
3
The Forecasting Task

The forecasting task performed by the predictors aims to forecast the
current day minimum and maximum values. These values differ according to
the kind of trade considered. They are the stock prices themselves if we intend
to simulate the investor’s decision making regarding buy and sell trades. On the
other hand, if the focus is to guide the investor into Pairs Trading, they refer to
the spread values between the considered asset pair.

In our stock market time series forecasting, we propose two different
forecasting schemes. One uses only interday data, while the other one uses both
interday and intraday features. We test both schemes by using all the proposed
predictors.

To better explain the forecasting process, we subdivide this chapter into
three essential parts. In section 3.1, we describe how the available dataset is
preprocessed before the forecasting itself. The section 3.2 explains in detail the
two forecasting schemes. And finally, in the section 3.3, we present the proposed
predictor algorithms and benchmarks, exposing the peculiarities of each.

3.1
Dataset Standardization

In order to soften undesirable irregularities in the dataset and keep its
values between 0.0 and 1.0, the dataset is preprocessed using two different
standardization methods consecutively.

First we use the Standard Score method [32], calculated by the equation:

zi =
(xi − µi)

σi
, (3.1)

where xi represents the i-th sample vector of a dataset (X, Y), µi is the mean of
xi and σi its standard deviation.

Then, the values are normalized using the Min-Max algorithm [33]. How-
ever, the values to be predicted may transcend the limits of minimum and max-

DBD
PUC-Rio - Certificação Digital Nº 0912857/CA

A System for Stock Market Forecasting and Simulation 19

imum shown in the input data. Hence, to ensure that all values are well repre-
sented by the predictors, we use the Min-Max algorithm by scaling the values to
the range 0.20 to 0.80. We choose these limits since a daily variation, either in
stock prices or in indicators, above 25% is very unusual. The following equation
shows how the Min-Max standardization is performed:

yi =
zi −mini

maxi −mini

(cmax− cmin) + cmin, (3.2)

where the values will be in the range [cmin = 0.2, cmax = 0.8], and mini

and maxi are respectively the minimum and maximum values of the i-th sample
vector zi, after the Standard Score standardization.

Obviously, once the predictor has completed the forecasting, the output
data require post-processing by performing the inverse operations.

3.2
Forecasting Schemes

The proposed stock market time series forecasting explores two different
forecasting schemes. The simplest one, here called interday forecasting, uses just
interday data. It takes advantage of only previous day values and the current
day opening value. The second scheme, on the other hand, also uses values
obtained during the current day. It carries out several predictions throughout the
same day. Hence, it is called intraday forecasting. More precisely, every hour a
new prediction is performed, which also includes the input data minimum and
maximum values already known in the current day up to that instant in time.

Since the Brazilian stock exchange hours of operation are officially from
10am to 17pm, we build seven predictions throughout the day in the intraday
forecasting. In the absence of more data referring to the current day beyond the
opening value, we carry out the first prediction exactly as the interday scheme
does. However, in the rest of the predictions, the current day opening value in the
input data is replaced by the minimum or the maximum value already reached,
so that the forecasting quality improves during the day. We choose intervals of
one hour between the predictions to allow the user to use the system even in the
absence of a Algorithmic Trading [34].

DBD
PUC-Rio - Certificação Digital Nº 0912857/CA

A System for Stock Market Forecasting and Simulation 20

3.3
Forecasting Algorithms

This section describes in detail the concerned forecasting algorithms. In
subsection 3.3.1, we present the proposed predictor algorithms, by explaining
how the training is conducted in each. And in subsections 3.3.2 and 3.3.3, we
present respectively the selected benchmarks and the Oracle used to simulate the
optimal solution.

3.3.1
The Proposed Predictors

The goal of many problems in Machine Learning area is modeling the
complex relationship present in a system between input variables and their
respective outputs, overcoming the leak of a theoric model [35].

There are respected models for regression that comprise linear combina-
tions of fixed basis functions, such as Bayesian Regression models. Although
these models have useful analytical and computational properties, their practical
applicability is limited by the curse of dimensionality. Thus, in order to apply
such models to large-scale problems, it is necessary to adapt the basis functions
to the data [36].

