
III
Problem Statement

In this chapter, we put in context the problem this dissertation tries

to solve by briefly describing how the big data problem appeared, and how

it is being handled by different companies, and also by the academia. We

also describe the cloud data management solutions to the big data problem,

and how these solutions are related to the MapReduce programming model.

Different research initiatives to improve MapReduce usability are described in

this chapter. Therefore, we are able to place our work among these initiatives.

Our initiative consists in creating a model to be used with the Pig system to

help the user while using it. Finally, we explicate the main ideas that motivated

this project.

III.1 Background

When dealing with huge amounts of data, many of the typical solutions

stop being suitable for all cases. For example, many of the web companies such

as Google [63], Yahoo! [66], Facebook [62] and Amazon [61], had to change the

way they managed their data because traditional approaches were becoming

unmanageable at web scale.

A cloud-like environment could be used and take advantage in this way

of large computer clusters offered by third-party companies. Abadi [1], and

Agrawal et al. [4] discuss some of the opportunities and limitations of data

management in such environments. In particular, Agrawal et al. point out

that we should evaluate carefully the design choices taken while building cloud

systems before deciding one in particular. The authors also affirm that we

should notice the design decisions avoided, and evaluate the reasons why they

were not considered.

Abadi [1] discusses what a cloud database should fulfill in order to be

considered as such, about the types of applications that are more suitable

to be deployed in the cloud, and most importantly he discusses about cloud

environments characteristics e.g. data being stored at untrusted hosts, data

being replicated, maybe across large geographic distances, and that compute

DBD
PUC-Rio - Certificação Digital Nº 0912867/CA



29 III.1. Background

power is elastic only if the workload is parallelizable. This means that cloud

environments are more suitable for computing paradigms such as MapReduce

because those paradigms’ main idea is to send the computation to the data,

and not the other way around. This is an important advantage because

moving resources through the network is still an expensive operation. His

work also states that MapReduce programming model satisfies some of the

desired properties such as fault tolerance, capacity of running in heterogeneous

environment and efficiency.

Due to the fact that MapReduce has become almost a de facto standard

for massive dataset computations in cloud-like environments, there is special

interest of the database community in integrating it with traditional research

done in the field. That means getting optimizations already researched in the

database field into this new type of big data solutions. Research works like

HIVE [34], Pig [31], HBase [101], Cassandra [76], among others initiatives,

have been started towards such a goal of taking advantage of already studied

problems.

Our interest lies particularly in systems like Hive or Pig, where their

high-level languages, Hive-QL and Pig Latin respectively, are compiled into

a series of MapReduce jobs to be executed in a cluster of computers. This

is due to the fact that the Hadoop framework needs to be finely tuned, and

research works such as [90, 102] provide a propitious level of abstraction where

the end user would not have to worry about this fine tunning. In this manner,

developers’ productivity, and code manageability can be greatly improved.

Moreover, this gives the possibility for non-specialized users to take advantage

of the computation power of MapReduce on top of their compute clusters.

Therefore, our goal is to try to optimize the way these higher-level systems

work to make them even more easy to use for users.

There are other systems similar to Pig which also try to reduce the

amount of code written and improve code readability e.g. Dryad-Linq[111],

Sawzall [43]. But all of them still lack of some traditional database optimiza-

tions such as early filtering, projection, operator rewriting, among others. This

is due to the fact that, in order to accomplish them, certain characteristics

about the data must be known a priori, and that is still a problem if we are

dealing with a vast amount of raw data. For instance, when dealing with files

stored in the HDFS [33] there is no any additional information in order to

enable logical optimizations like in database systems. The information needed

to enable optimizations studied in traditional databases goes from simple car-

dinality to more complex data statistics such as equi-depth histograms [94].

Even though there is work being done towards getting this type of

DBD
PUC-Rio - Certificação Digital Nº 0912867/CA



Chapter III. Problem Statement 30

information, they are still experimental. For example, Morton et al. [85]

describe how a time-oriented progress indicator can be designed for parallel

queries, more specifically for MapReduce directed acyclic graphs (DAGs). The

authors do not only take into account the query plans and the amount of data

being processed, but also the amount of parallelism available in the cluster

in order to estimate the amount of time remaining for a query to complete.

Although this approach performs well for estimating the query completion

times online, there is no information available about query execution before it

is actually executed.

An interesting approach to try to solve this limitation is the work

presented in [38, 37]. In this PhD dissertation, Ganapathi [37] describes the

use of statistical machine learning in order to obtain the relationships between

different input parameters (e.g. number of mappers, number of reducers,

input size) with some output parameters (e.g. number of bytes written either

into HDFS or locally) to enable the prediction of certain output parameters.

