
IV
Statistical Modelling of MapReduce
Joins

In this chapter, we will also explain each component used while con-

structing our statistical model such as:

– The construction of the dataset used.

– The use of the statistical technique chosen.

– The parameters used for the statistical modelling.

– The procurement of a special parameter that is the join selectivity for

each query.

We will also show the results gathered at each stage of the model construction.

In section IV.1, we will explain some of the main characteristics of the

TPC-DS which led us to choose it as our dataset in our experiments. We will

also describe how we adapted TPC-DS data and queries for our experiment.

Then in section IV.2, we will explain different statistical techniques used for

estimating execution times for computational jobs. Section IV.3 explains the

join selectivity concept and the algorithm used to obtain it. In addition, we

describe the problems and challenges found while obtaining the join selectivity

parameter. The experimental setup is detailed in the section IV.4. The results

and explanation about them are presented in section IV.5 of this chapter.

Possible improvements for the results are discussed at the end of this chapter.

IV.1 Data Set

Most companies trying to manage big data are web companies that have

enough resources to handle big data and develop tools for it. Information

obtained by them is part of their assets, and for most of those companies

such information is part of their business core. On the other hand, working

with big data tools implies the need of big data to actually test them. This is a

problem because there are not any real datasets publicly available for academia.

Therefore, we decided to use a benchmark from the database community for
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37 IV.1. Data Set

Table IV.1: TPC-DS data scaling [22].
Table Name Avg.Size 1GB 100GB 1TB 10TB 100TB
call center 305 0.00174 0.00872 0.012216 0.0157 0.01745

catalog page 139 1.55334 2.70423 3.97682 5.30242 6.62803
catalog returns 166 22.807 2280.35 21371.26 227971.55 2279643.18
catalog sales 226 310.69 31035.74 290961.14 3103630.08 31036298.03

customer 132 12.58 251.77 1510.62 8182.52 12588.50
customer address 110 5.2452 104.90 629.42 3409.38 5245.20

customer demographics 42 76.936 76.936 76.936 76.936 76.936
date dim 141 9.8227 9.82275 9.8227 9.8227 9.8227

household demographics 21 0.14419 0.14419 0.14419 0.14419 0.14419
income band 16 0.000305 0.000305 0.000305 0.000305 0.000305

inventory 16 179.214 6093.29 11200.90 20012.28 29988.67
item 281 4.8236 54.6684 80.394 107.72 134.527

promotions 124 0.03547 0.11825 0.17738 0.23651 0.29563
reason 38 0.00126 0.00199 0.00235 0.00253 0.00271

ship mode 56 0.001068 0.001068 0.001068 0.001068 0.001068
store 263 0.00300 0.10082 0.25131 0.37622 0.47705

store returns 134 36.74 3679.79 34504.94 368032.002 3680388.50
store sales 164 450.50 45043.47 422284.61 4504383.98 45043669.47
time dim 59 4.86145 4.86145 4.86145 4.86145 4.86145
warehouse 117 0.00055 0.00167 0.00223 0.00278 0.00334
web page 96 0.00549 0.18676 0.27465 0.36639 0.45812

web returns 162 11.087 1112.005 10428.09 111239.73 1112341.69
web sales 226 155.049 15518.45 145483.53 1551810.94 15518260.53
web site 292 0.00835 0.00668 0.01503 0.02172 0.02673

testing MapReduce jobs as there is no specific dataset for it. We consider

TPC-DS [22] which is a decision support workload being evaluated by the

Transaction Processing Performance Council [23].

Raghunath et al. [88] explain that using both synthetic and real world

data for designing the TPC-DS has many advantages over other database

benchmarks that use only one type of data. This is because synthetic data

sets built using studied distributions such as the Normal or the Poisson dis-

tributions has many positive points, but they are not well suited for dynam-

ically substituting bind variables. The TPC-DS utilizes traditional synthetic

distributions, yielding uniformly distributed integers or word selections with a

Gaussian distribution.

