
 
 

3  

The Dynamics of a Fishery 

 

A fishery is an area with an associated fish or aquatic population which is 

harvested for its commercial or recreational value. Fishery can be wild or farmed. 

Fish are renewable resources because they reproduce, grow and die. In general, their 

stock level changes over an interval of time according to births, deaths and 

harvesting.  

The FAO 2008 report on fisheries states that fish consumption has undergone 

major changes in the past four decades. Overall, consumption per person per year has 

been increasing steadily, from an average 9.9 kg in the 1960s to 16.4 kg in 2005. 

Despite the social and economic importance of fisheries, attempts at sustainable 

management have been unsuccessful in many parts of the world and a global 

response is urgently needed. An ecosystem approach to fisheries is called for, 

protecting and conserving ecosystems while providing food, income, and livelihoods 

from fisheries in a sustainable manner.  

   Many mathematical models have been developed to describe the dynamics of 

fisheries. Some of these are; the single-species models developed by Beverton and 

Holt, which are age- and size- structured, the van- Bertalanffy curve which considers 

growth in length of the fish, Beddington and May (1977), who considered the age 

structure and the growth of the fish populations and effects of fluctuations (Quinn and 

Deriso, 1999; Haddon, 2001). The simplest models assume a logistic equation for the 

fish population (R. Mchich, 2002). The fish depend on the natural food supply, so 

individuals compete for a limited food resource, and consequently their growth is 

dependent on population density. 
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3.1  

Growth Model of a Fishery 

We consider a fish population whose biomass is n. The natural growth process 

of the fish population can be given by 

 ( )                                                                                     3.1  
dn

f n
dt

  

Here f (n) is a representation of the births and deaths of the species in absence of 

harvesting. We assume that the fishery is a closed system. So there is no migration to 

and from the fishery.  We assume a logistic growth for the natural growth of the fish 

population. Therefore, the natural growth of the population is given by 

       ( ) (1 )                                                     3.2
dn n

f n rn
dt K

    

Here r is the intrinsic growth rate of the biomass. It is the rate at which the population 

grows when n is close to zero. K  is the carrying capacity (or saturation level) of the 

population. It represents the maximum population that the fishery can support.  

Given an initial biomass n(0)=n0, the fish population size at any time t is 

given by 

0

( )                                                            3.3

1 ( 1) rt

K
n t

K
e

n





 

 

 

The Growth Curve for the Fish Population 
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Figure 3.1. Plot of dn/dt against n to show the MSY.  

   

  K 
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From the diagram, it is clear that the growth function has a maximum point. We 

call this point MSY .  When the stock size is at msyn , the growth rate of the fish stock is 

at a maximum, and this maximum is referred to as the maximum sustainable yield –

MSY (Figure 3.1). 

We compute the maximum point ( msyn , MSY) of the curve. This is done by 

differentiating f (n) and equating it to zero. 

' 1
( ) ( ) (1 )

n
f n rn r

K K


    

  For f’ (n) =0,         ( ) 0rn r K n     

Thus                                                                                 3.4
2

msy

K
n   

 Hence          ( )
2 4

K rK
f   

 Therefore, if the fish population is maintained at half its carrying capacity, the 

population growth is at a maximum, and the sustainable yield is greatest. This is 

called the Graham´s Theory of Sustainable Fishing (Weiss, 2009). Thus, maximum 

sustainable yield of a fish population is reached when the stock level (biomass) is 

exactly half of its carrying capacity, K , as shown in Figure 3.1. 

There are two biological equilibria * *0     n and n K  . Any stock size above 

zero and below the carrying capacity, K  will lead to positive growth and hence an 

increase in the stock. Any stock level above the carrying capacity will lead to 

excessive environmental resistance and hence to a decline in the stock. 