Then, Ganapathi et al. [38] prove that their prediction method is suitable for

modeling workloads for cloud-like environments where prediction mechanisms

are needed to guide scheduling and resource management decisions, and to

create realistic workloads to evaluate the choice of policies before using them

in production environments.

III.2 Problem Statement

The Pig system allows the use of four different types of join operators

(merge, hash, fragment-replicated, and skew joins), but to use them, the

user has to pass a hint in Pig-Latin to the optimizer specifying the type of

join to be used. This type of communication with the rule-based optimizer

might be suitable for some experienced users who probably can choose wisely

between the four operators. However, for unexperienced users the constraints

and advantages of each type of join operator may not be so clear. In this way,

users can be mistaken when choosing the correct type of join operator which

can lead to terrible job’s performance and misuse of computational resources.

The objective of this dissertation is to investigate the use of statistical

methods in order to determine a suitable one for the system architecture

presented by Figure III.1. In addition to that, to investigate the parameters

involved in creating a statistical model for predicting job ex, more specifically,

the design decisions to create a model constructor to provide execution times

for the different types of join operators inside the Pig system. This system

lacks of a cost model for creating query execution plans. It just translates

DBD
PUC-Rio - Certificação Digital Nº 0912867/CA



31 III.2. Problem Statement

Figure III.1: System Arquitecture

high-level queries into MapReduce jobs with a rule-based optimizer. The model

to be constructed would help the rule-based optimizer to choose the most

appropriate join operator for each situation without letting the user worry

about it.

Figure III.1 shows how the system would work after the statistical model

has been integrated with it. The Pig-system would receive a join query without

any user hint and it would be to able determine the best join operator for

the operation. This decision would be based on parameters studied in this

dissertation and these parameters would be used by the statistical model

previously constructed.

Moreover, we consider this a opportunity see a possibility of applying

studied concepts from the database field into large scale data processing. More

specifically, we see a chance in integrating these prediction capabilities into the

Pig system [31] to improve its query execution capabilities. Figure III.2 shows

how integrating these concepts into the system would be like. The left part of

the figure exhibits the model constructor of the system. This component should

use only a priori information about the input relations and the algorithm

to create a model that characterizes those data operations specified in the

workload. So, we can use the statistical model to obtain query execution times

estimates beforehand. The right part of the figure shows how this a priori

information can be used by the rule-based optimizer in order to make better

decisions about execution plans.

So once the model has been created, and incorporated into the Pig

system’s rule-based optimizer, every time a join query is submitted, the

optimizer would calculate a query execution time estimate to choose the best

DBD
PUC-Rio - Certificação Digital Nº 0912867/CA



Chapter III. Problem Statement 32

Figure III.2: System behavior for determining the correct type of join.

join method among those available. The actual integration of the model into

Pig system’s rule-based optimizer is part of our future work. Here, we are just

building the first part of our envisioned system.

III.3 Motivation

In this section, we outline the different research works that have moti-

vated this dissertation. Our main goal is to investigate possible ways to con-

struct a model generator for predicting joins operation execution times. This

task has been widely studied both in distributed computing and the database

system areas.

An interesting research work is the one done by W. Smith [98]. The author

explicates the construction of system prediction services. Such a system was

built using an instance-based learning technique to predict job execution times,

batch scheduling queue wait times and file transfer times of the Texas Advanced

Computing Center Lonestar System [103]. The prediction error obtained in [98]

ranges from 37% to 115%. Even though these are relatively high prediction

errors for the training data, the authors discuss that it would be possible

to reduce the prediction error by using a larger training dataset. However,

they observe that the system on which they are working might be simply less

predictable than other systems where similar approaches performed better.

Nevertheless, the results obtained show that this approach has lower prediction

error in more structured and better behaved workloads when compared to the

DBD
PUC-Rio - Certificação Digital Nº 0912867/CA



33 III.3. Motivation

work discussed in [105].

Estimating query execution time is also a very interesting research topic

for the database community. Not only this information can help improving

the whole system’s performance, but also, it can lead to more proactive

decisions of the DBMS (e.g. maintaining statistics, choosing better execution

plans). Despite of the similarities of the database world with MapReduce

environments, they are still different in many aspects. A very important

one is the amount of metadata kept by databases. MapReduce environments

tend to keep only operational information (i.e. information they need to keep

functioning) in order to remain simple, but reliable.

A known scenario with similar features to MapReduce environments

is the one studied by MultiDatabase Management Systems (MDBS) [14]. A

MDBS is a distributed system that acts as a front end to multiple local

DBMSs. It is structured as a global system layer on top of the local DMBS in

order to integrate access to autonomous and heterogeneous local databases.

