5 Resultados Computacionais

Neste capítulo faremos uma análise da performance dos métodos apresentados neste trabalho. Foram calculadas as curvaturas reais (modelo contínuo) de algumas curvas selecionadas, e os resultados foram comparados com os dois modelos discretos desenvolvidos. O primeiro é a versão estendida para o \mathbb{R}^4 do método de *coordenadas independentes* (C.I) proposto por (6). O segundo método é a versão estendida para o \mathbb{R}^4 do método das *derivadas discretas* (D.D) proposto por (2).

Para fazer uma análise comparativa dos métodos, geramos curvas discretas $\mathcal{P}_i = \{p_0, p_1, ..., p_n\}$ por um processo de discretização de curvas paramétricas e de curvas implícitas, para as quais sabemos calcular analíticamente os resultados.

5.1 Geração de Pontos

No caso paramétrico, a geração de pontos foi feita através do processo de partição uniforme do domínio paramétrico, correspondendo a um intervalo I da reta real.

Para o caso implícito a geração de pontos não ocorre de forma tão imediata. Foi implementado o método Preditor-Corretor para obtenção de uma amostragem de pontos pertencentes a interseção de três hipersuperfícies definidas implicitamente no \mathbb{R}^4 . De um modo geral, o método de Euler nos permite avançar de um ponto p_k para p_{k+1} através de cálculos de derivadas, enquanto o método de Newton corrige a aproximação dada pelo método de Euler no ponto p_{k+1} de modo a obter um ponto muito próximo da curva em questão (ver Figura 5.1).

Figura 5.1: Preditor-corretor no \mathbb{R}^3

5.2 Ruído aditivo

Para testar a sensibilidade do método em relação a presença de ruído, adicionamos a cada ponto da curva discreta $\mathcal{P}_i = \{p_0, p_1, ..., p_n\}$ um ruído (V_x, V_y, V_z, V_w) , onde cada coordenada desse ruído constitui uma variável aleatória independente e identicamente distribuída por uma normal com média zero e variância σ^2 (ver Figura 5.2).

Figura 5.2: Acréscimo de ruído em um ponto

5.3 Visualização

A visualização das curvas é orientada pelos ângulos de Euler (5). No \mathbb{R}^4 temos seis graus de liberdade, assim a rotação é descrita por 6 ângulos $\theta_1, \theta_2, \ldots, \theta_6$ definidas pelas transformações $\mathbf{q} = R\mathbf{p}$ onde a matriz de rotação R é dada pelo produto de seis matrizes de rotação em um plano formado por dois vetores no \mathbb{R}^4 :

$$R = R_{xy}^4(\theta_1) R_{yz}^4(\theta_2) R_{zw}^4(\theta_3) R_{xy}^3(\theta_4) R_{yz}^3(\theta_5) R_{xy}^2(\theta_6).$$

5.4 Análise de erro

A análise de erro foi feita pelo erro absoluto em cada ponto da amostragem. Dessa forma, $\varepsilon_i = \|K_{teorico}(p_i) - K_{discreto}(p_i)\|$, onde K representa uma das curvaturas k_1, k_2 ou k_3 . O erro médio é dado pela expressão 5-1:

$$M_e = \frac{\sum_{i=0}^n \varepsilon_i}{n+1},\tag{5-1}$$

Para o caso paramétrico, as curvaturas teóricas(modelo contínuo) foram calculadas para cada ponto da amostra, conforme as expressões do Teorema 2.2. No caso implícito, as curvaturas teóricas foram obtidas através do processo

PUC-Rio - Certificação Digital Nº 0912372/CA

descrito na seção 3.5.5.

5.5 Curvas Parametrizadas

Nesta seção, vamos analisar o comportamento de M_e para quatro curvas paramétricas. Serão apresentados os resultados computacionais através da equação paramétrica da curva, visualização da curva através da projeção XY, com rotação nos quatro eixos coordenados, nas versões sem ruído e com ruído de raio σ , além de diferentes conjuntos de gráficos.

Exemplo 1:

O primeiro exemplo corresponde a curva ${\bf r}$ abaixo e a Figura 5.5 exibe uma projeção particular.

▶
$$\mathbf{r}(t) = (cos(t) + cos(3t), (3/5)sen(t) + sen(3t), (2/5)sen(3t) - sen(6t), t/2)$$

Figura 5.3: rotação nos 4 eixos

A Figura 5.4 mostra a projeção da curva no plano XY, além de ilustrar uma escala de cores para a curvatura numérica k_1 . O mesmo é apresentado para as curvaturas $k_2 \in k_3$ (Figuras 5.5 e 5.6).

Figura 5.4: Curvatura k_1 , n = 1300, $\sigma = 0$

Figura 5.5: Curvatura k_2 , n = 1300, $\sigma = 0$

Figura 5.6: Curvatura $k_3,\,n=1300,\,\sigma=0$

A Figura 5.7 ilustra a curva com ruído de raio $\sigma = 0.1$.

Figura 5.7: Projeção em XY, n = 1300, $\sigma = 0.1$

5.5.1 Análise dos Resultados

Resultados $n \times M_e$ sem ruído

Os gráficos das Figuras 5.8, 5.9 e 5.10 ilustram, para cada uma das três curvaturas, a comparação da média dos erros absolutos M_e do método de coordenadas independentes(C.I) para o método das derivadas discretas(D.D). O resultado é que M_e diminui com o aumento da densidade de pontos(n) quando $\sigma = 0$ (ausência de ruído). Pode-se observar que os erros são maiores quando analisamos a curvatura k_3 (Figura 5.10). Para este experimento, foi observado que o método de coordenadas independentes(C.I) apresentou melhor performance. Como observação, o peso u do método de coordenadas independentes foi fixado em u = 1.

Figura 5.8: Gráfico $n \times M_e$, q = 2, $\sigma = 0$

Figura 5.9: Gráfico $n \times M_e$, q = 2, $\sigma = 0$

Figura 5.10: Gráfico $n \times M_e$, q = 2, $\sigma = 0$

As Figuras 5.11, 5.12 e 5.13 mostram que a média dos erros absolutos M_e aumenta, para cada uma das três curvaturas, quando aumentamos a vizinhança q. Novamente, os erros são maiores quando analisamos a curvatura k_3 . Observe que os gráficos são mantidos propositalmente na mesma escala.

A análise gráfica para a curva em questão ilustra que os métodos alternam em termos de performance (Figuras 5.12 e 5.13). Na presença de um número maior de vizinhos e com densidade de pontos n menor, o método das *derivadas discretas*(D.D) obteve um desempenho ligeiramente melhor.

Figura 5.11: Gráfico $n\times M_e,\;q$ = 10, σ = 0

Figura 5.13: Gráfico $n \times M_e$, q = 10, $\sigma = 0$

Considerando a curva em questão, vale ressaltar que foram realizados experimentos mudando o peso do método de *coordenadas independentes*(C.I) para $u = e^{-s_i^2}$. Em geral, o ajuste do peso u melhora as estimativas para as médias absolutas M_e nos casos com ausência de ruído e aumento do número de vizinhos, para esse exemplo.

As tabelas 5.1 e 5.2 mostram que ocorreu uma melhora de M_e para as curvaturas k_1 e k_3 quando diminuímos a densidade de pontos da amostragem para $u = e^{-s_i^2}$.

n	$k_1(C.I)$	$k_2(C.I)$	$k_3(C.I)$
1300	0.00503019789999455560	0.02775845761732609700	0.25256073734046686000
929	0.01405838694541703900	0.05090477161776777600	0.37557136977308847000
722	0.02676797128867453000	0.07869091521449660100	0.47611730048910689000
591	0.04070353751150593300	0.10973367932497256000	0.55241319501329111000
500	0.05369455438289195300	0.14373602410923900000	0.61871502707178871000
433	0.06524877924645851300	0.18066051607564954000	0.65540752655991763000
382	0.07655786247919382800	0.21972769809608436000	0.65229178640436725000
342	0.09009676675931954600	0.25931102599349826000	0.68670374511409427000
309	0.10769901032817072000	0.29924707898525787000	0.74907433326930628000
282	0.12765931129603075000	0.33498551695458517000	0.80944412210299599000
260	0.15396634514995955000	0.36393893974823432000	0.91853595281956157000
240	0.18559811785166747000	0.38164304162341517000	0.99768599048038531000
224	0.21866202791229952000	0.37413343073898397000	1.11744559071879860000
209	0.25461126089910197000	0.34886743556825767000	1.29231732054040700000
197	0.29861316042070879000	0.31868044460875633000	1.42291378904675050000
185	0.34248937832735915000	0.27823825636025690000	1.54941558437152380000
175	0.38139843906694576000	0.23640165506953920000	1.62078912330217760000
166	0.42438333287339924000	0.21162809024870091000	1.65109898378403260000
158	0.45024929545160303000	0.19749407914146985000	1.81400643002616270000