The proposed predictors, described in detail below, are some sucessfull
methods to solve this kind of problem.

SVR and ANN are non-linear methods that have emerged as solutions to
overcome the linear methods limitation.

SVR address this by first defining basis functions that are centered on the
training data points and then selecting a subset of these during training [36].

ANN presents an alternative approach, by using parametric forms for
the basis functions in which the parameter values are adapted during training.
According to [36], Feed-forward Neural Network are the most successful model
in the context of pattern recognition.

Finally, being a linear technique, PLSR is a less powerful regression
method. It holds up in an attempt to overcome the classical methods by perform-
ing the regression incrementally only in a set of input variables. PLSR works by
extracting a latent structure which uses orthogonal factors as linear combinations
of the input features [7].

DBD
PUC-Rio - Certificação Digital Nº 0912857/CA

A System for Stock Market Forecasting and Simulation 21

Partial Least Squares Regression

Developed by Wold et al. [37, 38], Partial Least Squares Regression is
a linear method proposed to solve regression problems whose dataset presents
a big number of features in relation to the number of samples. Compared to
Ordinary Least Squares Regression (OLSR), a form of classical linear regression
which uses all the input variables simultanely, PLSR reaches more robust results
once it performs the regression incrementally only on a set of input variables

PLSR usage has increased in the last three decades, receiving special
attention in symposiums specialized in regression algorithms [39, 40]. The
success obtained by the use of PLSR in chemometrics, its initial application
area [41, 42], encourages its application in other areas such as, process check,
marketing, image processing and stock market [43].

Among the most notable advantages of using PLSR, we must mention its
good performance when applied to features that are highly correlated, the easy
understanding of the implicit model and the fast processing.

Here, we use PLSR based on the work of [35], as an attempt to also get
good predictions for stock market time series with a linear model.

Suppose we have a mean centered dataset [X, Y] whereX are the indepen-
dent variables and Y the dependent variables. PLSR extracts a latent structure
using orthogonal factors as linear combinations of features. Instead of working
in the feature space, by using the covariance matrix given by:

XXT = Cov(X,X) = V ar(X), (3.3)

like Principal Component Analysis (PCA), PLSR adds dependent variables and
uses the modified matrix given by:

XY TY TX = Cov(X, Y). (3.4)

The key idea is to find a feature space that better describes both dependent
and independent variables, to predict the dependent variables. The overall PLSR
process can be described in algorithm 1.

And once we have learned the PLSR model, we can fit to a new dataset X ′

for predicting the Y ′ responses. We can do this by using the variables w, b and p
learned from the model, as shown by the algorithm 2.

DBD
PUC-Rio - Certificação Digital Nº 0912857/CA

A System for Stock Market Forecasting and Simulation 22

Algorithm 1 PLSR Training Algorithm
X1 ← X
Y1 ← Y
for i=1 to k do
wi ← XT

i Y
// normalization
wi ← wi/(wiw

T
i)1/2

ti ← Xiwi

// computing the regression coefficients
bi ← Y T

i ti/t
T
i ti

pi ← XT
i ti/t

T
i ti

// residual processing
Xi+1 ← Xi − tipTi
Yi+1 ← Yi − biti

end for

Algorithm 2 PLSR Testing Algorithm
X
′
1 ← X

′

Y
′ ← 0

for i=1 to h do
t
′
i ← X

′
iwi

// residual prediction
Y
′ ← Y

′
+ t

′
ib

T
i

// residual processing
X
′
i+1 ← X

′
i + t

′
ip

T
i

end for

Support Vector Regression

Used in both classification and regression problems, the Support Vector
(SV) algorithm is a nonlinear generalization of the Generalized Portrait (GP)
algorithm developed in Russia in the sixties by [44, 45].