In spite of the fact that the local processing node maintains some global

functions to interact with the whole system, the local DBMS participates in

the multidatabase without modification [14]. Consequently, the global system

does not have access to certain local information such as relation structures,

statistics and cost functions. This is the reason why query optimization in an

MDBS is also a very interesting research topic.

Another motivating research work is the one done by Zhu et al. [112].

The authors discuss the need of good estimates of selectivities before query

execution so that the global query optimizer in an MDBS can choose a low cost

execution plan from many alternatives. The author also presents an integrated

method to estimate selectivities in an MDBS. He accomplishes this by applying

the techniques proposed by Lipton et al. [79] to a MDBS scenario overcoming

difficulties such as not knowing the local structure of a relation or not being

able to modify it. In [113], Zhu et al. proposed a query sampling method to

derive cost estimation formulas for autonomous local database systems in an

MDBS. The main idea of their work is to classify local queries with similar

costs, sample each query class and use the observed costs to statistically derive

local cost estimation formulas for the queries performed on the local databases.

If the available information were not enough, they would classify queries with

similar performance behavior into the same class so that their estimation errors

would not be large.

Recently, different approaches trying to combine more traditional meth-

ods with the MapReduce paradigm have been developed in order to improve

it. There are some tools/frameworks that work on the MapReduce paradigm

DBD
PUC-Rio - Certificação Digital Nº 0912867/CA



Chapter III. Problem Statement 34

or in variation of it. For instance Pig [90], and HIVE [102] work on top of

Hadoop [30] which is an open source implementation of the MapReduce frame-

work. These tools try to alleviate the difficulty of having to write MapReduce

functions from scratch. They manage to accomplish this by helping developers

to express algorithms using the MapReduce model in an easier and more un-

derstandable manner. In spite of the fact that a higher-level dataflow language

is offered with them, the user still needs to give some hints to the backend

components of these tools so they can perform efficiently.

The Pig framework [31] also needs to receive user hints in order to

enable its compiler to choose correctly between the different types of join it

has implemented. This is clearly not a good way of dealing with the problem

because the user would need to know how each type of join works, and even

more importantly, because the user could choose wrong hints which in turn

would affect the overall performance. Thereby, creating a statistical model to

characterize the different types of joins in order to know its execution time

beforehand would mean that the most efficient join operator could be chosen

automatically and used without any user hint.

Likewise Olston et al. [89] describe the needs in high-level dataflow

languages built on top of large-scale parallel dataflow systems. Due to the fact

that they provide a faster program development and an easier way to maintain

the code, they also bring new difficulties and opportunities for such systems

e.g. automatic optimization, query rewriting. The authors argue about the

different possible types of optimizations in Data-Intensive Scalable Computing

(DISC) [15] and in Database Management Systems. In their work, they also

point out the differences that make these two contexts similar, but at the same

time different.

For example in the DBMS area, highly declarative languages, normalized

data and strong consistency are characteristics usually taken for granted. By

contrast, DISC uses more procedural code with flexible data models and cost-

effective scalability using weak consistency and commodity hardware. Another

important aspect addressed by the authors is the difference between the

optimizations techniques between traditional DBMS and DISC applications.

The former tries to get the best execution strategy over the data models,

operators and execution environment whereas the latter may not have accurate

models a priori.

The lack of data models is due to problems such as:

– Data usually residing in plain files and the user has to instruct the system

on how to parse them.

DBD
PUC-Rio - Certificação Digital Nº 0912867/CA



35 III.3. Motivation

– Many of the operators are custom user-supplied code whose cost is not

known a priori.

– DISC applications may use large pools of unreliable and probably hetero-

geneous machines.

As a consequence of these problems, formulating simple and accurate models

of the execution environment is still a challenge.

High-level dataflow systems that use the MapReduce paradigm could

benefit from the use of cost estimates. Those estimates should not have a

negative impact on the system performance e.g. longer execution times and

extra complexity. They should be obtained using only known information such

as cluster capacity, input size, among other known execution parameters.

Therefore, we would like to explore different approaches to extract the

relationships between input parameters and measured performance. Using

statistical methods to identify these relationships, we could extrapolate ”what-

if” workload scenarios using the statistical model created as a functional

instance for the whole system. Our interest lies specifically on join operation

because it is generally the most time-consuming and it is still user-driven in

the Pig system.

In this chapter we have described how this thesis relates with the current

large scale data management trend. Besides that, we have explained the

problem this dissertation targets and the research works that have motivated

our research. In chapter V, we will describe other research initiatives with

similar goals as our.

DBD
PUC-Rio - Certificação Digital Nº 0912867/CA


	Problem Statement
	Background
	Problem Statement
	Motivation




