
4
Topology aware denoising

In this chapter our topology aware denoising technique will be detailed.

This is a joint work with R. Nascimento (18). Instead of concerning ourselves

with preserving the discontinuities of the vector fields as in the previous

chapter, here we look at preserving singularities. There are four components

in the methodology: generating the scale-space, detecting singularities in

the scale-space, giving this information to the user, and finally reconstruct

the desired vector field. A simple example to illustrate each component is

presented in Section 4.1. Then the scale-space generation and reconstruction

are presented in Section 4.2 and 4.3 respectively. At the end, in Section 4.4,

the results are shown.

4.1
Methodology overview

The basic idea of our methodology is to let the user locally select the

noise scale to remove, defining a scale parameter s(x, y) at each point. We

start by generating a scale-space from the original vector field and let the user

choose a central scale s0. In order to avoid the arduous task of defining the scale

parameter s(x, y) sample by sample, we display to the user the singularities

that appear or disappear at different scales nearby s0. When the user selects

a topological change at a singular point (x0, y0), we define s(x0, y0) to be the

closest scale to s0 that reverts the change. Finally, we return the reconstructed

vector field as a smooth mixture of different scales of the scale-space.

Before entering in detail for each step, let’s illustrate our technique on

the example of Figure 4.1. This field contains some relatively clean parts at the

bottom, and noisy parts at the top. The singular points at the bottom should

be retained, almost all the singularities at the top should be cleaned, except

for a sink that many streamlines point to.
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Figure 4.1: An artificial vector field represented by its streamlines (left) with
its singularities marked (right).

Scale-space. In this example, we use a simple gaussian filter to generate a

scale-space (see Figure 4.2). Our method can build on any denoising scale-

space, as exemplified in Section 4.2 using isotropic or anisotropic filters.

Singularity detection. All the vector fields of the scale-space are available

to the user at any time. We display the singularities of the field in each

scale. There are different methods to detect singularities and our technique is

independent of a specific choice of detection. As it can been seen in Figure 4.2,

even though the field is still noisy at scale s0 = 10, the meaningful singularity

shown in the bottom left of Figure 4.1 was lost in the denoising process. The

top part of the field is still noisy, needing more filtering.

Figure 4.2: The vector fields at scale s0 = 10 of its gaussian scale-space (left)
with its singularities marked (right).
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Figure 4.3: Our interface shows to the user the topological changes in nearby
scales, here from 5 to 15 (left). The user then selects which topological changes
he wants to revert (in purple on the right image).

Interface. In order to allow the user to denoise more of the top part while

denoise less of the bottom to keep the meaningful singularity, we display to

the user the topological changes at s0 = 10 (see Figure 4.3). The user then

selects which topological changes he wants to revert by a simple click.

Reconstruction. Each user selection defines a scale at the chosen point as the

closest scale to s0 = 10 that reverts the topological change. This gives a sparse

sampling of the per-point scale parameter, which is smoothly interpolated

to the whole domain. Our scheme supports different interpolations, and we

provide two examples in Section 4.3. From this interpolation we can reconstruct

an adaptively denoised vector field (see Figure 4.4).

Figure 4.4: We finally interpolate the scales indicated by the user into a smooth
function (left) which defines the reconstructed vector field (right).

DBD
PUC-Rio - Certificação Digital Nº 0821511/CA



Feature-preserving vector field denoising 32

4.2
Progressive filters and scale-space generation

The scale-space representation of the vector field is a collection of

progressively denoised versions of the vector fields such as the one generated

by the progressive method of Section 3.3. Each version is associated to an

increasing scale parameter s. We denote v̄(s, x, y) the vector value of the field

at scale s and point (x, y). The fundamental example of a scale-space on

continuous vector fields is the gaussian scale-space, obtained by convolving

with a gaussian kernel of increasing variance: Gσ(x, y) = exp(− x2+y2

2σ2 ):

v̄(s, x, y) = v(x, y) ∗Gs(x, y) (13).

In the discrete setting, this convolving approach fits into the more general

framework of random walks from Chapter 3, which ensures nice scale-space

properties from local convolution masks. The scale parameter is then the

number of convolutions applied or the number of steps in the random walk.

We exemplify our editing interface using two types of similarity functions to

generate the space-scale: the gaussian Gσ and the feature preserving similarity

function from the previous chapter:

Aσ,τ (x, y,v) = exp

(
− x2 + y2

2σ2

)
exp

(
− ||v||

2

2τ 2

)
,

which takes into account the direction of the vector field and better preserves

discontinuities. The scale-space is then directly generated by the repeated

application of a 3× 3 mask with the above kernels.

4.3
Reconstruction

The singularities selected by the user provides a sampling of the scale

function s(x, y) on the domain. To reconstruct the whole vector field, we

interpolate this sampling. Then denoting v̄i,j(s) the vector field sample at

scale s, we define the reconstructed vector field ṽ at grid point (xi, yj) by:

ṽi,j = v̄i,j(s(xi, yj)) .