3.1.1  

An Example 

The logistic model was applied to the natural growth of the halibut population in 

certain areas of the Pacific Ocean. The biomass n of the halibut population at time t 

was measured in kilograms. The parameters in the logistic equation were estimated to 

have the values r = 0.71/year and K = 80.5 × 10
6
 kg. Given an initial population n0 = 

0.25K, the biomass 2 years later and the time τ for which n(τ ) = 0.75K were found. It 

had the logistic curve below (Boyce and DiPrima, 2001). 
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The Growth of Halibut Population with Time 
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Figure 3.2.  The population, n (Χ 10
6
 ) Kilograms versus time,t years  for population model of halibut in 

the Pacific Ocean. 
The biomass of the fish population at any time t is given by Eq.(3.3) 

0

( )                                                     

1 ( 1) rt

K
n t

K
e

n





 

 

Using the data given, it was found that 

(0.71 2)

(2)

1 ( 1)
0.25

K
n

K
e

K

 



 

 

Simplifying further   

1.42
(2)

1 3

K
n

e


  

680.5 10K Kg  , hence 6 (2)  46.7 10 .n kg   

To find τ. Eq.(3.3) was solved for t. 

(1 )

(1 )

o

rt

o

n
n

Ke
n

n
K







 

Hence 
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(1 )
1

ln                                                               3.5

(1 )

o

o

n
n

Kt
nr

n
K

 
 

  
 
  

 

Using the given values of r, no and n.τ was found to be   

1 0.75 (1 0.25) 1
ln ln(9) 3.095                                                    

0.71 0.25 (1 0.75) 0.71

K
years

K


 
   

 

 

3.2  

The Growth Model with Harvesting Function 

 

We now alter our viewpoint and consider the dynamical behavior of a fishery 

which is being harvested by fishermen. Harvesting is one of the most important parts 

of the fishery and it is frequently overlooked. It has a negative effect on the fish 

population. In the presence of harvesting, the loss rate due to harvesting, in general, 

depends both on the fishing effort and on the fish stock level. Therefore the 

inadequate understanding of the fishing behaviors of human being can contribute to 

fishery management failures (Levhari, D., Mirman L.J, 1980). 

            In the absence of harvesting, the natural growth of the fish population as a 

function of n  is ( )f n .  Thus, the net growth of the fish population when harvesting 

activities are present is given by 

                       ( ) ( )                                                                 3.6
dn

f n H n
dt

   

When f(n)>H(n), the net growth of the fish population is positive which means the 

population size is increasing. When f(n)<H(n), the net growth of the population is 

negative. There is a decline in the population size. However, when f(n)=H(n), the net 

growth is zero. There is no change in the population size and hence the population is 

at equilibrium.  

( )H n  is the harvesting function or functional response. A functional response in 

ecology is the amount of resources captured per unit of time and per unit of predator, 

in fishery context, the amount of fish caught per unit of fishing effort (Auger, et al., 
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2009). The functional responses are generally classified into various types. The most 

common types are  

 Constant or Quota harvesting.  

 Holling´s Type I Function response 

 Holling´s Type II Functional response 

 Holling´s Type III Functional response.  

Holling (1959) identified the three basic types of functional responses; Type I, II and 

III. Over the years, these models have become progressively simpler as the basic 

mechanisms have become better understood (Gotelli 2009, Wiess 2009). 

3.3  

Constant or Quota Harvesting 

 This illustrates the case where the fixed quantity of the fish is harvested every 

time. The number harvested, H does not depend on the quantity of fish present. Here 

Eq.(2.6) has the particular form; 

        
(1 ) -                                                          3.7

dn n
rn H

dt K
 

 

The equilibrium satisfy 

     
( ) 0                                                              

( )                                                                                       3.8

dn
f n H

dt

f n H

  



 

We therefore have,   (1 )
n

H rn
K

   

We solve Eq.(3.8) to find the population equilibrium. This represents sustainable 

yield. Geometrically, this can be found by plotting the line, H  and the curve, 

( )f n and finding where they intersect. The intersection points correspond to the 

equilibria for the system (see Figure 3.5). In the case of no harvesting i.e. H = 0, the 

species are in biological equilibrium. Eq.(3.6) then becomes Eq.(3.2) with 
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* 0  *n and n K  . Any population size above 0 and below K, will lead to positive 

growth and hence increase in the stock.  

