
3
Denoising by random walks

In this chapter the feature preserving filter for vector fields based on

random walks, our first contribution, is presented (21). In Section 3.1 the

concepts of random walks in graphs are discussed in the context of Markov

processes. Then in Section 3.2 these concepts are applied to build the filter.

In Section 3.3 implementation details are discussed together with a brief

suggestion on how the parameters can be chosen and the results are discussed

at the end. This chapter follows the notation presented by Sun et al. (30).

3.1
Random walk

Random walk (RW) was one of the first chance-processes studied in the

theory of probability and has gained a lot of attention in several areas in visual

computing. The name random walk is used because one may think of it as being

a model for an individual walking on a straight line who at each point of time

either takes one step to the right with probability p or one step to the left with

probability 1− p, for example.

Given a graph and a starting node, one selects one of its neighbor at

random and moves to this neighbor then selects a neighbor of this node at

random and moves to it and so on. This sequence of nodes selected randomly

this way is a random walk on the graph. In Section 3.2 we see that the denoising

method to be proposed applies random walks on a graph whose nodes are the

base points of the vector field, and whose links represents the neighborhood

relation between them. To do such random walk, a probability has to be

assigned to each edge on the graph and this represents the chance to move

from a vertex to its adjacent neighbor through an edge. In fact a Random

walk on graph is a very special case of a Markov process (16).

A Markov process is a sequence of possibly dependent random variables

(X1, X2, X3, . . .) identified by increasing values of their index, commonly time.

Its main property is that any prediction of the next value of the sequence (Xn),

knowing the preceding states (X1, X2, X3, . . . , Xn−1), may be based only on the

last state Xn−1. That is, the future value of such a variable is independent of
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Feature-preserving vector field denoising 19

its past history: P (Xn+1 = xn+1|Xn = xn, Xn−1 = xn−1, . . . , X1 = x1) =

P (Xn+1 = xn+1|Xn = xn).

When a Markov process is a sequence of discrete-valued variables it is

called a Markov chain (20). The possible values of Xn are called the state

space I, which is a countable set and can be either finite or infinite. In this

dissertation, the state space I is finite and has L possible values. In the

denoising method proposed here, L will represent the number of points in

the input set.

A transition probability from state i to state j at the step n, where

i, j ∈ I, is equal to P (Xn+1 = j|Xn = i) and is denoted by pi,j(n). A Markov

chain is stationary when the transition probability does not depend on n, that

means: P (Xn+1 = j|Xn = i) = P (Xn = j|Xn−1 = i).

The transition probability matrix Π(n) ∈ RL×L is the matrix whose the

entry at the ith row and jth column is pi,j(n). Observe that each of its rows

sums one. The probability that the Markov chain reaches the state i at the

nth time step is equal to P (Xn = i) and is denoted by pi(n). The probability

distribution of the Markov chain over all states at time n is represented by the

vector P (n) = [p1(n), . . . , pL(n)]. Note that
∑L

i=1 pi(n) = 1.

Given an initial probability distribution, denoted by P (0), the distribu-

tion of the Markov chain in the first step is P (1) = P (0)Π(1), and in the

second step is P (2) = P (1)Π(2) = P (0)Π(1)Π(2). So, after n steps, the dis-

tribution of the Markov chain is P (n) = P (0)Πn where Πn = Π(1) · · ·Π(n)

is the n-step transition probability matrix. The entry at the ith row and jth

column of Πn is the probability of moving from state i to the state j after n

steps, and is denoted by pni,j. Observe that if the Markov chain is stationary,

Π(1) = Π(2) = · · · = Π(n), so Πn = (Π(1))n.

3.2
Feature-preserving filtering

3.2.1
Problem description

Following the notation for unstructured vector fields from Chapter 2 we

supposed that the vectors vi ∈ V are sampled from an unknown map F and

corrupted by an additive random noise. The problem is to develop a method

that suppress the noise from the samples and maintains the relevant features

of the vector field.
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3.2.2
Random walk filter

The basic principle used in previous work (28, 30, 31), translated to a

graph setting, is that the probability for moving from one node to its neighbor

on the graph depends on how similar they are. Suppose that a single virtual

particle i is located at every node ni ∈ GR, and that each particle i knows not

only the position pi but also the vector vi. At each step of the random walk the

particle moves from nj to one of its neighbors or stays at its current position.

