario

is also interesting because it involves processes of different nature, such as oil

dispersion on water and response action plans. For these reasons, oil leak

emergency situations were chosen as the first simulation experiment using the

InfoPAE system.

In oil leak situations, the response plan, at the highest level of abstraction,

consists of three phases: (1) finding and stopping the leak; (2) restricting the oil

propagation; (3) recovering all possible oil from the environment.

The first phase relates mostly to plants and installations. In this phase, the

response plans are usually simple and response effectiveness depends mostly on

the availability of engineering information and of quick communication. After the

leak has been detected and proper measures for stopping it have been taken, the

focus of the response plan is on containment and recovery of the leaked oil.

The highest environmental impact usually occurs when some amount of oil

hits the shore, which also causes the oil removal to grow more expensive. Oil is

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

5 The InfoPAE Use Case 124

usually lighter than water and does not dissolve in it. When leaked into a water

body, it remains concentrated on the surface, forming one or more oil slicks.

These oil slicks are shaped and moved by external forces, such as wind and water

currents. If these forces push an oil slick towards the coast, it is almost certain that

it will cause a large concentration of oil along some particular coastal segments.

There are many types of oil, but their dispersion and evaporation rates are usually

too small to prevent coast hits.

A coastal segment is environmentally sensitive to oil because of the

concentration and diversity of animal species and ecosystems found on the

segment. Each type of coast has its own particular characteristics and sensitivity to

oil. For example, the InfoPAE project divides the Brazilian coast into discrete

segments, classified according to their environmental sensitivity characteristics.

Each point in the coast belongs to exactly one segment, which in turn belongs to

one sensitivity class.

The main method for preventing coastal damage is to restrict the oil

propagation by employing floating containment barriers, which are also called

containment booms (Fingas 2000). The barriers are usually deployed in U-shape

in an attempt to trap the oil slicks according to the direction they are moving. The

main resources needed to place a containment barrier are the barrier itself, one or

two boats with a minimum crew and some source of information about the

location of the oil. The spatial configuration of all those resources is very

important to determine the time necessary to install a containment barrier at a

given location. Therefore, planning in advance the locations where the resources

are kept is crucial. For instance, in a badly planned resource configuration,

depending on that time and on the velocity of the oil slick, it may not be possible

to prevent the oil from reaching a critical coastal segment.

In order to optimize spatial resource planning, it is necessary to consider

various factors, such as the set of likely locations of possible oil spills, the set of

likely climate conditions relevant to the movement of oil slicks (mainly wind and

water currents) and the location of the most vulnerable nearby coastal segments.

As a general rule, recovering oil from the coast usually takes more time and

money than from water. Therefore, resource planning and speed of response is

critical for minimizing coast hits.

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

5 The InfoPAE Use Case 125

Finally, the last phase of the response strategy is to remove as much oil as

possible from the environment. The recovery of oil starts when a stable situation

is reached, namely when the oil stops moving, either because it is trapped in

containment barriers, or because it has hit the coast. The oil recovery process is

carried out by a number of different processes, with different equipments. The

choice of the process depends on the type of oil and on the characteristics of the

situation. For example, for oil slicks trapped in containment barriers, the use of

skimmers from a boat is usually appropriate. As for recovering oil from the coast,

there are many different procedures. Usually the best procedure depends on the

type of oil and on the characteristics of the coast. Common procedures include

manual removal, flooding or washing, use of vacuums, mechanical removal,

tilling and aeration, sediment reworking or surf washing, and the use of sorbents

or chemical cleaning agents (Fingas 2000).

5.3
Simulation Dynamics

This section explains the dynamics of the InfoPAE simulation, which was

modeled on top of the Process-DEVS framework.

5.3.1
The Environment

The environment is depicted in Figure 5.1 and contains all data necessary

for the simulation. This data is mostly geospatial in nature and can be classified

either as static or dynamic.

Static data is retrieved from the InfoPAE database and consists mostly of

two-dimensional GIS data. It includes all coastal segments in a given area, with

their sensitivity classification, the plant installations and other information

relevant to the logistics of resource displacement, such as the location of piers. It

should be noted that the coast segments are also used to determine the extension

of the water bodies. Presentation information, such as satellite images, will not be

listed here. Even though they are important for the final user of the system, they

are relevant only to its user interface and not to its underlying simulation.

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

5 The InfoPAE Use Case 126

Figure 5.1. The environment with its elements

Dynamic data includes the weather conditions, the location of oil slicks and

the location of resources, such as containment barriers, recovery boats and coastal

cleaning teams. The relevant weather conditions include water currents and the

direction and velocity of the wind. Oil slicks are represented in a regular grid cell

space, where each cell contains a value that represents the amount of oil in it.

Containment barriers are represented as lines which are basically sequences of

points. Finally, recovery boats and coastal cleaning teams are represented simply

as single points, and they are able to remove oil from any location within a fixed

radius of their position.

According to the framework definition presented in chapter 3, the processes

in a simulation access the state of the environment through environment views.