3.3.1  

Calculating Equilibrium points  

We compute the equilibrium solutions of Eq (3.8). We have  

2

2

0

0                                                                3.9

rn
rn H

K

KH
n Kn

r

  

  

 

We find n by using quadratic formula 

                        2

1,2

1
4( )                                                  3.10

2 2

K KH
n K

r
    

If 2 4( ) 0
KH

K
r

   then there are two distinct n-values, both of which are real 

numbers i.e. 

                        * 2 * 2

1 2

1 1
4( )     4( )

2 2 2 2

K KH K KH
n K and n K

r r
        

If 2 4( ) 0
KH

K
r

   then there is exactly one distinct real n-value, i.e. *

2

K
n   

If 2 4( ) 0
KH

K
r

   then there are no real roots. 

3.3.2  

Graphical Analysis 

We use graphical analysis to study the behavior of the logistic curve with 

constant harvesting. We look at the three cases of constant harvesting. 
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Figure 3.3. The rate of change of population, dn/dt is shown as a function of n. The curve is 

the natural growth rate. The horizontal lines are the loss due to harvesting (constant) at three 

different harvesting levels. Where the line lies above the curve; the net growth rate is 

negative. Where the line lies below the curve, the net growth rate is positive. The points of 

intersection correspond to possible equilibria. 

At harvesting level H above
4

rK
, which is the maximum sustainable yield, the 

net growth of the population is negative since ( )f n H . What this means is that, 

the fish are being extracted faster than they can reproduce. The fish will accordingly 

be harvested to extinction.    

At harvesting level H  at the maximum sustainable yield, the population 

equilibrium is *
2

K
n  .  What this means is that, if the fish population begins at the 

carrying capacity, K then there will be no growth in the fish population but there will 

be harvesting equal to 2H , which will result in a decline in the fish stock 

because ( )f n H . When the fish population declines to half the carrying capacity 

then the natural growth in the fish population is matched by level of harvesting, and 

so this level of fish population can be sustained perpetually since ( )f n H . But the 

danger with this level is that, if the fish population should fall below the maximum 

sustainable yield, then the rate of harvesting will exceed the natural population 

growth i.e. ( )f n H , and there will be a decline in the  fish population, the 

0 300
0
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n
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A C K

H,
dn/dt
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population approaches   and extinction will eventually result. Hence, the unique 

equilibrium *  
2

K
n  of 2H   is half-stable. 

Harvesting level H  below the maximum sustainable yield, there are two 

possible population equilibria; 1 2*   *n A and n C   which have been found 

algebraically in the earlier section. When *

10 n n   then ( )f n H  and the 

population will decline to extinction. If * *

1 2n n n   then ( )f n H and so the 

population will increase until *

2n  is reached. Finally, if *

2n n  again ( )f n H , so 

the population will decline until it reaches *

2n . From the observation, we conclude 

that *

1n  is a locally unstable equilibrium and *

2n  is a stable equilibrium. 

It is observed that when
4

rK
H  , two equilibria are created. As H increases, 

the equilibria move towards each other. As
4

rK
H  , the equilibria collide into a half-

stable equilibrium at
2

K
n  , as soon as, 

4

rK
H    the equilibria annihilate as shown 

in Figure 3.3. Therefore a saddle-node bifurcation occurs at 
4

rK
H   corresponding 

to the equilibrium *
2

K
n  .   

Implication for the fishery 

Brauer and Sanchez (1977) considered a lake with a certain fish species that 

was harvested to give a constant yield. Their analysis corresponds to Figure 3.3. In 

natural situations, it is observed that constant harvesting does not make sense 

biologically when the population is small (Weiss, 2009). For example, if there are 

only five tons of fish left in a certain area of the ocean, then harvesting ten tons per 

day makes no sense.  

