5 Observações Finais e Perguntas

Por ocasião da defesa desta dissertação, a banca fez diversas observações e perguntas interessantes, que deram origem a este capítulo.

${\sf 5.1}$ Fazendo K_t ser quase um disco

No capítulo 3, nós construímos a curva γ que prova o Teorema 1.1. A curva deveria ter curvatura afastada de zero, e para isso escolhemos o λ suficientemente próximo de 1.

No entanto, para $\lambda = 1$ a curva $r = f(\theta)$ é exatamente um círculo, de modo que é natural pensar que é possível escolher $\lambda < 1$ tal que a curvatura do bordo de K_t seja, em algum sentido, arbitrariamente próxima de uma constante.

Precisamente, a pergunta é a seguinte:

Problema 2 Dado $\tau > 1$, é possível construir γ de modo que para cada t > 0 vale

$$\frac{K_{MAX}(\partial K_t)}{K_{MIN}(\partial K_t)} < \tau,$$

em que K_{MAX} e K_{MIN} são as curvaturas máxima e mínima, respectivamente?

Acreditamos que a resposta é sim, e que basta refazer a construção com um pouco de cuidado; no entanto, não faremos os detalhes aqui.

5.2 Refazendo a construção sem os gaps

O nosso processo de construção envolveu o uso dos intervalos G_{ω} , intervalos esses que têm uma função diferente dos J_{ω} . Esses intervalos servem para "corrigir" a curva do final de uma lua para o início da próxima.

Em comparação, o processo de Hilbert não necessitava desses "gaps", e assim a subdivisão dos intervalos não só é mais simples como tem certas propriedades interessantes, que discutimos aqui:

5.2.1

O push-forward da medida de Lebesgue unidimensional é a medida de Lebesgue bidimensional

Pela definição da curva de Hilbert, é bem simples observar que se $J \subset [0,1]$ é um intervalo de medida (de Lebesgue, em dimensão 1) μ , sua imagem é um subconjunto do quadrado com medida (de Lebesgue, em dimensão 2) igual a μ . Portanto, as medidas $\gamma_* Leb_1$ e Leb_2 coincidem em toda a σ -álgebra dos borelianos.

Na nossa construção essa propriedade claramente não vale. Será que é possível refazê-la para que a curva tenha esta propriedade?

5.2.2

O push-forward da medida de Lebesgue unidimensional é uma medida absolutamente contínua (em relação a Leb_2)

Na nossa construção, é bem evidente que os intervalos G_{ω} têm a propriedade de que $Leb_2(\gamma(G_{\omega}))=0$.

Problema 3 É possível refazer a construção de modo que se $Leb_2(\gamma(J)) = 0$ então $Leb_1(J) = 0$, para todo intervalo $J \subset [0,1]$?

5.2.3

γ Hölder-1/2

Definição 5.1 Uma função $f: X \to Y$ entre dois espaços normados X e Y satisfaz uma condição Hölder (ou é Hölder-contínua) quando existem constantes não-negativas C, α tais que

$$|f(x) - f(y)| \le C|x - y|^{\alpha},$$

para todos $x, y \in X$.

Nesse caso, f é chamada Hölder- α (ou α -Hölder).

A construção de Hilbert é uma curva Hölder-1/2. De fato, isso é o melhor que se pode obter, já que nenhuma curva de Peano pode ser Hölder- α para $\alpha > 1/2$ (ver (Bu96)).

5.3 Fazendo γ ser Hölder

Pela natureza da nossa construção (que percorre luas cada vez mais achatadas em tempos menores), é bastante provável que ela não seja Hölder- α para nenhum α . No entanto, pode ser possível refazer a construção com mais cuidado para ganharmos essa propriedade.

Uma outra ideia seria tirar as condições C^{∞} das luas e da construção da sequência de curvas e substituir por C^k . Isso pode reduzir o número de fatiamentos necessários, permitindo que a construção tenha alguma propriedade Hölder.

Problema 4 Permitindo que o bordo seja C^k (e não mais C^{∞}), é possível construir uma curva com as propriedades da nossa que seja Hölder-contínua?

5.4 Outras ideias

Duas sugestões (talvez relacionadas) de outros possíveis conceitos de tangência de uma curva contínua a um campo contínuo de direções são as seguintes:

- Buscar definir tangência em um sentido de distribuições (ou correntes) à la Schwartz.
- Dadas uma curva contínua $\gamma:I\to\mathbb{R}^2$ e uma 1-forma ω no plano que depende apenas continuamente do ponto, buscar definir um trabalho $W(\gamma,\omega)$. Deseja-se que esta definição seja invariante por reparametrizações positivas da curva, e que coincida no caso diferenciável com a definição usual $W(\omega,\gamma)=\int_{\gamma}\omega$. Então podemos definir γ como tangente ao campo de direções X se $W(\gamma,\omega)=0$ para toda 1-forma ω que se anule sobre X (isto é, tal que $\omega_p(v)=0$ se $v\in X(p)$).

Fica como pergunta se seguindo estas ideias é possível encontrar um conceito de tangência satisfatório no sentido expressado no Capítulo 4.