Scaling a data set can be done in two different ways: Scaling the number

of tuples while the underlying value sets (domains) remain static, or number

of tuples remain fixed expanding the domains used to generate. In the case of

TPC-DS, an hybrid approach was chosen, so that most table columns employ

dataset scaling instead of domain scaling, specially fact table columns; Some

small tables’ columns use domain scaling. Therefore, fact tables scale linearly

with the scale factor while dimensions scale sub-linearly.

Table IV.1 shows how data from TPC-DS scales in size while varying

the scale factor. It can be noticed that there are relations such as house-

hold demographics, income band, date dim, and others that do not grow in

number of tuples because changing its size would not be consistent with a

data warehouse application where dimension tables remain the same along the

time.

We have decided to consider the TPC-DS data because we could have

some information about the dataset as well knowing how scaling it would
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Chapter IV. Statistical Modelling of MapReduce Joins 38

Figure IV.1: Relationships from some TPC-DS’ tables.

affect the underlying data distribution. The data generated using TPC-DS was

plain text files, which we have loaded into our local HDFS to perform our tests.

As we load the data into HDFS, we will call the records inside the files ’tuples’

because they come from a relational benchmark, and not necessarily because

they are actually databse tuples.

It should be noted that the TPC-DS has been designed as a decision

support application to benchmark relational databases, the queries outlined

in [22] were suitable to evaluate a data warehouse application, but they

are not suitable for our experiments. This is because the queries for the

benchmark were specifically designed for testing different aspects of DBMS

e.g. performance, query optimizations, reporting capabilities, among others.

But this dissertation aims to characterize a specific relational operator and

not to general purpose queries.

In this way, we have decided to analyze the database schema proposed

for the TPC-DS [88], extract relationships between tables and create queries

based on these. For example, Figure IV.1 shows all the relationships for table

Store Sales, some fact tables (Item, Promotion, etc.) and dimension tables

(Time Dim, Date Dim). We have generated join queries using these tables,

but keeping in mind the restrictions posed by each type of join e.g. merge join

operator needs both relations physically sorted by the join attribute.

The goal of this work is to model join queries performance and not

common queries. That is the reason why we created only join queries that

represent all relationships between tables. We have created 96 Pig-Latin queries

using a Fragment Replicate Join. In addition to that, we created 23 Pig-Latin

queries using a Merge Join, and 102 queries using a Hash Join. Appendix VI

shows examples of each type of query.

DBD
PUC-Rio - Certificação Digital Nº 0912867/CA



39 IV.2. Model Construction

Table IV.2: Workload features.

Feature Type Multiple Regression
Job name Categorical Not used

Number of Map processes Numeric Used
Number of Reduce processes Numeric Not Used

Map input bytes Numeric Used
Map input records Numeric Used

Join Selectivity Numeric Used

IV.2 Model Construction

Recalling multiple regression description made in chapter III, our work-

load features will be used as our independent variables ({X1,..,Xj,..,XJ}), and

the query execution time will be used as our dependent variable (y). We then

use the resulting formulas to predict other and future queries’ execution times.

To build our model we used the workload features described in Table IV.2.

The parameters used to build the multiple regression analysis are chosen having

in mind that only a priori knowledge about the job execution must be used.

There are other parameters that whether are known only at job execution

time or only after the job has finished executing e.g. ”Combiner spilled bytes”,

”Reduce output bytes”. These parameters will not be used because we want to

use only parameters that can be known beforehand.

An important parameter we added to the model is join selectivity for

each job execution. Being able to estimate the jobs’ output has an important

impact on the model since this parameter would describe both the quantity

of elements to be written on the distributed file system and the amount of

work that would be done. In section IV.3 we will describe the join selectivity

algorithm used, its advantages and the difficulties for calculating it.