After the application of n steps of these random walks, the L particles are

redistributed on the graph according to the transition matrix Πn. Such matrix

induces a weighted average filter to be applied to each vector vi ∈ V . The

random walk filter computes, for each node ni of the graph GR, a new vector

vi, denoted by v′i, and is computed according to:

v′i =
∑
j∈I

pni,jvj, (3-1)

where I = {1, 2, . . . , L} and pni,j is the probability of moving from state i to

the state j after n steps, which is the entry at the ith row and jth column of

Πn. The main question now is how to define the similarity functions for the

transition matrices.

3.2.3
Similarity functions for vector fields

The idea to define the transition matrix Π(n) is based on the fact that

the larger the ”difference” between two vectors is, the less similar they are.

Sun et al. (30) suggest a set of similarity functions whose independent variable

is the norm d of the difference between the normals of adjacent faces, like for

example s(d) = 1
C
e−αd

2
, where α ∈ (0,∞) is a scale parameter and C is a

normalization constant. When α is small, only faces with very close normals

are considered similar. Thus, using such kind of similarity function, one has

the property that the larger the difference between the normal vectors is, the

smaller is the probability one should use to move a particle between the nodes.

This function s is adopted in all examples of this dissertation.

A specific measure of similarity to cope with vector fields, inspired by

Eibl and Brundle (6), is suggested here. For their vector field segmentation,

they proposed three different measures for two given pairs of point/vector

fi = (pi,vi), fj = (pj,vj):

– Squared Euclidean distance → d2
1 = ||pi − pj||2+ ||vi − vj||2
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– Mahanalobis distance → d2
2 = (fi − fj)Σ

−1(fi − fj)
T , where Σ is the

covariance matrix of the coordinates of fk’s.

– Weighted additive distances → Given weights wp, wθ, wr and wβ, d2
3 =

wp‖pi−pj‖2 +wθ(∠(vi,vj))
2 +wr(‖vi‖−‖vj‖)2 +wβ(∠(pj−pi),

1
2
(vj +

vi))
2, where ∠(·, ·) is the angle between two vectors. Those weights

balance the effects of each distances: the Euclidean distance from the

base points, the vectors angle and norm difference and the difference of

the points segment with the vector average direction.

After several experiments, we decided to adopt the weighted additive

distances. The transition probability to move the particle from the node ni to

the node nj at the nth step is given by:

pi,j(n) =


1
C
e−αd

2
i,j if nj ∈ N(ni),

0 otherwise,

(3-2)

where d2
i,j is the weighted additive distance between (pi,vi) and (pj,vj) and

the value of the normalization constant is

C =
∑

nj∈N(ni)

e−αd
2

.

3.3
Implementation and results

3.3.1
Implementation

There are two ways to implement Equation (3-1). One is what Sun et

al. (30) called the batch scheme, and the alternative one is what they called

the progressive scheme. In the batch scheme the entries pni,j are computed

by growing the neighborhood of the nodes, and computing for each step all

transition probabilities, and use them at the end to compute the weighted

average. In the progressive scheme, the algorithm runs step by step. It traverses

only the first neighbors of the spot vertex and computes the probabilities for

its neighbors. In the dissertation we use the progressive scheme, since it shows

to be faster than the batch one in the majority of the experiments and the

denoising requires only a few iterations. Moreover, the steps forms a scale-

space, a notion we will intensively use in the next chapter.

DBD
PUC-Rio - Certificação Digital Nº 0821511/CA



Feature-preserving vector field denoising 22

Figure 3.1: A simple discontinuous vector field (left) with gaussian noise added
(center left). The gaussian filter (center right) blurs the interface, while the
random walk (right) preserves it.

3.3.2
Parameters of the method

Besides the radius R used to construct the connections between the nodes

of the graph, and the number n of steps for the random walk, there are more

four parameters, the ones for the weighted additive distances: wp, wθ, wr and

wβ.

A suggestion for the weight wp is 1/(2R2), in order to give more weights

to the points closer to each other in the ball of radius R. Notice that the term

wp||pi − pj||22 naturally incorporates the distance between the base points,

which is a nice advantage when the set of input points are unstructured.