The main views this environment provides are the vector view and the cell view,

as depicted in Figure 5.2. In the vector view, all data is read in vector format, such

as points, lines and polygons. In the cell view, everything is represented in a

rectangular grid of cells. Although these two views are different in nature, both

represent the same data. Elements that are fundamentally represented as vectors,

such as those just mentioned, are presented in the cell view as if they occupy all

cells that intersect their vector geometry. Likewise, cellular elements, such as oil

slicks, are represented in the vector view as a set of points. In the case of oil

slicks, each cell that contains some amount of oil is presented as a 2D point placed

at the center of the cell, with an attribute indicating the amount of oil in that cell.

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

5 The InfoPAE Use Case 127

Those two views will feed processes of different nature, modeled in

different formalisms. For example, the process that models the oil dispersion may

be modeled as a cell space process using the cell view as input, and a process for

barrier placement may use vector algebra, based on the vector view.

Figure 5.2. The vector view (a) and cell view (b)

Besides those two main views, the environment also provides the properties

view, through which the processes can access all non-spatial data, such as the

weather conditions. This view is accessed as a set of property-value pairs.

It is generally a good practice to put as little intelligence as possible in the

environment. For this reason, the environment described here behaves like a

database. It stores data, serves that data in the form of views, according to the

needs of its clients, and processes transactions. The transactions consist of events

sent by the processes. The events this environment can receive are:

OilLeakEvent(cell, amount) – adds the given amount of oil to the given cell.

OilRecoverEvent(cell, amount) – subtracts the given amount of oil from the

given cell.

OilMoveEvent(origin cell, destination cell, amount) – moves the given

amount of oil from/to the given cells. It subtracts the amount from the origin

cell and adds to the destination cell.

ChangeResourceLocationEvent(resource, geometry) – changes the location

of the given resource. The resource can be a containment barrier, a recovery

boat or a coastal cleaning team. The new location is defined by the given

geometry. The geometry must be checked against the type of resource. For

recovery boats and coastal cleaning teams, the geometry must be a point. As

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

5 The InfoPAE Use Case 128

for containment barriers, the geometry must be a line with length no greater

than the total length of the barrier.

ChangeWindEvent(direction, velocity) – changes the wind.

ChangeWaterCurrentEvent(direction, velocity) – changes the water current.

For simplicity, it is assumed that the wind and water current are uniform

fields, with the same value at all points. This simplification may cause the

simulation to behave unrealistically, if the simulated area is large enough.

However, a detailed model for those conditions is out of the scope of this work.

This simplification was made in order to keep the text more didactic with respect

to the simulation mechanisms.

There are two modes in which this InfoPAE environment may operate

during a simulation. In memory mode, the states of all elements are kept in main

memory, i.e., there is no communication with any persistence device during the

course of the simulation. The other mode is the saving mode. In this mode, every

time an element has its state changed, the environment feeds a spatio-temporal

database with the new state of that element. Hence, for each dynamic element in

the simulation, there will be a time series in the database. With those time series,

the sequence of world states of the simulation can be replayed after the simulation

has finished.

The memory mode is used to achieve better performance. For example,

when a user is designing a response plan for a given situation, he may run a large

number of simulations until he is satisfied with his plan. It is not necessary to save

them all. His work will be more efficient if the simulations are executed in a faster

way. On the other hand, the saving mode is important when one must replay the

simulation for analysis. A good example is a multi-player training game.

5.3.2
Processes

The set of processes is what gives life to the dynamic elements in the

simulation, and they are responsible for modeling all kinds of behavior, from oil

dispersion to the installation of containment barriers.

Recall that, in a simulation, processes act by sending events to each other

and to the environment, and the coupling structure of the simulation defines the

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

5 The InfoPAE Use Case 129

connections through which the events are sent to other processes and to the

environment. The overall structure of the processes in the InfoPAE simulation is

detailed in Figure 5.3. For simplicity and ease of understanding, this figure only

shows the hierarchy of processes and the flow of events that alter the

environment. The environment views and other less important details were

omitted from this figure. Every circle in the figure represents a process. The

arrows represent either parental relations between processes or connections in the

coupling structure of the simulation, through which the events flow.

Figure 5.3. The process structure

The process structure is not fixed. The number of resources in a simulation

may vary, and so does the number of processes to manipulate them. Additionally,

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

5 The InfoPAE Use Case 130

the kind of process that controls the god avatar and command avatar processes

can also change, depending on the kind of simulation and the number of human

players. In this context, an avatar represents a role in a simulation that is to be

played either by a human player or by a fully automated process. The different

types of processes are described next:

oil_leak(cell, leak_amount, leak_rate, frequency) – This is a very simple

process which starts the whole simulation activity. The idea is that there is

an oil leak at the given cell, which leaks at rate leak_rate. The total amount

of oil to be leaked is given by leak_amount. This process updates the

environment with the given frequency by periodically sending events in the

form OilLeakEvent(cell, amount) to it. Since it is a periodic process, its

time-advance function is constant ta(s) = 1 / frequency. It keeps generating

these events until the total amount of oil leaked reaches leak_amount.