Tabela 5.1: $u=1,\;q=10$ fixo, $\sigma=0$

n	$k_1(C.I)$	$k_2(C.I)$	$k_3(C.I)$
1300	0.00500598551931233200	0.02764444416142783000	0.25214547429301704000
929	0.01391825390859737600	0.05054521362023324500	0.37443927518239301000
722	0.02630686103025528900	0.07792642210375888600	0.47401429509507853000
591	0.03964638429330042500	0.10845405400197543000	0.54937215658585292000
500	0.05181090316694624000	0.14189876467815302000	0.61476277579748384000
433	0.06260400894778252200	0.17814374888603074000	0.65242832617251501000
382	0.07383805916124297500	0.21646038521045158000	0.65062299886424002000
342	0.08802134072064309000	0.25538025670758546000	0.68724258180533271000
309	0.10691170289893025000	0.29325490933086151000	0.75202772305964283000
282	0.12911128497059396000	0.32838244841552117000	0.81603101877839357000
260	0.15693895196408489000	0.35549768805616455000	0.91956139525062164000
240	0.18904877114306928000	0.37051450494433613000	0.98939178152682139000
224	0.21739782560986184000	0.36887412102649902000	1.08141595496056770000
209	0.24883198418582311000	0.35170675606432572000	1.21563872440083020000
197	0.28168782179263552000	0.32921843576817439000	1.29534051925026670000
185	0.30954675322197589000	0.30655619700273978000	1.37712791065913050000
175	0.32815722458415864000	0.27985193306952888000	1.40363274430765460000
166	0.35450022777042584000	0.25323763950614075000	1.38147826398943780000
158	0.36157447966709683000	0.23381294933764141000	1.52559158508543800000

Tabela 5.2: $u = e^{-s_i^2}$, q = 10 fixo, $\sigma = 0$

Resultados $n \times M_e$ com ruído

As Figuras 5.14, 5.15 e 5.16 il
ustram gráficos do tipo $n\times M_e$ com parâmetro
 q=2 fixo, e ruído de raio $\sigma=10^{-2}.$

Figura 5.14: Gráfico $n\times M_e,~q$ = 2, σ = 10^{-2}

Figura 5.15: Gráfico $n\times M_e,~q$ = 2, σ = 10^{-2}

Figura 5.16: Gráfico $n \times M_e$, q = 2, $\sigma = 10^{-2}$

A primeira observação que fizemos foi a ocorrência de um aumento da média absoluta dos erros M_e em ambos os métodos, com o aumento da densidade de pontos. Para este exemplo, esse efeito ilustra que, na presença de ruído, é necessário um maior distanciamento do ponto base ou um número maior de vizinhos para recuperar as curvaturas. Observe a diferença de escala desse conjunto de gráficos em relação às Figuras 5.8, 5.9 e 5.10. O acréscimo de ruído faz com que o método das *derivadas discretas*(D.D) apresente melhor performance, especialmente para densidades de pontos muito altas.

Por outro lado, se aumentarmos a vizinhança para q = 10 e, mantivermos o mesmo raio $\sigma = 10^{-2}$, obtemos com este efeito a diminuição de M_e . Pode-se observar que o método de *coordenadas independentes* (C.I) apresentou melhores resultados para a primeira curvatura k_1 até uma certa densidade de pontos n(Figura 5.17). Para as curvaturas k_2 e k_3 , o método das *derivadas discretas* apresentou melhor performance (5.18 e 5.19).

Figura 5.17: Gráfico $n\times M_e,\;q$ = 10, σ = 10^{-2}

Figura 5.18: Gráfico $n\times M_e,\;q$ = 10, σ = 10^{-2}

Figura 5.19: Gráfico $n\times M_e,\,q$ = 10, σ = 10^{-2}

Note que a diminuição de σ diminui a média dos erros absolutos M_e e mantém os melhores resultados para o método das derivadas discretas(D.D). As Figuras 5.20, 5.21 e 5.22 ilustram bem tal situação para um raio $\sigma = 10^{-3}$ e q = 2. Observe que os gráficos estão em escalas diferentes.

Figura 5.20: Gráfico $n \times M_e$, q = 2, Figura 5.21: Gráfico $n \times M_e$, q = 2, $\sigma = 10^{-3}$ $\sigma = 10^{-3}$

Figura 5.22: Gráfico $n \times M_e$, q = 2, $\sigma = 10^{-3}$

Por outro lado, se fixarmos dessa vez q = 10 para o mesmo raio $\sigma = 10^{-3}$, observa-se que o método de *coordenadas independentes*(C.I) apresenta melhores resultados até uma certa densidade de pontos n (Figuras 5.23 e 5.24). O método das *derivadas discretas*(D.D) possui melhor performance quando analisamos a curvatura k_3 (Figura 5.25).

Figura 5.23: Gráfico $n \times M_e$, q = 10, $\sigma = 10^{-3}$

Figura 5.24: Gráfico $n \times M_e$, q = 10, $\sigma = 10^{-3}$

Figura 5.25: Gráfico $n \times M_e$, q = 10, $\sigma = 10^{-3}$

A seguir, apresentamos os resultados obtidos quando alteramos o valor do peso para $u = e^{-s_i^2}$ mantendo q = 10. Foi acrescentado ruído de raio $\sigma = 10^{-2}$. Punir pontos distantes do ponto base quando a densidade da amostra é grande, em geral, piora as médias absolutas dos erros M_e . As tabelas 5.3 e 5.4 ilustram tal efeito.

n	$k_1(C.I)$	$k_2(C.I)$	$k_3(C.I)$
1300	0.79707133750835202000	2.97934090871091240000	22.64922871149987700000
929	0.35535698703686719000	2.03190707654318150000	13.03328673660905000000
722	0.20731960939632627000	1.23663216394209520000	8.25041608360564640000
591	0.13470916208473960000	0.81915680790194312000	6.71814211664894590000
500	0.11184607581088360000	0.50733572996608434000	4.60168721923529930000
433	0.08483847497065349900	0.36740616369425350000	3.61610386083497250000
382	0.08769018675688404500	0.34139216701411340000	3.31497512493104910000
342	0.09952235336646395000	0.32499462740040480000	2.80804321296324710000
309	0.10963511211895863000	0.32351317378999611000	2.35185967572521810000
282	0.13303009165482690000	0.37138491490669950000	2.10044258789704540000
260	0.14930671759874570000	0.35080515176190991000	1.86863570040448130000
240	0.18996645718514929000	0.38698192857162511000	1.72746387166350380000
224	0.21563101918550234000	0.37015763111706512000	1.75949874796148340000
209	0.25434820678331338000	0.33644580260137597000	1.67094207701309430000
197	0.29733281402559347000	0.30561997255970558000	1.73600849956334450000
185	0.34107925341263506000	0.27641419250055316000	1.66394372348380460000
175	0.38000237951945259000	0.23939822090446988000	1.75588011759340760000
166	0.42548151751876845000	0.21045221533150829000	1.74706565320833150000
158	0.44943794317924324000	0.20213630988078418000	1.80593583301467530000

Tabela 5.3: $u=1,\,q=10$ fixo, $\sigma=10^{-2}$

n	$k_1(C.I)$	$k_2(C.I)$	$k_3(C.I)$
1300	0.80418114612487923000	2.99716781293903400000	23.17800612911009500000
929	0.36067119371403017000	2.03229886700262300000	13.51155518931723700000
722	0.21203976795110557000	1.25171732546706530000	8.83005785044727530000
591	0.13880245739492902000	0.85407399218112268000	6.95856901461512760000
500	0.11493164096105704000	0.54074665712419867000	4.75120840722840310000
433	0.08765496884453342900	0.39712896707407869000	3.65564802642848980000
382	0.08947372229922265200	0.36200769211088912000	3.62546385552332810000
342	0.10178201832909528000	0.33948399196396728000	2.82724579916286740000
309	0.11169915888968872000	0.32841463854766922000	2.75996047724741760000
282	0.13683924589327418000	0.37634194246784825000	2.20577034131258860000
260	0.15308774517533125000	0.34020723339007214000	2.16444585867045540000
240	0.19420643033948209000	0.38026330023912058000	1.90714976167745730000
224	0.21766621941059242000	0.37637938309950270000	1.94752125906770760000
209	0.24874983139470219000	0.34210434845646015000	1.74692845348536020000
197	0.28162338675028797000	0.31629619460615527000	1.93202053543079710000
185	0.30673111868109981000	0.29692961857960076000	1.91088191253028340000
175	0.32821728070919731000	0.28975144795507352000	1.67193724313464380000
166	0.35390107041695879000	0.25081639598969446000	1.43910806394704170000
158	0.36068922167368073000	0.23928472679199650000	1.60420215690181430000

Tabela 5.4: $u=e^{-s_i^2},\,q=10$ fixo, $\sigma=10^{-2}$

Resultados $q \times M_e$ sem ruído

Trabalharemos agora com gráficos $q \times M_e$ e apresentaremos os resultados obtidos para um parâmetro densidade de pontos n fixo e u = 1 (peso do método de *coordenadas independentes*). De uma forma geral, para o caso sem ruído, a média dos erros absolutos de uma amostragem aumenta com o aumento do número de vizinhos q tomados de um ponto base. Nos casos com ausência de ruído ($\sigma = 0$), o método de *coordenadas independentes*(C.I) apresentou melhores resultados.