Virtually any interpolation scheme works, although with different result-

ing qualities. If the interpolation is not smooth enough, the rapid changes in

the scale parameter may create artifacts in the reconstructed field. Moreover,

the interpolation must maintain the scale in a neighborhood of the singularity

to preserve it. We implemented two methods for the interpolation of s that

gave satisfactory results: radial basis functions (RBF), with gaussian basis,
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and kernel Shepard interpolation (2) with gaussian kernel.

The RBF interpolation of s(x, y) from the scales of the used selected

singularities sk at (xk, yk) is obtained by a least-squares minimization on the

coefficients αk of

min
{αk}

∑
k

‖srbf (xk, yk)− sk‖2 , where (4-1)

srbf (x, y) =
∑
k

αkGσ (x− xk, y − yk) . (4-2)

The kernel Shepard method modifies the original Shepard interpola-

tion (26) by using kernels instead of the Euclidean distance:

sks(x, y) =
1∑

k

Gσ(x−xk, y−yk)
·
∑
k

Gσ(x−xk, y−yk) · sk .

A important property of this method is that the image is limited to

[mink sk,maxk sk].

4.4
Results

In this section we present our experimental results on synthetic, simulated

and measured vector fields. Since we work with relatively small 2D vector fields

stored in regular lattices compared to the computing power of actual hardware,

the interface responds in real-time to user interactions, except for the initial

scale-space generation (see Table 4.1). In all the experiments presented here,

the singularities detected by the winding number method and the bilinear one

were the same, although they may differ in very particular cases.

Table 4.1: Timings, in milliseconds, for each step of the edition.

Data Fig Size Filter Singularity Scale Reconstruction
type (ms) type (ms) select type solve eval

Analytic 7 2500 Gσ 18.9 wΓ 98.0 7.3 KS 0.1
Granular 8 2500 Aσ,τ 587.5 wΓ 110.8 8.3 RBF 0.8 0.9
PIV 1 1 15624 Gσ 135.0 b=0 947.6 65.6 RBF 0.1 7.6
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Figure 4.5: Experiments on an analytic vector field (top left) artificially
corrupted by non-gaussian noise (top right). The user can choose between
singularities that disappeared before scale s0 (in blue) or singularities that
could be smoothed out at scale s > s0 (in red) (middle left). From the
user selection (middle right), we reconstruct the vector field maintaining the
selected scale in a small (bottom left) or larger radius (bottom right).
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Synthetic data. We first validate our approach on a synthetic vector field,

corrupted by an artificial, non-gaussian noise (see Figure 4.5). We can denoise

adaptively the vector field, recovering the original singularities. We use gaus-

sian scale-space with a kernel Shepard interpolation. Observe that, varying the

σ of the kernel used in the reconstruction, we can carry larger portion of the

fields at the selected scale.

Figure 4.6: On a vector field from a simulated shear band granular system (left)
40 steps of denoising recovers the granular bands but loses one of the main
vortices (middle). Selecting that vortex in our interface allow for a denoised
reconstruction with the main singularities (right).

Simulation data. We then experimented on a vector field of 2500 samples

issued by a granular simulation (3). The shearing of the granular system

generates five main vortices between the shear bands, which are clearly visible

in Figure 4.6 besides the noise. We use an anisotropic filter to generate the

scale-space, requiring around s = 40 steps to denoise the granular bands at

the top and bottom. However, this smoothens out one of the main vortices.

Selecting it in our interface allows to reconstruct a clean vector field with the

main singularities, using here the RBF interpolation.

Figure 4.7: Topology-aware denoising of a measured fluid velocity field: (left)
original field, (middle) gaussian denoising, (right) gaussian denoising pre-
serving topological singularities selected through our interface.

DBD
PUC-Rio - Certificação Digital Nº 0821511/CA



Feature-preserving vector field denoising 36

Measured data. We finally experimented our method on real measured

vector field of 15624 samples, acquired through PIV imaging. The experiments

of Figure 4.7 and Figure 4.8 are measured from a wall-jet setup, where water

is injected from the left of the image and kicks on the wall on the right. The

images correspond to the top half of the jet. The water injection is stronger

in the experiment of Figure 4.7 as compared to the one of Figure 4.8. In both

cases, the top left part of the image is very noisy since there is less water,

while the right part is turbulent. This leads to several important singularities

on the right part of the field to disappear before the singularities caused by

the noise. In the reconstructed vector field, those singularities are recovered.

We used a gaussian scale-space for this experiment. While denoising this PIV

data set with the Random Walk filter in Chapter 3, we saw how tricky it was

since the information on the right side was considered noise and remove before

the true noise on the left. Here, with our proposed methodology, we were able

to get around the problem by selecting the right scales and reconstructing the

desired field.
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Figure 4.8: Denoising a vector field (top left) measured by a PIV device on
a wall-jet experiment: the scale-space at steps 30 and 100 (middle images)
smoothens out the important singularities, at the right part of the image, while
keeping some singularities related to the noise at the left part of the image.
Selecting singularities at the right of the image better recovers the behavior of
the fluid (bottom right).
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