Therefore, the total number n of generated events is equal to leak_amount /

(leak_rate / frequency). The parameter amount of each event is given by

(leak_rate / frequency), except for the last event, for which it is given by

leak_amount – (n – 1) * (leak_rate / frequency), where n is the total number

of events. Once all those events are sent to the environment, the process is

finished.

oil_dispersion – This process models the movement of oil slicks,

considering the wind conditions and water currents. This process also

generates events periodically. At each time step, it reads the weather

conditions from the properties view and searches the cell view for all cells

that contain some amount of oil. Then, it invokes a function that takes as

input all this gathered data and outputs a set of events in the form

OilMoveEvent(origin cell, destination cell, amount). As the coupling

structure indicates, those events are sent to a resolver process. This function

is complex and its internal details are out of the scope of this work. For the

matter of understanding the simulation logic, it suffices to specify the

format of its input and output.

oil_block – This is also a periodic process. At each time step, it checks the

vector view for the location of all containment barriers. After that, it

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

5 The InfoPAE Use Case 131

calculates which cells intersect the geometries of the barriers and generates

one event in the form OilBlockEvent(cells), where cells is the set of cells

that intersect some installed containment barrier.

resolver – The three processes oil_leak, oil_block and resolver are arranged

in an interference pattern, which is described in section 4.4.2. The resolver

process receives events of types OilMoveEvent and OilBlockEvent. It

outputs only events of type OilMoveEvent. In its internal state s ∈ 2C, where

C is the set of all cells in the cell space, it keeps the set of cells that are

blocked. Each time it receives an OilBlockEvent(cells), its internal state

becomes s = cells. Each time it receives an OilMoveEvent(origin cell,

destination cell, amount), it forwards it immediately as output only if

destination cell ∉ s, otherwise the event is ignored. Therefore, this resolver

process acts like a filter of events, retaining all movement of oil that is

contained by the barriers. This way, the logic of oil containment is separated

from the complex logic of oil dispersion.

oil_recovery(resource_id, action_radius, recovery_rate, max_capacity,

frequency) – This process removes oil from the environment. This process is

used both by recovery boats and by coastal cleaning teams. The resource_id

indicates which resource is recovering oil. The location of the resource is a

point in a 2D space and can be obtained from the vector view at any time.

The action_radius indicates the maximum distance from the resource’s

location where oil can be recovered. The recovery_rate indicates the rate at

which this resource can remove oil from the environment. The

max_capacity is the maximum amount of oil that can be recovered. Finally,

the frequency has exactly the same semantics as in the oil_leak process. It

indicates the frequency at which the environment is updated.

The internal state of this process is defined by the variable

remaining_capacity ∈ ℜ
+. Its initial value is max_capacity. At each step,

this process invokes a function which outputs a finite set O of events of the

form OilRecoverEvent(cell, amount). The internal details of this function are

omitted for simplicity. It is only important to know that this function must

obey the following restrictions:

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

5 The InfoPAE Use Case 132

1. sum({a∈ℜ / OilRecoverEvent(c,a)∈O}) =

 min((leak_rate / frequency), remaining_capacity)

2. (∀o∈O)(o=OilRecoverEvent(c,a) ⇒ c∈R)

where R is the set of cells intersecting the circle centered at the

resource’s current location with radius action_radius

The first restriction imposes that the oil must be recovered at a rate equals to

recovery_rate, and also that the process does not recover more oil than its

capacity. The second restriction states that all recovering must be done

within the action area of this recovery process. After the events have been

generated, the internal state is updated. From the remaining_capacity, it is

subtracted the value min((leak_rate / frequency), remaining_capacity).

When remaining_capacity = 0, the process is finished. Hence, it is

guaranteed that the process will not recover more oil than its max_capacity.

displacement(resource_id, trajectory, speed, frequency) – Moves the

resource defined by resource_id along the line defined by trajectory with

the given speed. The frequency parameter defines the frequency at which

this process will update the position of the resource. This is a periodic

process with ta(s) = 1 / frequency. Consider a parametric function

d: [0, length] → ℜ2, where length is the total length of the trajectory and

d(x) is the point in the trajectory reached by walking x space units along the

trajectory, starting from its origin. The internal state of this process is

defined by the variable current_location ∈ [0, length], for which the initial

value is 0. At each step, this process outputs one event in the form

ChangeResourceLocationEvent(resource_id, new_position), where

new_position = d(min(current_location + speed / frequency, length)). After

generating this event, its current_location is updated to

min(current_location + speed / frequency, length). When current_location =

length, the resource has reached its destiny and the process is finished.

barrier_installment(resource_id, location, frequency) – Installs the barrier

defined by resource_id at the given location. Of course, the resource with

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

5 The InfoPAE Use Case 133

the given resource_id must be a containment barrier. The location is defined

by a polyline in the 2D space with length no greater than the total length of

the given barrier. The detailed procedure for installing a containment barrier

involves two boats, which should meet at a particular point, set the barrier

on water and start moving in opposite directions, each one holding one end

of the barrier. According to the climate conditions, some complex

movement may be required to keep the barrier in the desired shape.

However, since the focus of the simulation is training and resource

planning, it is not necessary to model this process in such a level of detail.

Instead, this process just calculates and waits for the total time spent until

the boats meet at the location desired for the barrier. It then starts sending

periodic events in the form ChangeResourceLocationEvent(resource_id,

location) as new segments are added to the geometry of the installed barrier.

The periodicity of these events is given by 1 / frequency. When the barrier is

totally installed, this process finishes. The internal calculations of this

process are complex and are omitted here for simplicity.

recovery_boat_controller(resource_id) and

coast_clean_controller (resource_id) – These processes control the

resources that are responsible for removing oil from the environment.