As Figuras 5.26, 5.27 e 5.28 exibem a comparação dos resultados para os dois métodos. Foi fixado o valor n = 1300 para a densidade de pontos da amostragem e $\sigma = 0$.

Figura 5.26: Gráfico $q \times M_e$, n = 1300, $\sigma = 0$

Figura 5.27: Gráfico $q \times M_e, \, n$ = 1300, σ = 0

Figura 5.28: Gráfico $q \times M_e$, n = 1300, $\sigma = 0$

As tabelas 5.5 e 5.6 ilustram que a média absoluta dos erros M_e diminui quando escolhemos um número alto de vizinhos para $u = e^{-s_i^2}$. Resultados melhores podem ser obtidos com a mudança de escolha do peso u.

q	$k_1(C.I)$	$k_2(C.I)$	$k_3(C.I)$
2	0.00000247069427494420	0.00295518103180600650	0.06475327609887146500
3	0.00004551713719452816	0.00377218362301911950	0.07333364145217818900
4	0.00016904826521314651	0.00540843511833213800	0.08741831564254035100
5	0.00041886801266234760	0.00791610048581308130	0.10736321081124155000
6	0.00084227325376286808	0.01101021993379275700	0.13189279824721889000
7	0.00148309471700916180	0.01458257924744523800	0.15937637392277035000
8	0.00237886441620789290	0.01858895550171182600	0.18952028499988594000
9	0.00355624849501287540	0.02299427270578511100	0.22100928737494951000
10	0.00503019789999455560	0.02775845761732609700	0.25256073734046686000
11	0.00680529262791883080	0.03285358360347978600	0.28365132161038553000
12	0.00887642936133336770	0.03824487209615874000	0.31370346809503902000
13	0.01122970454179332400	0.04390803446477999100	0.34264677469269533000
14	0.01383783384654786700	0.04981985358111712400	0.37066773047902318000
15	0.01667010238772626300	0.05596532475281105300	0.39790500518823174000
16	0.01969842143586686100	0.06232542813388220600	0.42477564461686812000
17	0.02288500389243869300	0.06888588276028744000	0.45234566531098058000
18	0.02619493403445628800	0.07564436599003432300	0.48135703479503178000
19	0.02958410151025662000	0.08259058301813196300	0.50990466217969244000
20	0.03301652809095715500	0.08972270372199775400	0.53448056685633438000

Tabela 5.5: u = 1, n = 1300 fixo, σ = 0

a	$k_1(C,I)$	$k_2(C.I)$	$k_3(C,I)$
1 0	0.00000247060427521658	0.00205512102172752020	0.06475297611747072200
	0.00000247009427551058	0.00295518105178752080	0.00475527011747975500
3	0.00004551702417718377	0.00377182276171879590	0.07333346671402205000
4	0.00016898945342187500	0.00540603717303565070	0.08741262015925181600
5	0.00041853069758163527	0.00790856964967231140	0.10734072331542785000
6	0.00084111070427116466	0.01099399103285485600	0.13183842050418002000
7	0.00148004031082721180	0.01455253458666894000	0.15926865405862381000
8	0.00237201426588772800	0.01853873596335179100	0.18933208430608001000
9	0.00354278900821419600	0.02291638052535111700	0.22072010429541547000
10	0.00500598551931233200	0.02764444416142783000	0.25214547429301704000
11	0.00676455442275623870	0.03269427572112960900	0.28308684328217598000
12	0.00881137974784744480	0.03803093735237286800	0.31296789458012203000
13	0.01113164832339059800	0.04362980789680138300	0.34171025014684364000
14	0.01369529136178779100	0.04946787898508217500	0.36951238919731211000
15	0.01647034098831317400	0.05553070461768863700	0.39651402375876998000
16	0.01942609842116603500	0.06179999949256447000	0.42313943097009304000
17	0.02252154055975309400	0.06826177620444201500	0.45040190999574731000
18	0.02572269160845407400	0.07491728973166494900	0.47908239886727189000
19	0.02898494821779736700	0.08175089680265085200	0.50730814627152010000
20	0.03227010516991668500	0.08877011839068982300	0.53154462276522518000

Tabela 5.6: $u=e^{-s_i^2}, \, n=1300$ fixo, $\sigma=0$

Resultados $q \times M_e$ com ruído

Em geral, esperamos que no caso com ruído sejam necessários mais pontos vizinhos para reproduzir a curva original. Consideramos o peso do método de coordenadas independentes(C.I) u = 1.

As Figuras 5.29, 5.30 e 5.31 ilustram gráficos $q \times M_e \operatorname{com} n = 1300 \operatorname{e} \sigma = 10^{-2}$. O gráfico para a curvatura k_3 (Figura 5.31) é o que melhor indica a comparação entre os dois métodos no caso com ruído. É importante observar a diferença de escala entre os erros do caso sem ruído (Figuras 5.26, 5.27 e 5.28) e com ruído.

Figura 5.29: Gráfico $q\times M_e,\,n$ = 1300, σ = 10^{-2}

Figura 5.30: Gráfico $q \times M_e, \, n$ = 1300, σ = 10^{-2}

Figura 5.31: Gráfico $q\times M_e,\,n$ = 1300, σ = 10^{-2}

Também modificamos o valor do peso no método de *coordenadas inde*pendentes(C.I) para $u = e^{-s_i^2}$. As tabelas 5.7 e 5.8 mostram que, para um número elevado de vizinhos considerados, ocorre uma piora nas médias dos erros absolutos M_e quando $u = e^{-s_i^2}$.

q	$k_1(C.I)$	$k_2(C.I)$	$k_3(C.I)$
2	45.66817684118127800000	19.41063544257870200000	30.59371322845945000000
3	16.67861311334221200000	14.51317037239235000000	30.32931795227856500000
4	8.31963815458533240000	10.54420721814093700000	24.94893166598530600000
5	4.97286121448334400000	7.67726706313945060000	22.89347877652295100000
6	3.09774711396319000000	6.05795202498155750000	24.15332201192565600000
7	2.05784461745750050000	4.95577811536844060000	23.70545558807234300000
8	1.41292051148492790000	3.89623818893852960000	25.70806362956769000000
9	1.02859656091790200000	3.29281995308883780000	24.03621753298879700000
10	0.79707133750835202000	2.97934090871091240000	22.64922871149987700000
11	0.62920091991703553000	2.52795360539621590000	23.26641160343206500000
12	0.52011400076622116000	2.29281654370868540000	20.47759418443163400000
13	0.43908573689088554000	1.98680124017309280000	18.48335880338760300000
14	0.37237527335641052000	1.78079835368144330000	17.02356789136705800000
15	0.32214955670579348000	1.56848704938647510000	15.44081525695260200000
16	0.27913210724394144000	1.33239099156930800000	13.43427301135998600000
17	0.24551397239826792000	1.14294693692772940000	12.99586379453152000000
18	0.21882892440472923000	1.01044157496027820000	11.17587676764648200000
19	0.19421355651324593000	0.90599442608344471000	10.83802507815542200000
20	0.17545752794122990000	0.80984655398830785000	10.54838363293303700000

Tabela 5.7: u = 1, n = 1300 fixo, σ = 10^{-2}

q	$k_1(C.I)$	$k_2(C.I)$	$k_3(C.I)$
2	45.66817684118122900000	19.41063544257863800000	30.59371322845949600000
3	16.68539090777499500000	14.50941477616961900000	29.82292185238366900000
4	8.32793609417422690000	10.53407819245005900000	25.79368065103160400000
5	4.98124476930244510000	7.66532340978696340000	22.91593717462613400000
6	3.10656987755889210000	6.04133103957786410000	24.17805440962145300000
7	2.06659976405437760000	4.93465531711405260000	23.73526845305638800000
8	1.42151295612467040000	3.87815154305969090000	25.88611602183588900000
9	1.03639511662587800000	3.27355433139468310000	23.75631099473270100000
10	0.80418114612487923000	2.99716781293903400000	23.17800612911009500000
11	0.63611574100307522000	2.51471311011168950000	23.80293802691477700000
12	0.52643531902402296000	2.27735786265190180000	21.45087883774943200000
13	0.44516146765494841000	1.98381834095886720000	19.42988282146854600000
14	0.37820002370731642000	1.77205909797080840000	16.79318681335932300000
15	0.32783144392690050000	1.56719376417675330000	15.56600844442328900000
16	0.28472366359633611000	1.34133471451511290000	13.34088675765662500000
17	0.25113437501295577000	1.15056631974125990000	13.97799773728158400000
18	0.22440502369903323000	1.02384853694748920000	11.39814410646651600000
19	0.19982382392404632000	0.92255187268940653000	10.84326598981658800000
20	0.18104900336498184000	0.83059372529025921000	10.81975570660334500000

Tabela 5.8: $u=e^{-s_i^2},\,n=1300$ fixo, $\sigma=10^{-2}$

Exemplo 2:

►
$$\mathbf{r}(t) = (2\cos(2t) + 2\cos(3t), 2\sin(t) - 2\sin(3t), 4\sin(2t), t^2/2)$$

A Figura 5.32 il
ustra uma projeção para ${\bf r}$ com rotação nos 4 eixos co
ordenados.