There is a danger in operating at the maximum sustainable yield because the 

unique equilibrium (i.e., half the carrying capacity, K) which is half-stable can easily 

tend the fishery to extinction. The fishery can however operate below the MSY, by 

keeping a higher fish stock but low harvesting activities hence low productivity. 
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Constant harvesting strategy was practiced by many fisheries in the past but it is no 

longer considered a safe management strategy.  

3.4  

Holling´s Type I Functional Response  

 This is also known as Schaefer short term catch equation in fisheries literature. 

Here, the rate of harvesting increases linearly with the fish population size. We 

assume the catch at time, t  depends first on the population of fish available for 

catching, ( )n t and secondly, on the effort expended by the fishermen, ( )e t . Effort in 

this sense is an index of all inputs commonly used for fishing - such as man-hours, 

trawlers, time spent at sea, nets, etc. We write this harvesting function as        

                       ( )                   0                                                            3.11H n qen q   

Where q denotes the technical efficiency (capturability) of the fishing fleet (Schaefer 

,1957). 

Eq.(3.6) now has the particular form,  

                            (1 )                                                             3.12
dn n

rn qen
dt K

    

3.4.1  

Calculating Equilibrium Points 

We compute the population equilibrium of Eq.(3.12) 

 

     ( ) ( )                                                                        3.13f n H n  

                      (1 )
n

rn qen
K

    

The population equilibria are *

1 0n   and *

2 (1 )
qe

n K
r

  .  

If r qe ,  n2*<0.  If r qe , n2*>0 and r qe , when n2*=0. 

3.4.2  

Graphical Analysis  

We perform a graphical analysis plotting the graphs of f (n) and H(n). We look at the 

case where r > qe.    
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            Figure 3.4. The rate of change of population, dn/dt is shown as a function of n. The curve is 

the natural growth rate. The lines are the loss due to harvesting 

at 1 1 2 2   h qe n and h qe n  . 
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                    Figure 3.5. Harvesting at the maximum sustainable yield 

For harvesting function 1h , there are two population equilibria. That is, n1*=0 

and n2*=A. When n>0, the net growth of the population is positive 

because ( ) ( )f n H n . Hence the population increases in size and grows away from 

zero. However, when population increases beyond the non-zero equilibrium A, the net 

growth in the population is negative because ( ) ( )f n H n ; this results in a decline in 
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the population size back to A. A is a locally stable equilibrium whiles n=0 is a locally 

unstable equilibrium. 

          When effort e(t) is increased, the harvesting function h1 moves to the left. This 

is represented by h2. Still there are two equilbria just as in the case of h1; the zero 

population and B.  However, it is observed that B<A as shown in Figure 3.4.  

          It is moticed that n*=0 is always a population equilibrium. However it is stable 

when r<qe, half-stable when r qe  and unstable when r>qe.  

          The non-zero equilibrium * (1 )
qe

n K
r

   on the other hand, is locally unstable 

when r qe , disappears when r =qe and locally stable when r qe .  

Hence the origin undergoes transcritical bifurcation as r is varied.  

Implication for the fishery 

From the analysis, it is noticed that when the fish population reproduces 

rapidly then the population will always grow away from the zero population 

irrespective of the initial population. However, increasing the effort extremely above 

the growth rate of the fish population draws the population to negative values and 

hence to extinction.  

Harvesting can be done at the maximum sustainable yield without fear of 

extinction, because the non-zero equilibrium population is stable unlike the constant 

harvesting where the non-zero equilibrium population is half stable (see Figure 3.3 

and Figure 3.5). Hence this harvesting strategy is preferred over the constant 

harvesting. 

3.5  

Holling´s Type II Functional Response  

It is based on the assumption that the fishermen are limited by their capacity 

to hunt for the fishes. ( )H n  increases with increasing fish population but at very high 

population, ( )H n  saturates to some constant  , determined by the fishermen’s 

harvesting capacity or processing rate.  This behavior is modeled by the function 

        ( )                                                                          3.14
H

n
H n

n n





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      where β>0 and nH >0. 