In its current form, SVM was largely developed at AT&T Bell Laboratories
at 90 decade by Vapnik and co-workers within the statistical learning theory and
the structural risk minimization [46, 47, 48, 49, 50, 51]. Due to this industrial
context, SVM presented a sound orientation towards real-world applications
since its conception [52]. Their theory was quickly proven to be very successfully
on many classification and regression applications, such as Optical Character
Recognition and Object Recognition tasks [50, 53, 54, 55], its first two foci, and
time series prediction applications [56, 57, 58, 59].

DBD
PUC-Rio - Certificação Digital Nº 0912857/CA

A System for Stock Market Forecasting and Simulation 23

The SV learning consists of using a kernel representation of the data and
then formulating the problem as a convex optimization problem [7]. Usually the
convex optimization problem can be modeled using a quadratic programming
technique, for which the dual problem is solved.

According to Bishop [36], the main advantage of SV algorithm is that,
although the training involves nonlinear optimization, the objective function is
convex, and so the solution of the optimization problem is relatively straight-
forward. High generalization and good performance for high dimension space
of features are other advantages of using this technique that we must mention.
Here, we use the LIBSVM implementation published by Chang and Lin [60].

Suppose we have a training dataset consisting of {(x1, y1), ..., (xn, yn)} ⊂
χ × R, where χ denotes the space of the input patterns in a higher dimension
of (χ = Rd). The SVR proposed here, also called ε−SVR [61], aims to find a
function f(x) that has at most ε deviation from the target yi for all the training
data, and at the same time is as flat as possible. Thus, errors that are less than ε
deviations are not penalized.

Now, for an easier understanding, suppose we have a linear function f(x),
taking the form:

f(x) = 〈w, x〉+ b, with w ∈ χ, b ∈ R, (3.5)

where 〈., .〉 denotes the dot product in χ. Flatness here means that one seeks
a small w. We ensure this by minimizing the norm ‖ w ‖2= 〈w,w〉. And so,
for approximating f(x) with an ε−precision, we formulate this problem as the
following convex optimization model:

Minimize
1

2
‖ w ‖2 (3.6)

Subject to

{
yi − 〈w, xi〉 − b ≤ ε

〈w, xi〉+ b− yi ≤ ε.

This model is correct and achieves the proposed objective. However, it
brings a tacit assumption that the convex optimization problem is feasible, that
is, it assumes that such a function f(x) actually exists that approximates all pairs
(xi, yi) with ε−precision. Sometimes, however, this may not be the case [52], or
we also may want to allow for some errors that can be irrelevant to the problem.

In order to solve this problem, analogously to the “soft margin” loss
function [62] adapted to SVM by Cortes and Vapnik [48], we introduce the slack

DBD
PUC-Rio - Certificação Digital Nº 0912857/CA

A System for Stock Market Forecasting and Simulation 24

variables ξi and ξ∗i to relax the optimization problem constraints. Hence we arrive
at the formulation 3.7, published by [61].

Minimize
1

2
‖ w ‖2 + C

n∑
i=1

(ξi + ξ∗i) (3.7)

Subject to

yi − 〈w, x〉 − b ≤ ε+ ξi

〈w, xi〉+ b− yi ≤ ε+ ξ∗i

ξ, ξ∗i ≥ 0,

where the constant C > 0 determines the trade-off between the flatness of f(x)

and the amount up to which deviations larger than ε are tolerated [52]. This
corresponds to dealing with a so called ε-insensitive loss function |ξ|ε described
by:

|ξ|ε :=

{
0 if |ξ| ≤ ε

|ξ| − ε otherwise.

As long as the dimensionality of w is much higher than the number of ob-
servations, the optimization problem formulated in the model 3.7 can be solved
more easily in its dual formulation [63, 64]. This is exactly the situation here.
Moreover, the dual formulation provides the key for extending SV algorithm
to nonlinear functions. As described in [65], we use the standard dualization
method utilizing Lagrange Multipliers and after some simplifications, we get the
following formulation:

Maximize

−1

2

∑n
i,j=1 (αi − α∗i)(αj − α∗j)〈xi, xj〉

−ε
∑n

i=1 (αi + α∗i) +
∑n

i=1 yi(αi − α∗i)

Subject to

{ ∑n
i=1 (αi − α∗i) = 0

αi, α
∗
i ∈ [0, C].