Figura 5.32: rotação nos 4 eixos

As Figuras 5.33, 5.34 e 5.35 apresentam uma escala de cores referente as curvaturas k_1, k_2 e k_3 .

Figura 5.33: k_1 , n = 1300

Figura 5.34: k_2 , n = 1300

Figura 5.35: $k_3,\,n$ = 1300

Nas Figuras 5.36, 5.37 e 5.38 pode-se observar as regiões onde os erros nos cálculos das curvaturas são maiores.

Figura 5.36: Curvatura k_1

Figura 5.37: Curvatura k_2

Figura 5.38: Curvatura k_3

A Figura 5.39 il
ustra a curva com ruído de raio σ = 10^{-4}.

A seguir, apresentamos uma parte da curva **r** com efeito zoom (Figuras 5.40 e $\,$ 5.41)

Figura 5.40: $\sigma = 0, n = 1300$

5.5.2 Análise dos resultados

Resultados $n \times M_e$ sem ruído

Neste exemplo optamos por gráficos comparativos dos erros médios M_e das três curvaturas por método. A primeira observação é que, em geral, a curvatura k_3 é mais sensível aos erros.

A Figura 5.42 apresenta o comportamento das três curvaturas (em um mesmo referencial) para o método das *coordenadas independentes*(C.I) com $q = 2 e \sigma = 0$. O peso para o método de coordenadas independentes foi ajustado em u = 1. As curvaturas são diferenciadas por tons de azul e, pode-se observar que os valores de M_e são maiores para a curvatura k_3 .

A Figura 5.43 apresenta o comportamento das três curvaturas, diferenciadas por tons de vermelho, para o método das *derivadas discretas*(D.D) com $q = 2 \text{ e } \sigma = 0$. A comparação dos gráficos das Figuras 5.42 e 5.43 revelam melhor performance no método das *coordenadas independentes*(C.I).

Figura 5.42: Coordenadas independentes, $\sigma = 0$, q = 2, gráfico $n \times M_e$

Figura 5.43: Derivadas discretas, $\sigma = 0, q = 2,$ gráfico $n \times M_e$

Para esta curva também foi testado o valor $u = e^{-s_i^2}$ no método de coordenadas independentes(C.I). Neste caso, o valor ajustado para o peso revelou-se eficaz. As tabelas 5.9 e 5.10 apresentam tal observação.

n	$k_1(C.I)$	$k_2(C.I)$	$k_3(C.I)$
1300	0.00000014578661838620	0.00021168737907111907	0.00010872804031684026
929	0.00000056366799104735	0.00041526662116467017	0.00021314889929152897
722	0.00000155303915418971	0.00068671055551814959	0.00035254059339609803
591	0.00000349485929348277	0.00102508561099055959	0.00052571176073867994
500	0.00000688338373455417	0.00142955310712425941	0.00073322131068175836
433	0.00001233124463600349	0.00189868960273152317	0.00097311154218595718
382	0.00002056042786628565	0.00243009989038017954	0.00124775564477811189
342	0.00003240703714261028	0.00302114386887335695	0.00154767758075568672
309	0.00004890256374275856	0.00367061090728366957	0.00187133036895580107
282	0.00007105596968928658	0.00437421673196747730	0.00223208160674177088
260	0.00009985827788245967	0.00512788347193869360	0.00262072091299495914
240	0.00013704731495350116	0.00593523235767172246	0.00303214653406646542
224	0.00018291665077847531	0.00678647839091413210	0.00343619750602929637
209	0.00023981766319388132	0.00768983711956514136	0.00385114768511195943
197	0.00030715550656720960	0.00863657050464435028	0.00422531099777145262
185	0.00038868092571012810	0.00963939111944104969	0.00457151300282404582
175	0.00048295359758224378	0.01069114475042530488	0.00481813834231511594
166	0.00059196471734533683	0.01179812561272223018	0.00497644749766505776
158	0.00071645416160910267	0.01296172362100258754	0.00509772668069738855

Tabela 5.9: $u=0,\;q=10$ fixo, $\sigma=0$

n	$k_1(C.I)$	$k_2(C.I)$	$k_3(C.I)$
1300	0.00000014049058810560	0.00020904719897574611	0.00010805914514112830
929	0.00000052414118293429	0.00040509731350610648	0.00021058428590551030
722	0.00000137674611660945	0.00065885561194362681	0.00034574021417055464
591	0.00000291771971798092	0.00096276461536172963	0.00051064915795304231
500	0.00000534569200359278	0.00130764237825833972	0.00070453229560813726
433	0.00000879787186746748	0.00168192037066876039	0.00092090974832298813
382	0.00001330595751970245	0.00207110276416089300	0.00116367060702742909
342	0.00001877707779449919	0.00245855236298928330	0.00142733320499629926
309	0.00002503305120024035	0.00282820621126061468	0.00170308355256368381
282	0.00003169050950454836	0.00316031045933293534	0.00198337331850494862
260	0.00003824095968601970	0.00343732995737869003	0.00226587837462135155
240	0.00004443866064325458	0.00365899217205826023	0.00255362453713180778
224	0.00004949522704273113	0.00381113400312284214	0.00279821627274061489
209	0.00005361571251033177	0.00391519182765941338	0.00300923364398886358
197	0.00005620712054381859	0.00396748586826389717	0.00317584125190064140
185	0.00005802056450548675	0.00400287201030619533	0.00326641381410117939
175	0.00005878557196504840	0.00401649251307574246	0.00331324641418794105
166	0.00005907720842518467	0.00402454627149311395	0.00332209778939664135
158	0.00005906549798092231	0.00403162016935073361	0.00333845347742761341

Tabela 5.10: $u=e^{-s_i^2},\,q=10$ fixo, $\sigma=0$

Resultados $n \times M_e$ com ruído

As Figuras 5.44 e 5.45 mostram que, na presença de ruído ($\sigma = 10^{-4}$), o desempenho do método das *derivadas discretas*(D.D) é superior ao método de *coordenadas independentes*(C.I), especialmente na análise da curvatura k_3 .

Figura 5.44: Coordenadas independentes, $\sigma = 10^{-4}$, q = 2, gráfico $n \times M_e$

Figura 5.45: Derivadas discretas, σ = 10^{-4}, q = 2, gráfico $n\times M_e$

Novamente, foram efetuados experimentos com $u = e^{-s_i^2}$ no método de coordenadas independentes(C.I) para a curva em questão. As tabelas 5.11 e 5.12 apresentam os resultados obtidos. Note que, com o novo peso ocorreu uma piora especialmente para as curvaturas $k_1 \in k_3$.

n	$k_1(C.I)$	$k_2(C.I)$	$k_3(C.I)$
1300	0.01815468158613908756	0.11603511879084529856	20.85292671677058251589
929	0.00875791523823360972	0.04401243908708958597	7.39726096542676714307
722	0.00551900818872161705	0.02136176441777727295	2.68806824432672186731
591	0.00362089063019930147	0.01172786945748643603	1.18701943571732826399
500	0.00257212998617123260	0.00661524614794882764	0.65006563803035932736
433	0.00186730274292345685	0.00479951982638803041	0.33573101054464166149
382	0.00155848310368820043	0.00375679469506013698	0.21884774797007355840
342	0.00125120214740871813	0.00350759513960612664	0.13388047784658768657
309	0.00103420951395237905	0.00371652866882344387	0.08763720544847865279
282	0.00088069455514219307	0.00437280217929090012	0.05933771447412881234
260	0.00073103515045030022	0.00513722166491812401	0.04299477438667399093
240	0.00063594021183923711	0.00592000295509313452	0.03409390304804248151
224	0.00058898456565550743	0.00676289191445739006	0.02574552332395355428
209	0.00050931272161242709	0.00765799330093219419	0.01928543220626895496
197	0.00048672318787345680	0.00859922796203041115	0.01477111612645987289
185	0.00052426440321391699	0.00961841733732396453	0.01263610530702409702
175	0.00058475810682118872	0.01068690322846851774	0.01016156527569579519
166	0.00066707187769499598	0.01180337839438677650	0.00988429425885288364
158	0.00074839170183660353	0.01296005240546987090	0.00949532772500814512

Tabela 5.11: $u=1,\;q=10$ fixo, $\sigma=10^{-3}$

n	$k_1(C.I)$	$k_2(C.I)$	$k_3(C.I)$
1300	0.01852728096081897313	0.11593528498089324119	21.45947511992439160622
929	0.00914792025645811725	0.04452143714924723661	7.88083845777441638347
722	0.00593247134471550433	0.02189332379808776874	3.00211848219046650854
591	0.00402930752371469594	0.01205135317409249986	1.38543899939105208396
500	0.00303732607545207072	0.00680913153492700152	0.78838430892233857250
433	0.00231749600258207176	0.00548662174420079963	0.44391276503199877945
382	0.00203414942802870391	0.00417602958938359265	0.32053236055013600847
342	0.00180616045313453642	0.00376900404925413750	0.22036663601755002162
309	0.00154804981789578508	0.00341785361072455664	0.16051939051363781075
282	0.00146988045954500515	0.00363661196529221475	0.13138365810653707122
260	0.00134526976156507062	0.00384836382922017868	0.11152393532567222989
240	0.00130176211889479021	0.00424927557540726118	0.10754628448778193184
224	0.00134961890152396086	0.00448053588427350675	0.10168066761910629636
209	0.00117409921813685044	0.00418279568531278786	0.09290626340965099650
197	0.00111859799411733948	0.00422830795906363032	0.08161661212499073115
185	0.00118661695050236490	0.00438307016897593674	0.07633102467997845975
175	0.00128196026654279148	0.00475557581561031253	0.07636088470860502575
166	0.00133831136583000649	0.00489317487210811069	0.08487543122080165592
158	0.00123718844056833741	0.00468156948431445400	0.09073341711624194339

Tabela 5.12: $u=e^{-s_i^2},\,q=10$ fixo, $\sigma=10^{-3}$

Resultados $\sigma \times M_e$

Os gráficos $\sigma \times M_e$ das Figuras 5.46 e 5.47 apresentam o comportamento de M_e a medida que o raio σ escolhido para acréscimo de ruído aumenta. os gráficos comprovam melhores resultados para o método das *derivadas discretas*(D.D).