To fix parameter wθ independently of the experiment, we optimize it for an

average configuration: when the angles (∠(vi,vj)) are uniformly distributed
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in the interval [0, π]. Then one can set as default wθ to be the variance of this

distribution, i.e. wθ = π/12. Finally, if σ2 is the variance of the lengths of the

vector, then a suggestion for the value of wr is 100/(2σ2), since in this case it is

considering the gaussian distribution with variance equal to the total variance

over ten. Since the application is on denoising, as default the weight wβ is set

to zero, because it usually destroys the interface of discontinuity of the vector

field if it exists.

3.3.3
Results

We tested our denoising method on three kind of models: a simple

noisy discontinuity test, where we expect the random walk to outperform

the gaussian filter, measured vector field of physical systems and simulation

models. For all examples of this section, we choose the parameters according to

the suggestions presented in the previous section. We compare our method to a

gaussian filter, which corresponds to a particular case by setting wp = (2R2)−1,

and wθ = wr = wβ = 0. For all examples, we set n = 2 for both filtering

methods.

Synthetic data This simple discontinuity test is constructed using a syn-

thetic vector field:

v(x, y) =

{
(2, 1) if 10y < (x+ 1)2,

(1,−1) otherwise.

The samples are created by evaluating this map on 900 base points that are

randomly generated using a stratified distribution in the grid [−3, 3]× [−3, 3]

(5). To each component of the sampled vectors we add an independent and

identically distributed random gaussian noise with mean 0 and standard

deviation equals to 0.05. Figure 3.1 shows that the gaussian filter blurs the

interface, while the random walk nicely preserves it.

Simulation data We also checked our method on a simulation of shear bands

in granular flows (3). The vectors on this example are placed on a 50×50 grid.

The top picture of Figure 3.2 shows the equilibrium state of the mobility of

grains in a dense granular system under shear, which almost half of the rows are

moving one way, half moving the other way, with the shear band being formed

at the very center. At this center area, the velocity is randomly distributed

and its module is almost zero, resulting in a shear band. In this figure, for

visualization purpose, the size of the vectors are the same, the colors are used
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to represent their norm. In this example, the samples are originally with an

unknown noise. The middle and the right pictures shows the filtered vector

field by the gaussian and by the random walks method. The gaussian filter

almost removes the shear band, while the random walk stresses it.

We finally checked our method on simulation models of a two-dimensional

landslide and its impact into a water body (10), such data is available from

SPHERIC (11). First our method is tested on an landslide measured by PIV

methods (Figure 3.3) and then it is again tested on a SPH simulation data

(Figure 3.4). We can see on both cases that the random walk matches the

global behavior, sketched on Figure 3.4.

Measured data We perform a second test of our approach on a real data

acquired from a PIV device. The top picture of Figure 3.5 shows the original

data on Ω = [−1, 1] × [−1, 1] with 15607 points. This sampled velocity field

corresponds to a flow of water that is continuously injected vertically on

the bottom right corner. The resulted vector fields after applying a gaussian

and a random walk filter are illustrated, respectively, by the middle and the

bottom pictures on Figure 3.5. On one hand, we see that the gaussian is more

successful than the Random walk in removing the noise, however it destroys

the singularities on the right near the wall. On the other hand, the random

walk preserves the features but is unable to fully remove the noise on the left.

There’s a delicate tradeoff between noise and information in this data set which

will be addressed in next chapter.
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Figure 3.2: A shear band simulation of a granular flow (top): the gaussian filter
(middle) removes the shear band, while the random walk (bottom) stresses it.
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Figure 3.3: Landslide in 5 steps (each block): PIV measure (top left), simulated
SPH vector field (top right). The bottom left and right pictures show the
random walks and the gaussian filtered vector fields, respectively. The gaussian
method oversimplifies the model.

DBD
PUC-Rio - Certificação Digital Nº 0821511/CA



Feature-preserving vector field denoising 27

Figure 3.4: Sketched model of the landslide of Figure 3.3 (top left) that
corresponds to the vector field on the top right rendered with a third of the
samples. The bottom left and right pictures show the random walks and the
gaussian filtered vector fields, respectively.
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Figure 3.5: A PIV model of a fluid flow (left), filtered by a gaussian filter
(middle) and by our random walk (right): while the gaussian removes the
noise, it destroys the singularities on the right near the wall, the random walk
preserves them but is unable to fully remove the noise on the left
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