Unlike containment barriers, which are treated as passive objects, those

resources are active elements in the sense that they perform actions that alter

the environment, hence the need for controllers. Each recovery boat and

each coastal cleaning team must have one controller process. The controller

processes receive commands in the form RecoverOilAtEvent(location) from

the command avatar process and orchestrates its children, namely

displacement and oil recovery processes, in order to execute those

commands.

Initially, the controller process reads the attributes of its controlled

resource, which is defined by resource_id. Those attributes define values for

properties such as speed, recovery capacity and recovery rate. Then, it waits

for a RecoverOilAtEvent(location) command. Once it is received, it checks

the location and traces a route to it by using some routing algorithm, whose

details are omitted for simplicity. Then, it forks a displacement process and

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

5 The InfoPAE Use Case 134

waits for it to move the resource to the desired location. Once the resource is

properly located, the oil recovery process is used to perform the recovery

action. If some other RecoverOilAtEvent is received, all current activity, if

any, is cancelled and the operation starts over. This way, the controller

process provides a high-level abstraction for the recovery resources by using

the composite pattern, as described in section 4.4.3.

command_avatar – This process provides the abstraction of an avatar for the

response command in the simulation. Its functionality consists basically in

receiving commands and delegating them to its children. It provides one

additional level of abstraction with the composite pattern. In fact, the whole

tree of processes below the command avatar represents the execution of the

emergency response. This process receives events of the form

DeployResourceAtEvent(resource_id, location). If the resource identified by

resource_id is a containment barrier, it forks a new process

barrier_installment(resource_id, location) if that barrier has not been

deployed yet. If the resource is a recovery resource, it simply sends an event

RecoverOilAtEvent(location) to the appropriate controller.

god_avatar – This process provides an avatar for manipulation of the

weather conditions. It receives commands as events in the form

ChangeWindEvent(direction, velocity) or ChangeWaterCurrentEvent

(direction, velocity) and simply forwards them directly to the environment.

The purpose of this process is merely to make the process structure more

uniform. It is analogous to implementing an avatar interface where one can

plug either a human player interface or another fully automated process.

human_player_interface and non-playing character (NPC) – These are the

processes that can be attached to the avatars. A human player interface is an

input process, as defined in section 3.3.1, which is able to receive

commands from a human-computer interface (HCI), which is external to the

simulation. This way, a human can interfere with the simulation. The

capabilities of the avatar will define the human’s role in the simulation.

Another possibility is to attach a fully automated process to the avatars. In

this case that process would be a non-playing character (NPC). In the

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

5 The InfoPAE Use Case 135

computer games field, this term is used to denote a fully automated

character that plays a specific role in the game. The NPCs implemented for

the InfoPAE simulation are processes that act based on workflow

definitions, as described in section 4.1. For each action in the workflow, the

workflow process, as defined in that section, forks a child process which

communicates with the avatar process by sending the events relative to that

action.

Hence, the set of human players is flexible. Each avatar may be

controlled either by a human or by a predefined workflow. In a multi-player

game, all avatars may be controlled by humans. In a fully automated

simulation, all avatars may be controlled by predefined workflows.

Most processes in the simulation are periodic, i.e., they could be defined in a

discrete time formalism. However, they work with different time steps, as listed

below:

oil_leak – 10seg oil_dispersion – 5min

oil_block – 1min oil_recovery – 10seg

displacement – 10seg barrier_installment – 30seg

Some processes are rigid with respect to their time steps. For example, the

oil_dispersion process only works correctly with the right time step. However,

most of them are somehow flexible with respect to the time step because they use

their frequency parameter to do their calculations. For example, if we double the

time step of the oil_leak process, it will automatically double the amount of oil

that is leaked at each time step. Such processes can have their time steps adjusted

to optimize the simulation performance. However, there is a minimum granularity

required by each of them so that the simulation results remain correct, according

to a given criteria.

It should be reminded from the simulation operational semantics that all

events are time-stamped and totally ordered. Therefore, although the environment

acts like a database, there are no concurrency issues, since all events are always

processed in the same order.

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

5 The InfoPAE Use Case 136

5.4
The InfoPAE Plan Simulator and Training Game

Two different systems were implemented with the InfoPAE simulation. The

first one is a simulator for the InfoPAE planning module, which provides an

environment in which InfoPAE users can test the response action plans they

design with the InfoPAE plan editor. The second system is the InfoPAE training

game, which provides an environment to simulate an emergency situation with

which multiple humans can interact.

Both systems are based on the same simulation model. The only difference

between them is that, in the planning module, NPC processes are used to control

the avatars, while in the game, these processes are replaced by human player

interface processes, as described in the previous section. All other processes are

reused with the same configuration.

The following sections describe the architecture and functionality of each

system.

5.4.1
The InfoPAE Plan Simulator

As already mentioned in section 4.1.1, simulation can be a valuable tool in

the process of business process planning. The idea of the plan simulator is to act

as a fast and low cost tool for simulating response plans designed in the InfoPAE

system. Hence, the plan designer may quickly detect flaws in his plans and test

different alternatives, searching for more efficient plans. The architecture of the

plan simulator is depicted in Figure 5.4.