We must be aware of certain problems that can be caused due to our

parameters shown in the table IV.2. There are two parameters that we did not

use. The first one is the job name. This parameter was not be used because its

value does not affect job execution. The other parameter that is not considered

is the number of Reduce processes. This is due to the fact that it becomes

linearly dependent in the number of jobs executed. This linear dependency can

lead the multiple regression model to make unstable estimates. The number

of reducers to be used is dependent on what the output will be used for, the

reduce capacity of the cluster, the amount of data needing to be reduced, and

the time needed to perform the reduce operation. In our case, this parameter

refers to the number of reducers that will be used in the join operation. All join
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Chapter IV. Statistical Modelling of MapReduce Joins 40

algorithms used in the Pig Framework try to take advantage of all resources

available in the cluster and to avoid the network overhead of copying data from

mappers to reducers.

In this manner, this parameter does not vary in our jobs’ execution

because we use the reduce capacity of our cluster as the number of reducers.

Therefore, we decided not to use the number of reducers in our model

construction process because it would cause unstable estimates. Nevertheless, it

could be calculated following [45] recommendations. It states that the number

of reducers should be:

0.95 or 1.75 * (nodes * mapred.tasktracker.tasks.maximum)

This formula relates the maximum number of tasks with the number

of reducers that a single compute node can support at the same time. The

first two possible parameters have different purposes. The parameter ’0.95’ is

usually used to improve launching time of jobs by starting map output transfer

immediately after the map operation has finished. The latter, ’1.75’, is used in

order to exploit faster nodes because it will force the nodes that finish their

tasks to launch a second round of reducers as soon as they finished executing

the first ones. So this latter parameter helps improving load balancing. The

”nodes” parameter represents the number of nodes available in the cluster and

the ”mapred.tasktracker.tasks.maximum” parameter represents the maximum

number of tasks that can be supported in a single compute node.

The number of map processes is determined by the number of HDFS

blocks in the input files, and can be computed by dividing the number of bytes

to be processed by the size of HDFS blocks. To predict the execution time of

our validating queries, we have to estimate the number of map processes and

then use these values for constructing our model.

In the following section, we will explain how the join selectivity parameter

is obtained, the design decisions taken in order to implement it and also the

challenges to compute it.

IV.3 Join Selectivity

In traditional database management systems, optimizers use cost models

to generate more efficient query execution plans, so the optimizer can choose

the least expensive plan from a set of alternatives. A cost model usually in-

cludes features such as the query itself, some database statistics and description

of computational resources such as CPU speed, cost of sequential access and

random disk operations, size of memory buffer, among others [94].
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41 IV.3. Join Selectivity

For estimating the query cost, the optimizer calculates the total resource

consumption which is an aggregation of the costs involving operations using

CPU, disk and network resources. Therefore, the DBMS needs to maintain

some basic statistics about the data in its catalog such as:

– Number of tuples in each relation.

– Number of key values.

– Number of distinct values.

– Minimum and maximum values.

– Histograms or complementary structures describing the distribution of

different values for that column.

A substantial problem for the optimizer is estimating the selectivity of

join query predicates. The selectivity of query predicates may be seen as the

filter factor of a predicate C, when applied to a certain relation R, gives as a

result a fraction of R’s tuples that satisfy C.

σC |R|
|R| (1)

Join selectivity can be estimated using basic statistics about the column

used in such predicate. This can be done using histograms on the columns

involved by predicate C, or using sampling methods on those columns. If there

was no additional information some basic formulas can be used to estimate se-

lectivity assuming the uniformity and independence of the underlying data [94].

One important challenge being studied and worked on is the lack of

metadata in the MapReduce computing model, and also in its open-source

implementation, Hadoop. Systems like Hive [34], Cassandra [76] are trying to

incorporate basic statistics into their systems. Once they have accomplished

this, these systems will be able to develop appropiate cost models for handling

big data. Likewise, the Pig framework [31] lacks of metadata such as column

definitions, or relation’s basic statistics because it works on top of the Hadoop

framework. Pig works along with the HDFS in order to take advantage of

important features such as data replication and fault-tolerance, but it also

inherits the drawbacks of HDFS design e.g. network latency and lack of schema.

One important HDFS drawback is the simple metadata kept by the

Namenode. The metadata consists in information about the location of each

block file and to which file it belongs, guaranteeing that no two block files have

the same Block ID. In spite of the fact that keeping simple statistics make the
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system faster, the lack of them make the system more rigid to perform different

operations than the established ones.