From this formulation, to make the SV algorithm nonlinear, we could
simply preprocess the training patterns xi by a map Φ : χ→ F into some feature
space F , as described in [66, 67] and then apply the standard SV algorithm.
However, this approach can easily become computationally infeasible for both
polynomial features of higher order and higher dimensionality [52].

We show that the SV algorithm only depends on dot products between

DBD
PUC-Rio - Certificação Digital Nº 0912857/CA

A System for Stock Market Forecasting and Simulation 25

patterns xi. Hence, in order to find a computationally cheaper model, we use
the implicit mapping via kernels proposed by [68] to solve non-linear problems,
where we take advantage of k(x, x′) = 〈Φ(x),Φ(x′)〉 rather than computing
Φ(x) explicitly. This kernel mapping allows us to restate the SV optimization
problem as

Maximize

−1

2

∑n
i,j=1 (αi − α∗i)(αj − α∗j)K(xi, xj)

−ε
∑n

i=1 (αi + α∗i) +
∑n

i=1 yi(αi − α∗i)

Subject to

{ ∑n
i=1 (αi − α∗i) = 0

αi, α
∗
i ∈ [0, C].

For a more detailed formulation, we refer the reader to [52, 69, 70, 71].

Artificial Neural Networks

Inspired by the structure and functional aspects of biological neurons,
ANN is a non-linear learning method that easily deals with irregularities [13, 25],
and uncertain, incomplete or insufficient data [19], by using a connectionist
approach to computation.

Recognized as being the designers of the first ANN, McCulloch and Pitts
[72] demonstrate that combining many simple processing units together could
lead to an overall increase in computational power.

We use a three layers feed-forward ANN, trained with the Backpropagation
algorithm, to predict either the minimum or the maximum current day value. The
neurons’ values depend on which value we hope to predict.

For each neuron, we use the logistic activation function. That is why we
care about adjusting the dataset, by scaling its values to the range 0.0 to 1.0. The
formula for the logistic function is:

f(x) =
1

(1− e−x/c)
, (3.8)

where c term is used to alter the shape of the function, either stretching or
compressing the function along the horizontal axis. The figure 3.1 illustrates the
S-shape of the logistic activation function.

DBD
PUC-Rio - Certificação Digital Nº 0912857/CA

A System for Stock Market Forecasting and Simulation 26

Figure 3.1: Logistic Activation Function

Every connection from one neuron to another has an associated weight.
Weights in an ANN are analogous to the synaptic connection in a biological
neural network. The weights affect the strength of a given input and can be
either inhibitory or excitatory. It is the weights that truly define the behavior
of an ANN. Further, the task of determining the value of these weights is the
subject of training or evolving an ANN [73].

The input to a neuron is then the sum of the products of each input’s weight
connecting that neuron multiplied by its input value plus a bias term. Bias terms
shifts the net input along the horizontal axis of the activation function, which
effectively changes the threshold at which a neuron activates. The net result is
called the net input to a neuron. The equation 3.9 shows how the net input to a
given neuron j is calculated from a set of input neurons {x1, ..., xn} ⊂ R.

nj =
n∑

i=1

niwij + bjwj, (3.9)

where niwij is the product of the source neuron value and the weight of the
connection that binds the source neuron to that one whose value is being
calculated, bj = {0, 1} is the bias value and wj is the bias weight. While in our
ANN the bias value is always 1, the bias weights are adjusted through training,
just like all other weights. This essentially allows the neural network to learn the
appropriate thresholds for each neuron’s activation [73].

To train an ANN, we feed it a set of inputs, which generates some output.

DBD
PUC-Rio - Certificação Digital Nº 0912857/CA

A System for Stock Market Forecasting and Simulation 27

To compare this calculated output to the desired output for a given set of inputs,
we need to calculate the error. This enables us to not only determine whether the
calculated output is right or wrong, but also to determine the degree to which it
is right or wrong.

Here, we use is the Mean Square Error (MSE), which is the average of the
squared difference between the calculated and the desired output. The equation
3.10 shows how the MSE is calculated for the training set.