This functional response is also used to model nutrient uptake –Monod response 

(Weiss, 2009) and chemical reactions- Michaelis-Merten response (Berryman, 2002).  

 

Figure 3.6.  Holling´s Type II Frunctional response 

Eq.(3.6) now has the particular form,  

(1 )                                                         3.15
H

dn n n
rn

dt K n n


  


 

There are four parameters: , , , Hr K n  so we reduce the number of parameters, to 

simplify the analysis. This is done by introducing rescaled variables. This process is 

known as nondimensionalizing the system. For an actual discussion of this process 

see Strogatz (1994). 

Both nH and K have the same dimension as n and so either n/nH or n/K could serve as 

a dimensionless population level. We let   

                        
n

x
K

 , ,  ,   and Hn
rt a h

K rK


     

Then Eq.( 3.15) becomes, 

(1 )                                                         3.16
dx x

x x h
d a x

  


 

where h>0 and a>0        

3.5.1  

Calculating Equilibrium Points  

                        (1 )
dx x

x x h
d a x

  


  

0 300
0

400

n

H(n)

 β- 

DBD
PUC-Rio - Certificação Digital Nº 0821505/CA



Population Dynamics  42 

We have                 

   0

(1 )
( )

dx

d

x
x x h

a x




  


 

We get x*=0 and (1-x) =h/(a+x), whose roots give the two additional equilibria. 

   
 

 * 0,  

' *                                                                     3.17

for x

f x a h



 
 

When h<a, we get f’(x*)>0, x*=0 is a repeller  

When h>a, we get f’(x*) <0, x*= 0 is an attractor   

Hence x*=0 undergoes a transcritical bifurcation when h=a.  

We find the roots of (1-x) = h/(a+x) 

2

2

(1 )
( )

(1 )( ) 0

0

(1 ) ( ) 0

h
x

a x

x a x h

a x ax x h

x a x h a

 


   

    

    

 

We have a quadratic equation whose roots are given by 

                     2

1.2

1
((1 ) (1 ) 4( )                                     3.18

2
x a a h a        

We can have one, two values or no value at all for x depending on the value of the 

discriminant, Δ= 2(1 ) 4( )a h a   = 2(1 ) 4a h  . Therefore a bifurcation occurs 

when
2(1 )

4

a
h


 . 

3.5.2  

Graphical Analysis 

Using graphical analysis, we study the behaviour of the equilibria as h is varied from 

1h a  to  2

2

1
(1 )

4
h a   . 
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1. For h<a, there are two roots with opposite signs.  

 

Figure 3.7. The parabola represents f(x) and the other curve represents h(x). The points of intersection 

correspond to the possible equilibria. Where the parabola is above the curve, the net growth rate is 

positive (f(x) >h(x)) and the flow along the x-axis is to the right. Where the curve is above the 

parabola, the net growth rate is negative (f(x)<h(x)) and the flow along the x-axis is to the left. (1) 

h=0.15 and a=0.25 (2) h=0.25and a=2 (3) h=2 and a=3 respectively. 

 

2. If h a  then at least one x-value is zero. The other value can be negative or 

positive. 

  

Figure 3.8.  f(x) and h(x) against x. (1) h=0.25 and a=0.25 (2) h=2 and a=2 respectively. 

 

3. When
2(1 )

4

a
a h


   there are 2 roots with the same sign. For a<1 the roots are 

positive and for a>1 the roots are negative. 
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Figure 3.9. f(x) and h(x) against x. (1) h=0.25 and a=0.1 (2) h=0.51 and a=0.50 (3) h=2.05 and a=2   

respectively. 

4.
2(1 )

4

a
h


 , there is at least one root equal to zero and a positive root if a<1.  

For   a>1,    we have 
1 (1 ) 0

1 (1 )
1 (1 ) 2(1 ) 0

a a
x a a

a a a

   
     

     
 

  

Figure 3.10. f(x) and h(x) against x. (1) h=0.25 and a= 0.001. (2) h=1.5 and a=1.45.  