Figura 5.46: Coordenadas independentes, n = 1300, q = 2

Figura 5.47: Derivadas discretas, n = 1300, q = 2

Exemplo 3:

► $\mathbf{r}(t) = (cos(t) + cos(3t), sen(t) + sen(3t), t^2, sen(t))$

A seguir, apresentamos a curva com rotação nos 4 eixos coordenados (Figura 5.48) e, em seguida, ilustramos as escalas de cores para cada uma das curvaturas k_1, k_2 e k_3 (Figuras 5.49, 5.50 e 5.51).

Figura 5.48: rotação nos 4 eixos

Figura 5.51: Projeção em $XY,\,n$ = 1300, curvatura k_3

A Figura 5.52 il
ustra a curva com ruído de raio σ = 10^{-2}.

Figura 5.52: n = 1300, σ = 10^{-2}

Pode-se verificar ainda o efeito zoom para o ruído acrescentado (Figuras 5.53 e 5.54)

Figura 5.53: zoom, $\sigma = 0$

Figura 5.54: zoom, σ = 10⁻²

5.5.3 Análise dos resultados

Resultados $n \times M_e$ sem ruído

Neste exemplo, optamos por comparar simultaneamente os resultados das três curvaturas para os dois métodos. O peso do método de *coordenadas independentes* (C.I) foi ajustado em u = 1.

O gráfico da Figura 5.55 compara, em um mesmo referencial, as médias M_e das três curvaturas conforme o aumento da densidade de pontos(n) para o método das coordenadas independentes(C.I) e o método das derivadas discretas(D.D). Pode-se observar que o método das coordenadas independentes apresentou melhor performance. Optamos novamente em diferenciar as cores utilizando tons de azul para o método de coordenadas independentes(C.I) e tons de vermelho para o método das derivadas discretas(D.D).

Figura 5.55: Gráfico $n \times M_e$, q = 10, $\sigma = 0$

Resultados $q \times M_e$ sem ruído

No próximo gráfico, foi verificado o comportamento das curvaturas conforme a variação do número de vizinhos q. Observamos melhor comportamento para o método de *coordenadas independentes*(C.I). A Figura 5.56 ilustra tal efeito.

Figura 5.56: Gráfico $n = 1300, \sigma = 0$

Resultados $q \times M_e$ com ruído

Os resultados com ruído são apresentados em dois modelos de comparação: variação do ruído(σ) e variação do número de vizinhos(q).

Para o primeiro modelo, os gráficos das Figuras 5.57, 5.58 e 5.59 ilustram o comportamento dos dois métodos a medida que reduzimos o nível de ruído, onde mais uma vez a melhor performance foi verificada no método das *derivadas discretas*(D.D).

Figura 5.57: Gráfico q = 2, n = 1300

Figura 5.58: Gráfico q = 2, n = 1300

Figura 5.59: Gráfico q = 2, n = 1300

Para o segundo modelo, os gráficos das Figuras 5.60, 5.61 e 5.62 comparam, na presença de ruído de raio $\sigma = 10^{-4}$, o desempenho dos dois métodos a medida que aumentamos o número de vizinhos. Note que o conjunto de gráficos encontra-se em escalas diferentes.

Figura 5.60: Gráfico $n = 1300, \sigma =$ 10^{-4}

Figura 5.61: Gráfico $n = 1300, \sigma =$ 10^{-4}

Figura 5.62: Gráfico $n=1300,\,\sigma=10^{-4}$

Exemplo 4:

►
$$\mathbf{r}(t) = (2sen(t) + 2sen(t)cos(t), 2sen^2(t), tsen(t), t^2)$$

A Figura 5.63 ilustra a curva com rotação nos quatro eixos coordenados.

Figura 5.63: rotação nos 4 eixos

As Figuras 5.64, 5.65 e 5.66 il
ustram uma escala de cores referente as curvaturas k_1,k_2
e $k_3.$

Figura 5.65: Escala para k_2

Figura 5.66: Escala para k_3

As Figuras 5.67, 5.68 e 5.69 indicam a variação do erro para cada uma das três curvaturas.

Figura 5.67: Curvatura k_1

Figura 5.68: Curvatura $k_{\rm 2}$

Figura 5.69: Curvatura k_3

A Figura 5.70 il
ustra um acréscimo de ruído de raio σ =
 $10^{-1}.$

Figura 5.70: Curva com n = 1300, $\sigma = 0.1$

5.5.4 Análise dos resultados

Resultados $n \times M_e$ sem ruído

Neste último exemplo paramétrico, optamos por fixar o número de vizinhos em q = 10 e comparar os resultados obtidos quando variamos a densidade de pontos. O peso no método de *coordenadas independentes*(C.I) foi fixado em u = 1.

As Figuras 5.71, 5.72 e 5.73 ilustram melhor desempenho para o método de coordenadas independentes (C.I).

Figura 5.71: Gráfico $q = 10, \sigma = 0$, curvatura k_1

Figura 5.72: Gráfico $q = 10, \sigma = 0, k_2$

Figura 5.73: Gráfico $q = 10, \sigma = 0, k_3$

Resultados $n \times M_e$ com ruído

Para este exemplo foi acrescentado um ruído de raio $\sigma = 10^{-3}$ e mantido q = 10. Na Figura 5.74 foi observado que o método das *derivadas discretas*(D.D) apresentou melhor performance para uma densidade de pontos n superior a 382.

Figura 5.74: Gráfico $n \times M_e$, q = 10, $\sigma = 10^{-3}$

Na Figura 5.75, pode-se observar que, para a curvatura k_2 , o método das derivadas discretas(D.D) apresentou melhor performance para uma densidade de pontos $n \ge 500$.

Figura 5.75: Gráfico $n \times M_e$, q = 10, $\sigma = 10^{-3}$

Para a curvatura k_3 , o método das derivadas discretas apresenta melhor performance especialmente se escolhermos valores altos para densidade de pontos (Figura 5.76).

Figura 5.76: Gráfico $n \times M_e$, q = 10, $\sigma = 10^{-3}$

Resultados $t \times k_1$, $t \times k_2$ e $t \times k_3$ sem ruído

Para esta curva foram construídos gráficos que tratam da evolução dos valores obtidos das curvaturas numéricas conforme o aumento do parâmetro t da equação paramétrica da curva. As Figuras 5.77, 5.78 e 5.79 apresentam os resultados obtidos tanto para o método de *coordenadas independentes* tanto para o método das *derivadas discretas* na ausência de ruído. os gráficos para ambos os métodos coincidem neste caso, devido às mudanças numéricas serem sentidas apenas a partir da terceira casa decimal.

Figura 5.77: Gráfico $t \times k_1$, q = 2, $\sigma = 0$ Figura 5.78: Gráfico $t \times k_2$, q = 2, $\sigma = 0$

Figura 5.79: Gráfico $t \times k_3$, q = 2, $\sigma = 0$

Resultados $t \times k_1$, $t \times k_2$ e $t \times k_3$ com ruído

A Figura 5.80 apresenta um gráfico $t \times k_1$ na presença de ruído. Pode-se observar um melhor desempenho para método das *derivadas discretas*.

Figura 5.80: Gráfico $t\times k_1,\,q=2,\,\sigma=10^{-3}$

Para as curvaturas k_2 e k_3 , foi utilizado um ruído de raio 10^{-5} e, novamente, o método das derivadas discretas apresentou melhor performance (Figuras 5.81 e 5.82). Note que as curvaturas k_3 teóricas estão muito próximas de zero (Figura 5.82).

Figura 5.81: Gráfico $t\times k_2,\,q=2,\,\sigma=10^{-5}$

Figura 5.82: Gráfico $t\times k_3,\,q=2,\,\sigma=10^{-5}$

Na próxima seção trataremos dos resultados obtidos a partir de curvas definidas pela interseção de três hipersuperfícies implicitamente definidas no \mathbb{R}^4 .