Figure 5.4. The Plan Simulator Architecture

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

5 The InfoPAE Use Case 137

In the InfoPAE planning module, which is not illustrated in the architecture,

the user defines the emergency scenario and designs a response action plan for

that scenario. The result is then stored in the InfoPAE database. The plan

simulator reads this information from the InfoPAE database to build its simulation

with the structure defined in section 3.3.1. A response action plan is modeled as a

workflow in the InfoPAE database. During simulation execution, this workflow is

used by an NPC to control the command avatar. In addition to the scenario and

response plan information, the plan simulation also needs geographical

information such as the coast geometry with its oil sensitivity data, which is

necessary for simulating coast hits and calculating the total environmental impact.

One interesting point here is that the emergency scenario and the response

plan in the InfoPAE database do not provide all the information needed for a

simulation. Detailed information about the emergency, such as the exact oil leak

coordinate, the leak rate and the total amount of leaked oil, are often missing from

the scenario definition, so are the exact weather conditions, such as the wind

direction and speed. That happens because scenario definitions are required to be

a little abstract so that they can represent a larger number of concrete emergency

situations. Otherwise, if the user was always forced to provide complete details,

the number of scenario definitions in the InfoPAE database would grow beyond

the reasonable. The same happens with response plans, which rarely define all the

exact parameters for every action.

When the user imports a scenario definition and a response plan to build the

simulation, the plan simulator provides an interface for defining all the missing

detailed information. However, the user may still leave some information

undefined. In this case, once the simulation has started executing, as soon as a

simulation process needs missing information, the simulation is automatically

paused and the plan simulator queries the user for that information so that the

simulation can proceed. This is accomplished by the exchange of events between

the user interface and the simulation through I/O processes, as specified in section

3.3.1.

The user interface provides controls for the user so that he can play, pause

and set the speed of the simulation whenever he wishes. Those requests are sent to

the loop component, which implements the StableGameLoop described in section

5.5.2. The current situation is presented to the user in a 3-dimensional scene,

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

5 The InfoPAE Use Case 138

which is rendered by a 3D engine similar to those used by entertainment games. In

order to optimize the rendering performance, the environment implementation

used by this plan simulator stores all its data in main memory and in data

structures specialized for rendering by the 3D engine, as discussed in section 3.2.2

(decision 4). Screenshots of this graphical interface are shown by Figure 5.5.

Figure 5.5. Screenshots of the Plan Simulator User Interface

The 3-dimensional interface provides the users with a realistic view of the

situation evolution. Besides the position of moving objects such as oil and the

resources, some additional information is rendered on the map. The action radius

of some resources such as recovery boats and coast cleaning teams helps the user

visualize the efficiency of their deployment and think about alternatives. The 3D

visualization also allows the users to check what is visible to the people on

specific points in the action field, such as helicopters, boats and coastal points.

5.4.2
The InfoPAE Training Game

The second implemented system was a training game. Its architecture is

depicted in Figure 5.6. This game uses a multi-touch table as a device where

several players can work together to handle the simulated emergency situation.

The table is provided with a horizontal screen capable of processing multiple

touch inputs simultaneously. Below that screen is a regular PC-like computer that

is connected to a game server via a network. This computer hosts a small interface

program that translates the inputs of the players into commands for the game

server. This game server contains the simulation, the game loop and a Web Map

Service (WMS) (Percivall 2003), which implements a standard way of serving

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

5 The InfoPAE Use Case 139

map images on the Web. One of the benefits of the multi-touch table is that it

facilitates collaboration between players.

Figure 5.6. The Multi-Player Training Game Architecture

Before the game starts, one player has to choose one emergency situation

out of a number of predefined ones. These predefined emergency situations differ

from the scenarios stored in the InfoPAE database in the sense that they contain

all the detailed information needed to run a simulation.

Once the initial situation is chosen, the game server builds the simulation

and starts executing it. The simulation of the game is basically the same as in the

plan simulator. Only the NPC processes are replaced by human player interface

(HPI) processes, as described in section 5.3.2. The simulation receives from the

table both response action commands and requests for changing the weather

conditions. Response action commands are forwarded to the command avatar,

while requests for changing weather conditions are forwarded to the god avatar.

Finally, there is one last type of input from the table, which consists of requests

for changing the game speed. Those requests are sent to the game loop and

handled as described in section 5.5. Speeding up the game speed may be desirable

when there is no decision making by the players.

The game loop component implements the StableGameLoop described in

section 5.5.2. It keeps a thread that continuously advances the simulation time and

provides the multi-touch table with updates on the simulation environment. These

updates contain the state of the elements in the environment that are rendered to

the players, such as the oil position and the locations of the resources. All this

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

5 The InfoPAE Use Case 140

information is rendered on top of a map, which is provided by the Web Map

Service. A screenshot and a picture of the game are shown in Figure 5.7.

Figure 5.7. The Multi-Player Training Game in Action

The multi-touch table added considerable value to the game. The players

can talk to each other and discuss the correct strategy while allocating the

resources to mitigate the oil leak. It is interesting that, although this game was not

designed for entertainment, its users found it fun to play with. This shows the

power of games to engage people, which can be exploited by companies to

stimulate discussions, to develop solutions and to propagate knowledge about a

given problem.

5.5
Time Management

During the implementation of the two InfoPAE modules, problems with

time management were detected in the context of current game loop techniques.