 

5. If 21
< (1 )

4
a a h   there are complex x-values.  
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Figure 3.11. f(x) and h(x) against x. The green curve represents h(x) and the red curve represents f(x). 

(1) h=0.5 and a=0.1 (2) h=2 and a=1.5 respectively. 

   

It is observed that x*=0 is always an equilibrium. However, it changes its stability as 

h is varied.  

For values of h<h1, there are two equilibria, a stable positive equilibrium and 

an unstable equilibrium at the origin. For a<1 the stable equilibrium is bigger than 

when a>1 as shown in Figure 3.7.  

For values of h>h2, there is a unique equilibrium x*=0, which is a stable 

equilibrium for both a<1 and a>1 as shown in Figure 3.11.  

For values of h1< h<h2, there are three equilibria for a<1; two stable 

equilibria, x*=0 and a positive value, whose domain of attraction is divided by an 

unstable equilibrium but for a>1, there is a unique stable equilibrium x*=0 as shown 

in Figure 3.9. 

The two positive equilibria created when h1< h<h2 and a<1, approach each other, 

coalesce and create a new equilibrium when h=h2 . For a>1, the origin is the unique 

stable point as shown in Figure 3.10. 

 As h increases above h2, there is a unique equilibrium which is the origin for both 

a<1 and a>1, all other equilibria disappear as shown in Figure 3.11. 

Implication for the fishery 

From the analysis, it is observed that when a>1, the harvesting rate is 

extremely higher than the natural growth function and harvesting saturates at a 

population size above the carrying capacity of the population. The possible 
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population equilibrium for most levels of harvesting are negative which means 

extinction. Therefore for sustainable fishery a = nH/K should be maintained at a value 

less than 1.  

When h<h1, harvesting activities are less because the fish population is small. 

This allows the fish population to increase until it reaches the stable equilibrium, 

which in this case is slightly below the fish population’s carrying capacity. 

Harvesting activities within the region 1h  and 2h  will cause the fish population to 

tend towards either the stable equilibrium or towards the zero population depending 

on the initial population. For any initial population greater than the unstable 

equilibrium, that population will increase until it reaches the stable equilibrium. On 

the other hand, any initial population smaller than the unstable equilibrium will tend 

to decrease until it becomes zero i.e. the population will be heading for extinction.  

When h> h2, harvesting activities are very intense and ( )f n H (n). The net 

growth rate of the population is negative and so the population will be reducing at a 

faster rate until it reaches extinction (zero population). Here the origin is the unique 

stable equilibrium. 

As shown in Figure 3.10, when the harvesting function saturates at the 

maximum sustainable yield (MSY), the population will move towards extinction 

since the positive equilibrium is half-stable and the stable equilibrium is the origin.  

3.6  

Holling´s Type III Functional Response 

Type III functional response is similar to Type II in that at high levels of fish 

population, saturation occurs. There is almost no harvesting when fish are scarce; the 

fishermen seek food elsewhere. However, once the population exceeds a certain 

critical level Hn n , the harvesting turns on sharply (faster than linearly) and then 

saturates (the fishermen are catching as much as they can).  

            

2

2 2
( )                 , 0                        3.19H

H

n
H n n

n n


 

  

From the  equation, we observe that as n → ∞, H(n) →β and as n → 0,H(n) →0. 

When n = nH, H(n) = 2


, exactly half its maximum.  
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        Figure 3.12  Hollings´s Type III functional response. 

Notice that H´(0)=0. 

Eq.(3.6) has the particular form;
 

2

2 2
(1 )                                                    3.20

H

dn n n
rn

dt K n n


  

  

Now the origin will be always a unstable, since f’ (0)>H’ (0). 

3.6.1  

Calculating Equilibrium points 

To analyze the equilibria we write the equation in dimensionless form by 

using ,  ,  ,  and  H

H H H

rnn t K
x R k

n n n





    . 