5.6 Curvas Implícitas

Nesta seção vamos apresentar os resultados computacionais obtidos através do estudo de curvas definidas pela interseção de três hipersuperfícies implicitamente definidas no \mathbb{R}^4 .

Exemplo 1:

Considere a curva C_{fgh}^0 que contem o ponto $p_0 = (\frac{1}{2}, \frac{1}{2}, \frac{\sqrt{2}}{2}, 1)$ representada pela interseção das três hipersuperfícies implicitamente definidas no \mathbb{R}^4 :

$$f(x, y, z, w) = x^{2} + y^{2} + z^{2} + w^{2} - 2$$
$$h(x, y, z, w) = x^{2} + y^{2} + z^{2} - w^{2}$$
$$g(x, y, z, w) = x^{2} + y^{2} - x$$

A Figura 5.83 ilustra tal curva em uma projeção particular.

Figura 5.83: Curva exemplo 1

Como observação, não faremos o estudo da curvatura k_3 para esta curva, por se tratar de uma curva no \mathbb{R}^3 e, portanto, $k_3 = 0$. Fixamos o passo do método de Euler em 0.0005 e o peso para o método de *coordenadas independentes*(C.I) foi ajustado para u = 1. Esta curva é a mesma que aparece no artigo (1).

As Figuras 5.84, 5.85 e 5.86 apresentam uma escala de cores referente a cada curvatura k_1, k_2 e k_3 .

Figura 5.85: Escala para k_2

Figura 5.86: Escala para k_3

5.6.1 Análise dos resultados

Resultados $n \times M_e$ sem ruído

As Figuras 5.87 e 5.88 mostram o gráfico comparativo entre os dois métodos referente ao caso sem ruído, ($\sigma = 0$). Nessas condições, assim como no caso paramétrico, o método das *coordenadas independentes*(C.I) apresentou melhores resultados. Observe que no gráfico da Figura 5.87, o método de *coordenadas independentes*(C.I) está praticamente sobre o eixo x para a escala selecionada.

Figura 5.87: Gráfico $n \times M_e$, q = 2, Figura $\sigma = 0$ $\sigma = 0$

Resultados $n \times M_e$ com ruído

Por outro lado, com acréscimo de ruído de raio $\sigma = 10^{-5}$ e q = 2, o método das *derivadas discretas* obteve os melhor performance como era esperado (Figuras 5.89 e 5.90)

Figura 5.89: Gráfico $n \times M_e$, $\sigma = 10^{-5}$

Resultados $q \times M_e$ sem ruído

A Figura 5.91 ilustra um gráfico $q \times M_e$ com $\sigma = 0$ e exibe as duas curvaturas para ambos os métodos.

Figura 5.91: Gráfico $q \times M_e$, $\sigma = 0$, n = 1300

Resultados $q \times M_e$ com ruído

As Figuras 5.92 e 5.93 ilustram gráficos $q \times M_e$ com $\sigma = 10^{-5}$. Comparando as escalas dos gráficos sem ruído (Figura 5.91) com os gráficos com ruído (Figuras 5.92 e 5.93), nesta curva em particular, o cálculo da curvatura foi muito sensível ao ruído, e o aumento dos vizinhos torna-se essencial para recuperar alguma informação sobre as curvaturas.

Figura 5.92: $\sigma = 10^{-5}$, n = 1300, curvatura k_1

Figura 5.93: $\sigma = 10^{-5}$, n = 1300, curvatura k_2

Exemplo 2:

Considere a curva C_{fgh}^0 que contem o ponto $p_0 = (0, 0, 1, -2.2)$ representada pela interseção das três hipersuperfícies implicitamente definidas no \mathbb{R}^4 a seguir:

$$f(x, y, z, t) = y^{2} + z^{2} - 1$$

$$h(x, y, z, t) = x^{2} + y^{2} + (z + t)^{2} - 1.44$$

$$g(x, y, z, t) = 4xy - 4yt - 4xz$$

Esta curva é um exemplo obtido de testes de colisão entre dois corpos usando silhueta no \mathbb{R}^4 . A primeira equação $y^2+z^2-1=0$ representa um cilindro, e a segunda equação $x^2+y^2+(z+t)^2=1.44$ representa uma esfera de raio 1, 2 se deslocando ao longo do eixo z. Junto com a equação g(x, y, z, t) = 0, obtemos uma curva utilizada para obter o primeiro ponto de contato (a descrição completa do problema pode ser vista em (5) e (3)). O passo utilizado no método de Euler foi ajustado em 0.0005 e o peso no método de *coordenadas independentes*(C.I) para u = 1.

A curva foi representada na projeção XY com visualização dos eixos x e y (Figura 5.94) e, em seguida, a curva foi rotacionada para visualização do eixo z (Figura 5.95).

Figura 5.94: Eixos x e y

Figura 5.95: Visualização do eixo z

As Figuras 5.96 e 5.97 mostram a curva em questão com rotação nos quatro eixos em diferentes posições.

Figura 5.96: Visualização do eixo w

Figura 5.97: Nova rotação

As Figuras 5.98, 5.99 e 5.100 indicam as escalas de cores para cada uma das três curvaturas.

Figura 5.98: Escala para k_1

Figura 5.99: Escala para k_2

Figura 5.100: Escala para k_3

5.6.2 Análise dos resultados

Resultados $n \times M_e$ sem ruído

A tabela 5.13 apresenta o erro absoluto médio M_e nos cálculos das curvaturas para diferentes densidades de pontos(n). Note que os dois métodos aparecem na mesma tabela.

n	$k_1(C.I)$	$k_1(D.D)$	k2(C.I)	k2(D.D)	k3(C.I)	k3(D.D)
128	0,000162013	0,029565292	0,037823184	0,056847839	0,059496246	0,277772822
142	0,000105863	0,023940409	0,030998458	0,045735175	0,056496603	0,241321574
160	6,5604E-05	0,018923442	0,02479795	0,035942272	0,038664059	0,189916899
183	3,82069E-05	0,014496599	0,019068777	0,027238748	0,029155765	0,149922085
214	2,04492E-05	0,010616996	0,014033449	0,019772797	0,289575864	0,380383784
258	9,81795E-06	0,007300239	0,009690256	0,013518754	0,015351633	0,081725366
323	4,06254E-06	0,004659797	0,006150625	0,008557992	0,009846663	0,053724728
431	1,30632E-06	0,002637414	0,003437359	0,004793869	0,135914016	0,16085647
648	2,60067E-07	0,001187169	0,001519024	0,002126135	0,086376145	0,097780367
1298	1,62218E-08	0,000300705	0,000378219	0,000532512	0,042866547	0,045813969

Tabela 5.13: q = 2, σ = 0

Os gráficos das Figuras 5.101, 5.102 e 5.103 exibem os resultados da tabela 5.13 para cada curvatura. Note que os gráficos estão em escalas diferentes.

Figura 5.101: $q = 2, \sigma = 0$, curvatura k_1

Figura 5.102: $q = 2, \sigma = 0,$ curvatura k_2

Figura 5.103: $q = 2, \sigma = 0$, curvatura k_3

Resultados $n \times M_e$ com ruído

A tabela 5.14 apresenta os erros médios absolutos obtidos quando acrescentou-se ruído de raio σ = 10^{-3} e as Figuras 5.104, 5.105 e 5.106 ilustram esses resultados.

n	$k_1(C.I)$	$k_1(D.D)$	k2(C.I)	k2(D.D)	k3(C.I)	k3(D.D)
128	0,268751318	0,022926573	1,366500034	0,152981878	12,59217363	0,254945844
142	0,592099269	0,021823761	1,786567336	0,121032258	19,90979819	0,288127459
160	0,515615086	0,021497169	2,31685063	0,119936179	29,20432895	0,313226659
183	0,29928149	0,023265314	3,149029281	0,120143144	38,67832799	0,475096879
214	0,365420492	0,026039444	3,191268831	0,243883158	58,41269642	1,127348423
258	0,590622863	0,026306108	5,674817603	0,240281956	55,92960731	1,883905381
323	1,047450552	0,040662525	7,444737815	0,449422315	74,68811984	4,278702351
431	2,163972173	0,080837568	11,46859564	1,737696646	61,68329074	15,54383372
648	5,516953216	0,143973323	20,53576648	4,780537442	56,56069157	24,52598716
1298	23,84171116	0,634622899	43,19034122	29,07720398	86,38304623	33,86811345

Tabela 5.14: q = 2, σ = 10^{-3}

Figura 5.104: q = 2, σ = 10^{-3}, curvatura k_1

Figura 5.105: q = 2, $\sigma = 10^{-3}$, curvatura k_2

Figura 5.106: $q = 2, \sigma = 10^{-3}$, curvatura k_3

Os resultados obtidos mantém a tendência do método das *derivadas discretas*(D.D) em reproduzir melhor a curvatura nos casos com ruído e o método de *coordenadas independentes*(C.I) ter melhor performance para os casos sem ruído.