None of them seemed to handle properly changes in the simulation speed and the

processing peaks generated by complex simulation models. This section

informally discusses the principles involved in dealing with those requirements

and presents the loop model developed for the InfoPAE system.

The problem of time management lies in that computer games and, more

generally, interactive simulations, need to implement some way of

synchronization between the speed at which the simulation advances and the real

time flow. This problem is not as simple as it might look. The game loop

techniques described in section 2.1.1 show how entertainment games usually deal

with this problem. However, these loops do not take into consideration the

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

5 The InfoPAE Use Case 141

requirements of changing the simulation speed during play and handling

simulation processing peaks.

Since serious games often attempt to simulate real situations, it is natural

that the simulation time represents the real time of those situations. However,

simply synchronizing the simulation time with the real time flow may not be

enough for all serious games. The ability to accelerate and slow down the pace of

the game may be quite important for the usability of serious games. For example,

consider a game which simulates an emergency situation which may last for days.

The game simulation should obviously not take the same amount of time. Periods

requiring no decision making should be fast-forwarded. Likewise, periods of

intense decision making could be slowed down for training purposes.

Serious games often make use of complex simulation models. This easily

becomes a time management issue because, unlike entertainment games, these

models cannot be tricked or simplified when they produce processing peaks.

Therefore, game loops designed for serious games cannot assume that their

simulation models will not exceed certain processing time limits.

5.5.1
Simulation Speed and Game Loops

The human beings always work in real time. It cannot be accelerated or

slowed down. Therefore, simulations that interact with humans must implement

some sort of synchronization mechanism. The synchronization problem consists

of adapting the simulation of automated elements to the real time flow by

monitoring the speed at which the simulation is running and adapting its advance

policy accordingly. The average simulation speed is calculated by speed = ∆tsim /

∆treal, where tsim is the simulation time and treal is the real time. The desired value

of the speed will vary unpredictably in time depending on the will of the user. One

example of how the speed can be changed during play is shown in Figure 5.8.

When speed = 1, the simulation is synchronized with the real time flow. Greater

values mean that it is in accelerated mode and lesser values in slow motion.

Pauses obviously have speed = 0.

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

5 The InfoPAE Use Case 142

Figure 5.8 – Simulation speed being changed during play

As already mentioned in section 2.1.1, time management in single-player

games is traditionally done by a loop which interleaves calls to the three functions

input, update and render. The term frame rate is used in gaming to denote the

frequency in real time that the render function is invoked. Both input and render

functions represent simulation I/O. For simplicity, we shall consider only two

functions: update and process_io.The update function is responsible for advancing

the simulation time, while process_io is assumed to handle all I/O, including

rendering. The idea is that the simulation system alternates between advancing its

internal simulation and communicating with external entities. In a single player

desktop game, it means to receive user input and render the user view. However,

considering the case of a network game, it could mean exchanging update

messages with its peers instead of rendering to the screen.

To maintain consistency with gaming terms, we shall use the term frame

rate to denote the frequency in which the process_io function is invoked, even if

this function does not render a frame for the user as, for example, in the network

case just described.

Both functions are defined as

process_io()

{

 current_state := current_state.flush_io()

 render() //if necessary

}

update(dt)

{

 current_state := current_state.advance(dt)

}

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

5 The InfoPAE Use Case 143

where dt is the simulation time advance, current_state is the current simulation

execution state and the advance and flush_io functions are as defined in section

3.3.2. After the call update(dt), the simulation time is increased by dt and its state

is update accordingly.

Some game loops define their update function without the dt parameter,

considering a fixed predefined time increase. This kind of loop assumes a discrete

time simulation model, which is not enough to handle discrete event simulation

formalisms, such as Process-DEVS.

Other more sophisticated and highly interactive game loops divide the

update tasks between two update functions. One that is executed in a fixed

frequency and another one that runs at a variable frequency. The first is used for

tasks that do not present relevant results in brief time intervals such as the game

logic. The second is used for tasks like animation interpolation, which produces

smoother results if executed in a high frequency (Valente et al. 2005). In this case

it makes sense to make multiple calls to the variable frequency update and

process_io pair of functions between two consecutive calls to the fixed frequency

update, as depicted in Figure 5.9 (a). The fixed frequency update must be called

exactly once in a given real time period. The remaining time is then used to make

calls to the variable frequency update and process_io functions.

Figure 5.9 – Game loops profiles

This kind of loop forces most of the game logic to be modeled in discrete

time, which can limit the integration and reuse of simulation models, especially if

they work at different time scales as discussed in section 3.2.1. However, with the

discrete event approach, it is not necessary to have a fixed frequency update

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

5 The InfoPAE Use Case 144

function. The simulation can be advanced by any time period dt at any time,

reaching a perfectly valid and defined state. Besides, removing the fixed

frequency update does not restrict the simulation models. In the context of the

Process-DEVS framework, any logic that is modeled in discrete time can be

embedded in a process for which ta(s) = c, where c is a constant. In this case, even

though the update function is called with a variable frequency, that process will be

executed as if it was modeled in discrete time.