Then Eq.(3.20) becomes, 

  
2

2
(1 )                                                      3.21

1

dx x x
Rx

d k x
  


 

which is our final dimensionless form. Here R and k are the dimensionless growth 

rate and carrying capacity respectively. 

Eq.(3.21) has an equilibrium at * 0x  . The other equilibria are given by the roots of 

Eq.(3.22) .         

             
2

(1 )                                                                   3.22
1

x x
R

k x
 


 

0 55
0

15

H(n)

n

β - 

  nH 
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Algebraically, the stability of the equilibria of Eq.(3.22) can be classified using the 

discriminant of the cubic equation. However this can be tedious. We proceed using 

graphical analysis. 

3.6.2  

Graphical Analysis 

0 20
0

0.6

xk

R

x/(1+x2)

 

             Figure 3.13 Graph of dx/dτ versus x for sufficiently small k and R 
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k
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               Figure 3.14 Graph of dx/dτ versus x for k, sufficiently large. 
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Graphing the right- and left- hand sides of Eq.(3.22) it is observed that as we 

vary the parameters R and k, the line moves but the curve does not. Figure 3.13 shows 

that if k and R are sufficiently small, there is exactly one intersection. However, for 

large k, we can have one, two, or three intersections depending on the value of R (see 

Figure 3.14).  

Let’s suppose that there are three intersections which project on x-axis in 

points B, C and D (third line in Figure 3.14). As we decrease R with k fixed, the line 

rotates counter-clockwise about the point (k,0) .Then points B and C approach each 

other and eventually coalesce in a saddle- node bifurcation when the line intersects 

the curve tangentially (second line from below in Figure 3.14). After the bifurcation, 

the only remaining equilibrium is D (in addition to x*=0). Similarly, D and C can 

collide and annihilate as R increased (fourth line from below in Figure 3.14).  

It is easy to determine the stability of the equilibria, since Eq.(3.21) is positive 

where the line is above the curve and is negative where it is below, so, we observe 

that the stability type alternates as we move along the x-axis. We recall that x*=0 is 

always unstable.  

For relatively large values of R, point A slightly to the left of (k,0) is a stable 

equilibrium( in addition to  the origin which is an unstable equilibrium) as shown in 

Figure 3.15.  

 

Figure 3.15 

 For small values of R, point E slightly to the right of (0,0) is a stable equilibrium (in 

addition to the origin is an unstable equilibrium) as shown in Figure 3.16. 
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Figure 3.16 

  For intermediate values of R, there are four equilibria. The points B and D 

correspond to two stable equilibria whose domain of attraction is divided by the 

unstable equilibrium corresponding to C (in addition to the origin which is unstable) 

as shown in Figure 3.17. 

 

Figure 3.17 

In the case of two stable equilibria, the behavior of the system is determined 

by the initial condition x0: if xo>C then x will move towards B. if xo<C then it will 
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move towards D. In this sense, the unstable equilibrium C plays the role of a 

threshold. 

Implication for the fishery 

From the analysis, the dynamics of Type III response function are quite 

similar to Type II. However, one obvious difference is that, the stability of the origin 

in Type II changes whiles the origin is always unstable in Type III. That is, the 

population never goes extinct (no matter the initial population) because harvesting 

activities reduce extremely or cease when the fish population is small. This permits 

the population to increase exponentially away from zero.  

For stocking densities in the intermediate regions, we have two alternate 

stable states. Thus the population will tend toward either the upper or the lower 

equilibrium value (non-zero) depending on the initial population; for initial 

population greater than the breakpoint C, the population will increase to the higher 

population B and initial population smaller than C will decrease/increase to the lower 

population D.  

Just as in Type II, there is danger in operating above the maximum sustainable 

yield. Any misjudgment can push the fishery to collapse although not to extinction 

but a very low population (Figure 3.16) 

The essential feature that leads to two alternative stable states is the assumption that 

k=K/nH is significantly large. That is the population has a large carrying capacity K. 

Further discussion of Type III functional response can be found in Ludwig et al 

(1978), May (1977) and Noir- Mey (1974). 
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