Exemplo 3:

Considere a curva C_{fgh}^0 que contem o ponto $p_0 = (0, 0, 2.7, -1.7)$ representada pela interseção das três hipersuperfícies implicitamente definidas no \mathbb{R}^4 a seguir:

$$\begin{cases} f(x, y, z, t) = x^2 + y^2 + (z + t)^2 - 1\\ h(x, y, z, t) = x^2 + y^2 + (z + 2t)^2 - 0.49\\ g(x, y, z, t) = 4t(x - y) \end{cases}$$

Tal curva possui $k_3 = 0$, passo no método de Euler 0.0005 e peso no método de *coordenadas independentes* (C.I) u = 1. Pode-se interpretar as equações anteriores como o movimento de duas esferas de raios diferentes no eixo z conforme o aumento do tempo t. A curva em questão também representa testes de colisão entre dois corpos (ver (5) e (3)). A Figura 5.107 il
ustra a curva em questão na projeção XY com ausência de rotação.

Figura 5.107: Projeção em XY

A Figura 5.108 ilustra a visualização do eixo \boldsymbol{z}

Figura 5.108: Visualização do eixo \boldsymbol{z}

As Figuras 5.109 e 5.110 il
ustram a curva com rotação nos 4 eixos coordenados.

Figura 5.109: Rotação nos 4 eixos

Figura 5.110: Nova rotação

5.6.3 Análise dos resultados

Resultados $q \times M_e$ sem ruído

A Tabela 5.15 apresenta os valores das médias M_e para diferentes valores de q (quantidade de vizinhos). Os gráficos podem ser observados nas Figuras 5.111 e 5.112.

q	$k_1(C.I)$	$k_2(C.I)$	$k_1(D.D)$	$k_2(D.D)$
2	7,69265E-08	0,000242736	0,000591363	0,000518849
3	1,33148E-06	0,000565952	0,001209414	0,001069625
4	5,06988E-06	0,000996106	0,002025447	0,001805908
5	1,28029E-05	0,001532521	0,00303568	0,002988765
6	2,62073E-05	0,002174333	0,004236202	0,004575643
7	4,69841E-05	0,002920568	0,005623205	0,00644782
8	7,6782E-05	0,003769623	0,007191461	0,008555544
9	0,000117123	0,00471813	0,009380988	0,010857403
10	0,000169352	0,005762887	0,012004643	0,013358403
11	0,00023462	0,006904433	0,014946456	0,016065837
12	0,000313956	0,008143863	0,018141052	0,018983831
13	0,000408089	0,009479272	0,021547426	0,022120899
14	0,000517767	0,010911186	0,025136227	0,025474405
15	0,000643438	0,012436425	0,028885128	0,029033372
16	0,000785554	0,014050819	0,032777371	0,032796782
17	0,000944986	0,015751155	0,036797046	0,036771839
18	0,001122125	0,017534185	0,040931822	0,040959195
19	0,001316915	0,01939088	0,045173348	0,045347287
20	0,001530312	0,021325006	0,049512366	0,049934489

Tabela 5.15: n=1300 fixo, $\sigma=0$

Figura 5.111: n = 1300, $\sigma = 0$, curvatura k_1

Resultados $q \times M_e$ com ruído

Figura 5.112: $n = 1300, \sigma = 0,$ curvatura k_2

A tabela 5.16 ilustra o acréscimo de ruído na amostragem. Foi observado melhores resultados para o método das derivadas discretas(D.D) (Figuras 5.113 e 5.114).

q	$k_1(C.I)$	$k_2(C.I)$	$k_1(D.D)$	$k_2(D.D)$
2	323,453673	153.0659102	13.10673086	145,8436622
3	114,9390079	106,6103304	4,754569951	100,0704418
4	60,35954306	74,62285654	2,262677399	69,38897463
5	37,34955516	58,38320892	1,190274331	47,43225746
6	25,56238538	44,80074426	$0,\!696368317$	34,32532569
7	18,4796696	35,73767989	0,439568236	26,56897466
8	13,83321516	31,15994538	0,305505723	18,58003714
9	10,61332695	26,09686886	0,231452873	13,78187013
10	8,44780424	21,58121919	0,181048885	9,303680489
11	6,863359153	17,94538591	0,148332543	6,460559353
12	5,607153715	15,59062178	0,124309691	4,516049951
13	4,673397284	13,272211	0,106373391	3,21867235
14	3,899136697	11,65593218	0,092632638	2,323597801
15	3,311378904	10,3993936	0,08238076	1,747071592
16	2,793543536	9,639362419	0,074868452	1,394430585
17	2,415292599	8,864765894	0,069186412	1,145837318
18	2,120254036	7,714537864	0,071294568	1,076533273
19	1,869953484	6,654333897	0,062221975	0,794533546
20	1,645406148	5,973946662	0,060411448	0,669781449

Tabela 5.16: n = 1300 fixo, σ = 10^{-3}

Figura 5.113:n = 1300, σ = 10^{-3}, curvatura k_1

Resultados $n \times M_e$ sem ruído

Figura 5.114: n = 1300, σ = 10^{-3}, curvatura k_2

Analisaremos agora o comportamento de M_e para diferentes valores de densidade de pontos. Para o caso sem ruído obtivemos os seguintes resultados conforme a tabela 5.17. Os gráficos podem ser vistos nas Figuras 5.115 e 5.116.

n	$k_1(C.I)$	$k_2(C.I)$	$k_1(D.D)$	$k_2(D.D)$
128	0,000445642	0,022802406	0,045800822	0,055202128
142	0,000297265	0,018501357	0,038064149	0,044894933
160	0,000190236	0,014677753	0,031017837	0,03535453
183	0,000113405	0,011349696	0,024294101	0,026849712
214	6,6588 E-05	0,008491688	0,018371949	0,019539941
258	3,45094E-05	0,005948973	0,013160779	0,013428033
323	1,52485E-05	0,003867454	0,008705404	0,008497812
431	5,32732E-06	0,00219149	0,005047259	0,00472966
648	1,17345E-06	0,000976728	0,002302495	0,002082734
1298	7,69265E-08	0,000242736	0,000591363	0,000518849

Tabela 5.17: q=2 fixo, $\sigma=0$

Figura 5.115: $q = 2, \sigma = 0,$ curvatura k_1

Figura 5.116: $q = 2, \sigma = 0$, curvatura k_2

Resultados $n \times M_e$ com ruído

A tabela 5.18 mostra o comportamento dos valores de M_e com acréscimo de ruído de raio $\sigma = 10^{-4}$. Os gráficos podem ser observados nas Figuras 5.117 e 5.118 com melhor performance para o método das derivadas discretas(D.D).

n	$k_1(C.I)$	$k_2(C.I)$	$k_1(D.D)$	$k_2(D.D)$
128	0,259545371	3,855026547	0,029966211	0,220500727
142	0,310417082	4,866170081	0,03794877	$0,\!277126684$
160	0,329069324	7,506715329	0,03467692	0,390802004
183	0,403041072	$14,\!28783288$	0,037070284	$0,\!477989018$
214	0,535316946	$17,\!3733109$	0,037633088	$0,\!692458853$
258	0,808564472	21,76645979	0,042417347	$1,\!106250927$
323	1,301761362	33,80908791	$0,\!05168078$	2,144549637
431	2,72243435	46,60425845	0,090272359	5,806706312
648	7,091296954	73,44679382	0,200787489	68,7319328
1298	31,16121635	155,6445893	0,849719144	101,8095904

Tabela 5.18: q=2 fixo, $\sigma=10^{-4}$

Figura 5.117: q = 2, σ = 10^{-4}, curvatura k_1

Figura 5.118: $q = 2, \sigma = 10^{-4}$, curvatura k_2

Exemplo 4:

Considere a curva C_{fgh}^0 que passa pelo ponto $P_0 = (5.0034, 36.083, 6, 36)$ pertencente a interseção das três hipersuperfícies de equações

$$\begin{cases} f(x, y, z, w) = (x - z)^2 + (y - w)^2 - 1 \\ h(x, y, z, w) = w - z^2 \\ g(x, y, z, w) = -2x + 2z - 4yz + 4zw \end{cases}$$

Essas equações correspondem ao método envelope para gerar curvas offset (ver (5) e (3)). De forma resumida, $w - z^2 = 0$ corresponde a curva original e as equações f(x, y, z, w) e g(x, y, z, w) definem uma curva silhueta no \mathbb{R}^4 que reproduz a curva offset quando projetada no plano ZW.

Tais curvas representam o offset de uma parábola (indicada pela segunda equação). As Figuras 5.119, 5.120 e 5.121 indicam, respectivamente, a curva com visualização em cada um dos eixos coordenados. O passo no método de Euler foi ajustado para 0.0005 e o peso no método de *coordenadas independentes* (C.I) para u = 1. Como observação, registramos que foi testado o peso $u = e^{-s_i^2}$ para esta curva, mas os resultados obtidos apontaram mudanças pouco significativas no cálculo das médias absolutas M_e .

Figura 5.120: Visualização do eixo z

Figura 5.121: Visualização do eixo w

As Figuras 5.122, 5.123 e 5.124 indicam as escalas de cores para cada uma das três curvaturas k_1, k_2 e k_3 .