Since it is not necessary to provide a fixed frequency update function, the

loop is considerably simplified. It is only necessary to alternate calls to the update

and process_io functions as depicted in Figure 5.9 (b). In this case, the main

question is to figure out which parameter dt to use in each update call, considering

that it is not known in advance how long those calls will take to execute. The next

section provides a study on some loop models in order to answer this question.

5.5.2
A Loop Model Study

In order to test different loop models, we shall consider a simulation

composed entirely by i processes of the form Pi[∆ti, wti] = 〈Si, Xi, Yi, Ei, Pi, δint i,

δext i, λi, ρi, tai〉. Each process Pi generates events periodically every ∆ti simulation

time units. Each event is assumed to take wti real time units to be processed. In

short, tai(s) = ∆ti and the process does nothing besides consuming a processing

time equal wti in its internal transition function. Two processes are defined for the

test: P1[50ms, 5ms] and P2[250ms, 100ms]. These two processes will determine

how much processing time each call to the update function will take. The

process_io function is assumed to take a constant time equal to 5ms and the

desired frame rate for this simulation is 10fps. The purpose of this test is to study

the effects of a high processing load of a simulation model in an interactive

simulation. Particularly, the relatively sparse processing peaks generated by P2

and the exhaustion of the processing resources caused by a speed increase shall be

studied in detail. In order to achieve that, the simulation starts normally with

speed = 1. When the real time reaches 4s, the speed is increased to 4. When the

real time reaches 6s, the speed returns to 1. When the simulation time reaches 15s,

the simulation is finished.

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

5 The InfoPAE Use Case 145

The first and simplest loop considered in this study is the MaxFpsLoop,

which is defined as

current_time = get_system_time()

while(!is_finished())

{

 last_time = current_time

 current_time = get_system_time()

 update((current_time – last_time) * get_speed())

 process_io()

}

This loop is quite simple and useful. It simply measures the real time it took

to execute the previous cycle and uses it to feed the update function. Note that it is

multiplied by the speed given by the get_speed function. For example, if the speed

equals 2, the simulation will be advanced twice as fast as the real time.

This loop clearly attempts to maximize the frame rate. The faster the update

and process_io functions are executed, the higher the frame rate is. Although

loops like this are used in some single player computer games, it has two

drawbacks if we consider the serious games requirements discussed in the

beginning of this section. First, it always attempts to use all available

computational power to increase the frame rate, even in the cases where that will

not improve the user experience. Second, it does poorly when trying to run at

speeds that surpass the processing limits. In that case, the frame rate drops

dramatically and the dt parameter of the update function grows indefinitely.

Figure 5.10 depicts the results of the test executed with the MaxFpsLoop.

The chart on the top shows the evolution of the simulation time with the real time

flow. The chart on the bottom shows the frame rate. The frame rate values are

calculated using a time window of 0.5s. The results show clearly that this kind of

loop is inadequate to meet the requirements. First, its frame rate in normal speed

is much higher than desired, therefore wasting resources, which might be a

problem for the serious games industry, where the games might compete for

processing power with other corporative information systems. Second, the frame

rate drops almost to zero when the simulation is accelerated beyond the

processing capacity. Third, it continues to run fast for some time after the speed

has returned to normal at 6s. This is because this loop accumulates time debts

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

5 The InfoPAE Use Case 146

during the period where it does not reach the desired speed. After the speed has

returned to normal, it attempts to compensate by continuing to execute faster for

some time. This is good only for small time debts such as those caused by the

processing peaks of P2. Indeed, the line at the top chart has reached with precision

the point (4,4) because of this property. However, if the time debt is large enough

so that the time necessary for compensation is perceivable to the user, it should

not be compensated. This would give the user a sense of losing control over the

simulation speed.

Figure 5.10 – MaxFpsLoop

The MaxFpsLoop is based on a catch-up principle. It checks the time it took

to execute the last loop and set the next update dt parameter accordingly. One

alternative also used in computer games is the opposite strategy. Set a fixed dt

parameter and set the loop time accordingly. This is done by taking the time the

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

5 The InfoPAE Use Case 147

update call took and setting a sleep time accordingly. The FixedStepLoop

implements this approach in a simple way.

parameters(

 desired_frame_rate = 10.0

)

loop_time = 1.0 / desired_frame_rate

last_time = get_system_time()

while(!is_finished())

{

 processIO()

 update(loop_time * get_speed())

 remaining_time = loop_time – (get_system_time()-last_time)

 if(remaining_time > 0)

 {

 sleep(remaining_time)

 }

 last_time = get_system_time()

}

This loop clearly expects that there will always be enough processing time

to execute the update and process_io on time to keep the frame rate constant at the

desired level. In fact, at normal speed, the frame rate is very well behaved as

shown in Figure 5.11. It still drops when the processing capacity is stressed but

less than in the MaxFpsLoop. One other problem solved by this loop is that it does

not accumulate time debts when the processing capacity is reached. This can be

easily seen in Figure 5.11. After 6s, the speed returns to normal almost

immediately.

Although FixedStepLoop solves most of the problems of MaxFpsLoop, it

raises one new problem. Since it does not accumulate time debts, the processing

peaks caused by P2 forces the simulation to go slower than the desired speed, even

when there is enough processing capacity. This can be easily checked in the top

chart of Figure 5.11. The line does not reach the point (4,4) as expected. This

could be an issue in a computer simulation that is mixed with real dynamics, for

example.