ε =
1

no

no∑
i=1

(cvoi − dvoi)2, (3.10)

where cvoi and dvoi are respectively the calculated and desired output values,
corresponding to the i-th of the no output neurons present in each observation.

The training process aims to get this error value as small as possible by
iteratively adjusting the weight values which connects all ANN neurons [73]. To
calculate the weights adjustment, each iteration requires that we also calculate
the error associated to each neuron in the output and hidden layers. We calculate
the error δoi for the i-th output neuron as follows:

δoi = (cvoi − dvoi) f ′(cvoi), (3.11)

where (cvoi −dvoi) is the difference between the calculated and desired values for
the i-th output neuron and f ′(cvoi) is the derivative of the activation function for
its calculated value. Thus, we can rewrite this equation replacing the derivative
of the logistic function to get this final equation for the output neuron error
calculation:

δoi = (cvoi − dvoi) cvoi (1− cvoi). (3.12)

For hidden-layer neurons, the error equation is somewhat different. It is
a function of the error associated with each output-layer neuron to which the
hidden neuron connects multiplied by the weight for each connection. This
means that to calculate the error and, subsequently, to adjust weight, you need to
work backwards from the output layer toward the input layer. We calculate the
error δhi for the i-th hidden neuron as follows:

δhi =
no∑
j=1

δojwij f
′(cvhi), (3.13)

DBD
PUC-Rio - Certificação Digital Nº 0912857/CA

A System for Stock Market Forecasting and Simulation 28

where δoj is the error for the j-th output neuron and wij is the weight of its
connection with the i-th hidden neuron, whose calculated value appears in the
derivative f ′(cvhi). Again, calculating the derivative of the activation function we
get the final equation 3.14.

δhi =
no∑
j=1

δojwij cv
h
i (1− cvhi) (3.14)

Since the input layer neurons values are given, obviously, there are no
errors associated with them.

Once we have calculated the errors for the output and hidden layers
neurons, we can proceed to calculate suitable adjustments for each weight in
the network. The equation 3.15 shows the adjustment applied to each weight.

∆w = ρδicvi + α(∆w′), (3.15)

where ρ is the learning rate, δi is the error associated with the considered
neurons and cvi its value. ∆w′ is the weight adjustment calculated to the previous
iteration and α is the momentum factor. The new weight is simply the old weight
plus ∆w.

In the ANN training, we set the learning rate to 0.01. In order to increase its
convergence speed and reduce the risk of instability, we set the momentum factor
to 0.5 [73]. The training is limited to 2000000 iterations. All these parameters are
defined empirically.

3.3.2
The Benchmarks

To better understand our system’s potential, we compare its predictions to
four benchmarks described in the following sub-subsections, besides the Oracle
presented in the next subsection.

Both forecasting schemes are implemented identically when using either
our predictors or benchmarks. Hence, in the intraday forecasting, the benchmarks
also use either the minimum or the maximum value already achieved during the
current day as features, depending of which bound value is being predicted.

DBD
PUC-Rio - Certificação Digital Nº 0912857/CA

A System for Stock Market Forecasting and Simulation 29

Carbon Copy Strategy

Carbon Copy Strategy (CCS) is a Naive Bayes predictor, the simplest
among the benchmarks considered here. It estimates the minimum and maximum
values for the current period by simply copying the previous period values, or in
other words, he believes that the value to be predicted for the current period is
equal to that desired in the last period.

Simple Moving Average

Proposed by O’Connor and Madden [27], Simple Moving Average (SMA)
predictors are three more elaborate benchmarks. Relying on the Technical Anal-
ysis teachings, they predict the minimum and maximum values for the current
period using the SMA of these values over the previous 5, 10 and 15 periods.

3.3.3
Oracle

Finally, Oracle is the name given here to the optimal solution for the
forecasting task. It is a kind of crystal ball simulating a predictor that accurately
provides all the desired values.

Through Oracle predictions, we can estimate the potential profit of a more
robust predictor and, moreover, analyze how far away our predictors are from the
optimal solution.

DBD
PUC-Rio - Certificação Digital Nº 0912857/CA