Figura 5.122: Curvatura k_1

Figura 5.123: Curvatura $k_{\rm 2}$

Figura 5.124: Curvatura k_3

5.6.4 Análise dos resultados

Resultados $n \times M_e$ sem ruído

A tabela 5.19 apresenta os resultados para diferentes densidades de pontos e ausência de ruído considerando as médias M_e . Pode-se confirmar a melhor performance para o método de *coordenadas independentes*(C.I).

n	$k_1(C.I)$	$k_1(D.D)$	k2(C.I)	k2(D.D)	k3(C.I)	k3(D.D)
128	4,07863E-05	0,011720365	0,019151482	0,022694939	0,031798558	0,036473329
142	2,65129E-05	0,009414509	0,015365932	0,01817786	0,025846459	0,02936457
160	1,63856E-05	0,007338662	0,01199528	0,014158456	0,020399483	0,023020615
183	9,47485E-06	0,005554303	0,009074765	0,010697094	0,01559122	0,01745742
214	5,03665E-06	0,004028485	0,006572589	0,007742235	0,011403368	0,012679478
258	2,39214E-06	0,00275328	0,004490652	0,005284361	0,007852665	0,00868711
323	9,66697E-07	0,00173943	0,002837527	0,003335479	0,004992388	0,005501149
431	3,02194E-07	0,000966537	0,001576028	0,001851705	0,002787539	0,003061317
648	6,01011E-08	0,00042364	0,00069059	0,00081101	0,001228625	0,00134341
1298	1,48337E-08	0,000104498	0,00017035	0,000199963	0,000681836	0,00033172

Tabela 5.19: q = 2, σ = 0

Resultados $n \times M_e$ com ruído

A tabela 5.20 comprova melhores resultados para o método das derivadas discretas(D.D) com acréscimo de ruído de raio $\sigma = 10^{-3}$.

n	$k_1(C.I)$	$k_1(D.D)$	k2(C.I)	k2(D.D)	k3(C.I)	k3(D.D)
128	1,023938982	0,018178346	8,985208004	1,597732179	35,86708185	2,213493457
142	1,116107703	0,022390652	12,76038756	1,648274956	38,10711672	8,667808137
160	1,540812297	0,045153173	18,52982891	$1,\!690732175$	33,22522921	11,10102385
183	1,76801736	0,06104773	10,13055856	1,664208398	45,39972466	10,7356769
214	3,401414151	0,064582993	17,24064818	1,077857148	$34,\!55655158$	9,489680475
258	4,205954109	0,126311356	16,27158013	2,785034745	37,43934034	21,55196007
323	5,790654424	0,166829745	19,92121963	5,194649182	39,41872391	21,30169246
431	12,02835504	0,315233814	22,96952793	11,27389598	48,77981663	23,02102064
648	30,13207797	0,750574694	35,84603675	27,1467422	64,13296249	24,91787421
1298	111,3413876	3,846703579	73,75128833	66,41951195	154,758446	26,42651439

Tabela 5.20: q = 2, σ = 10^{-3}

Resultados $q \times M_e$ sem ruído

A tabela 5.21 apresenta as médias M_e obtidas para diferentes valores de q com ausência de ruído. O método das *coordenadas independentes*(C.I) apresentou melhor performance, neste caso, para a curvatura k_1 . O método das *derivadas discretas*(D.D) obteve melhor desempenho para a curvatura k_3 .

q	$k_1(C.I)$	$k_1(D.D)$	k2(C.I)	k2(D.D)	k3(C.I)	k3(D.D)
2	1,48337E-08	0,000104498	0,00017035	0,000199963	0,000681836	0,00033172
3	4,4228E-08	0,000215093	0,000397128	0,000411652	0,000850294	0,000682836
4	1,51682E-07	0,000362472	0,000699009	0,000693832	0,001553543	0,001152927
5	3,82248E-07	0,000546567	0,001075515	0,00104676	0,002449316	0,001739525
6	7,96742E-07	0,000767291	0,001526079	0,001470292	0,003519693	0,002441375
7	1,4695E-06	0,001024539	0,00205002	0,001964202	0,004760628	0,003257625
8	2,48737E-06	0,0013182	0,002646545	0,002528329	0,006168336	0,004187486
9	3,94927E-06	0,001648353	0,003314746	0,003162497	0,007738647	0,005230265
10	5,96606E-06	0,002014782	0,0040536	0,003866585	0,009467004	0,006385086
11	8,66043E-06	0,002417248	0,00486197	0,00464048	0,011348484	0,007651047
12	1,21666E-05	0,002855553	0,005738604	0,005484056	0,013377825	0,009027114
13	1,66304E-05	0,003329527	0,006682149	0,006397156	0,015549458	0,010512424
14	2,22087E-05	0,003838995	0,007691119	0,007379634	0,017857545	0,012105911
15	2,90696E-05	0,004383748	0,008763915	0,008431384	0,020296013	0,013806348
16	3,73918E-05	0,004963481	0,009898825	0,009552218	0,022858595	0,015612505
17	4,73646E-05	0,005578097	0,011094023	0,010742019	0,025538866	0,017523086
18	5,91875E-05	0,006227392	0,012347614	0,012000645	0,028330285	0,019536754
19	7,30701E-05	0,006911009	0,013657513	0,013327972	0,031226233	0,021652108
20	8,92312E-05	0,007628813	0,015021553	0,014723879	0,03422003	0,023868622

Tabela 5.21: $n = 1300, \sigma = 0$

Resultados $q \times M_e$ com ruído

A tabela 5.22 apresenta as médias M_e obtidas para diferentes valores de q com ruído de raio $\sigma = 10^{-3}$. O método das derivadas discretas(D.D) apresentou melhor performance.

q	$k_1(C.I)$	$k_1(D.D)$	k2(C.I)	k2(D.D)	k3(C.I)	k3(D.D)
2	111,3980345	3,852524236	73,82843991	68,35191787	131,4035265	27,46139541
3	39,05483997	1,34794541	50,7807492	44,10522185	104,0906579	23,39656069
4	19,72329952	0,595526733	37,24185414	28,41011792	90,16746152	27,77690263
5	11,9594194	0,323902231	27,46130147	16,60858394	82,13796447	28,89671992
6	7,937663693	0,202426677	20,97574973	8,783452943	67,32157891	24,30731989
7	5,819344315	0,137655473	$16,\!84659664$	4,989445983	64,94956539	24,56479842
8	4,284753694	0,103612116	14,07419233	2,978003351	63,06823498	20,0630426
9	3,239704562	0,081317176	12,5654888	1,833496076	57,95086976	17,6133485
10	2,528804211	0,064515075	10,40202709	1,174847216	59,08890965	17,42194423
11	1,99663528	0,050984219	8,073304055	0,820173205	67,43776096	12,46383064
12	1,581073377	0,040771521	7,328539795	$0,\!628520707$	72,11329743	8,896037297
13	1,270116077	0,033541311	5,992561385	0,501348802	78,35567728	6,533693438
14	1,036439411	0,028000514	5,090042629	0,41212881	86,33712241	3,910530419
15	0,848488578	0,023915848	5,926766981	0,332264829	61,58471412	2,341583906
16	0,708695616	0,020940081	5,248959547	0,26690205	59,22701751	1,590698457
17	0,606171187	0,018555764	4,474321311	0,215337035	61,36373391	1,152774638
18	0,526970944	0,016676346	4,253248995	0,174311924	67,238457	0,879475025
19	0,472078101	0,015267051	2,347427725	0,141487932	82,30919368	0,691517213
20	0,41939906	0,014204245	2,03834354	0,116448945	86,99502656	0,559949386

Tabela 5.22: $n = 1300, \sigma = 10^{-3}$

5.6.5 Considerações finais do capítulo

Foi verificado que, para toda curva selecionada nos casos sem ruído, o valor de M_e aumenta com o valor de q. Tal fato mostra que as estimativas das curvaturas são melhores quando utilizamos as informações dos pontos mais próximos ao ponto base. Da mesma forma pode-se observar ainda através da análise gráfica que, nos casos sem ruído, a melhor precisão numérica das curvaturas é obtida quando aumenta-se a densidade de pontos de uma amostragem.

O método das *derivadas discretas*(D.D) apresenta melhor desempenho computacional quando acrescentamos ruído na amostragem de pontos. Para os casos sem ruído, o método das coordenadas independentes(C.I) revela-se mais eficiente.

Os números ideais para q(quantidade de vizinhos ao ponto base), σ (raio para ruído) e a densidade de pontos(n) da amostragem variam de acordo com a curva selecionada para estudo.

A escolha do peso u no método de *coordenadas independentes*(C.I) é variável e depende muito da curva escolhida para estudo. Nos experimentos realizados foi verificado que, encontrado o peso ideal no caso sem ruído, melhores resultados são verificados a medida que aumentamos o número de vizinhos q uma vez que pontos distantes ficam com menor influência. Já para o caso com ruído, o aumento do número de vizinhos piora as estimativas para as três curvaturas.

Embora não tenhamos realizado uma análise de convergência para os métodos, os experimentos desenvolvidos neste trabalho contribuíram na medida em que resultados esperados foram obtidos.