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

5 The InfoPAE Use Case 148

Figure 5.11 – FixedStepLoop

In order to solve the problems raised by these two loop studies, a looping

strategy consisting of the following steps was developed:

1. Update the simulation in small steps until it is time to call

process_io or all time debts have been paid. Updating the

simulation in small steps is good to detect when the next call to

process_io is late. If all time debts have been paid, the simulation is

up to date and there is no need to update it any further.

2. If all time debts have been paid, wait for the time to call

process_io. This is important to release the processing resources if

they are not fully needed to achieve the desired frame rate.

3. Call process_io. It is called once per loop. Therefore each loop

should ideally last the inverse of the frame rate.

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

5 The InfoPAE Use Case 149

4. Compute the loop time and increase the time debt for the next

loop forgiving all debts beyond a given threshold. The desired

time for executing a loop cycle is determined by the desired frame

rate. The debt calculation should consider the difference between the

desired and actual loop time.

This loop requires two additional parameters besides the desired frame rate.

One for defining the granularity of the steps in which the simulation should be

advanced and another for the debt forgiving threshold. The StableFpsLoop

implements those steps. Its pseudo-code is given below.

parameters(

 desired_frame_rate = 10.0

 max_debt_factor = 2.0

 update_granularity = 0.25 //should be between 0.0 and 1.0

)

loop_time = 1.0 / desired_frame_rate

current_time = last_time = get_system_time()

advance_debt = 0.0

while(!is_finished())

{

 advance_debt += loop_time * get_speed()

 advance_step = loop_time * get_speed() * update_granularity

 do

 {

 advance_step = min(advance_step, advance_debt)

 update(advance_step)

 advance_debt -= advance_step

 remaining_time = loop_time–(get_system_time()-last_time)

 //if no more debts, waits until time to call process_io

 if((advance_debt <= 0.0) && (remaining_time > 0.0))

 {

 sleep(remaining_time)

 remaining_time = 0.0

 }

 } while(remaining_time > 0.0)

 processIO()

 current_time = get_system_time()

 //add time difference between desired and actual loop time

 advance_debt +=

 ((current_time - last_time) - loop_time) * get_speed()

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

5 The InfoPAE Use Case 150

 //forgive debts beyond threshold

 debt_threshold = max_debt_factor * loop_time * get_speed()

 advance_debt = min(advance_debt, debt_threshold)

 last_time = current_time

}

The results of actually running this loop are depicted in Figure 5.12. It can

be easily seen that the StableFpsLoop behaves better than the previous loop. Like

the MaxFpsLoop, it is capable of compensating for small processing peaks,

keeping the average speed as desired. However, if the simulation keeps a speed

beyond the limits of the processing capacity for a large time period, it does not

accumulate all the time debt. It is clear that after 6s, the speed returns to normal

rather quickly.

Figure 5.12 – StableFpsLoop

This loop also behaves well with respect to the frame rate. At normal speed,

it keeps the frame rate in the desired value. Therefore, it saves as much processing

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

5 The InfoPAE Use Case 151

time as possible for other concurrent applications. The frame rate still drops a

little under stressing conditions but the impact is less than in the two previous

loop models.

All in all, the StableFpsLoop is the first loop model that handled the test

case in an acceptable way. The four steps identified for implementing the loop

strategy seem to be a good guide to deal with the speed change requirement.

5.6
Summary

This chapter described the implementation of two applications on top of the

Process-DEVS formalism, introduced in section 3.3. Both applications are part of

the InfoPAE system, which is targeted at managing emergency response in the oil

industry. The first application consists of a planning module while the second is a

training game.

The first result of the discussion in this chapter is that almost all the

simulation model could be successfully reused by the two applications thanks to

the high level of modularization. Only a small number of processes and the

internal implementation of the environment had to change in order to allow

different types of user interaction and to optimize the 3D rendering performance

of the plan simulator.

Another result is that processes modeled in different formalisms such as

resource displacement, cell space processes and workflows could work well

together while keeping them independent of each other. The process of oil

dispersion, which was the one with the most complex logic in the simulation,

could be easily expressed in terms of the Process-DEVS formalism without

encountering any restrictions. The same happened for the workflow operators of

the InfoPAE response action plan representation. No limitations were faced with

respect to the expressivity of the simulation framework.

As expected, the 3D rendering performance of the plan simulator and the

network traffic of the training game did not show significant changes when the

simulation speed is increased, even when the processing capacity is reached. The

time control techniques described in section 5.5 worked well for that result.

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

5 The InfoPAE Use Case 152

In the case of the plan simulator, even though the users can compose

different simulations by defining new scenarios and response plans, they have

expressed the desire of defining different specific simulation processes for certain

cases. However, programming directly on top of the Process-DEVS formalism

would be too difficult for non-programmers. Therefore, just as in the case of

SeSam (described in section 2.3.2), it would be nice to provide users with a

simpler language on top of Process-DEVS to define processes.

Another desirable feature for the InfoPAE system is to provide the notion of

time in its workflow notation. Most workflow representations only allow one to

define before-after relationships between actions. Some InfoPAE users expressed

the desire to represent more detailed and quantized time relations. Since the

Process-DEVS formalism models time explicitly, it would likely be capable of

supporting interesting representations of workflows with time.

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