In this way, we need to obtain these basic statistics in order to estimate

the parameters we need for our regression model. The following sections

will describe the way we obtain statistics that enable the estimation of join

selectivity. We may use this estimate as a parameter in our multiple regression

model.

(a) Getting Basic Statistics

One of the main challenges is to get accurate statistics about the relations

without incurring in too much overhead. To compute join selectivity, we need

to calculate the average length and cardinality of each relation, and the number

of distinct values from each sample. For example, to obtain the cardinality of

each of the participant relations of a join operator, we have to consider the

average length of the records and the total file size. This is directly related to

the following cardinality definition:

|A| = RelationSize

AverageTupleSize
(2)

In order to determine the average length of each relation without having

to read both relations completely, we decided to sample n tuples from the first

L tuples of each of the k file blocks, and then determine their average length.

We have run several tests on sampling for determining the cardinality of the

relations, varying the amounts of tuples sampled, but always accessing all the

file blocks in order to get tuples from all over the relation.

Figure IV.2 shows graphically how this process has been made. It shows

that from each file block, we would randomly choose a certain number of tuples

from the first L elements. L would be 1000, and 1500. We do not choose the

first elements because we would not be taking a representative sample from

the underlying data. We divide the number of tuples to be taken, n, with the

number of blocks, k. So we get the same amount of tuples from each file block.

If we have n tuples that will be obtained from k blocks, trying to set

a range too wide for choosing tuples can become expensive very fast, and

that would perish performance on the whole model construction process. For

example, if we want to sample 10 000 tuples checking 1 000 tuples in each block

using a 1GB file, then we would have to iterate at least 106 times. This means

that even sampling a small number of tuples from a small range we would have

to iterate many times to obtain our samples. That is why we decided to use a
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43 IV.3. Join Selectivity

Figure IV.2: Sampling file blocks.

lower number of sampled tuples for testing, but varying the range from where

tuples were being chosen.

The I/O cost remains the same compared to previous executions because

we use every block to get a uniform sample from the whole file. So the cost

difference is by using a wider range from where the samples will be taken i.e.

using a larger or smaller L. The cardinality estimate does considerably vary

when we use a wider range and when take more random tuples i.e. when we

randomize the tuples being read in a better way. That is why we tested with

larger values of L.

We tested cardinality estimation for two different ranges, ’L’ = 1 000

and for ’L’ = 1 500, but varying the number of elements sampled from each

block of the different files. Figure IV.3 shows the average error for ’L’ = 1 000

while varying the elements being sampled. The chart shows that if we sample

fewer tuples, we will get a higher estimation error, but after increasing the

number of tuples samples over a hundred, the error stabilizes. Other important

observations about the chart are the two peaks for 2 000 and for 10 000 tuples.

These two error peaks are due to the fact that we had added two test relations

of 2 000 and 10 000 respectively, and construct them with a single column

of numbers. Numbers ranging from 1 to 2 000 and to 10 000. These two test

relations do not belong to the originial TPC-DS. The fact of just containing a

range of numbers made our sampling strategy not very effective for this case

because sometimes random sampling can get tuples of lower numbers (numbers

with less digits) from each block, or sometimes it can get only tuples with high

number (numbers with more digits) from another block.
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Figure IV.3: Cardinality sampling using L = 1000.

This would mean that estimating the cardinality for a relation can be

done accurately getting more sample tuples, but for columns with highly

variable lenght might not be such a good idea. In this particular case, the

average length of numerical tuples varies too much across the records. For

example, if we have an index file composed by the numbers from 1 to 1 million,

and the random samples are all lower than 1’000, then we may think that all our

records have length 3, but they can actually have double the size of the sampled

ones. On the other hand, varying the range from where samples are taken

improves cardinality estimate because it helps getting a better randomization

of the sampling process.

Figure IV.4, shows the average error for L = 1500, but samples with

more than a hundred tuples because as explained before the average error

stabilizes. In this chart, we can observe that the average error is a lot less than

in Figure IV.3 because its maximum average error does not gets to 25% whereas

for ’L’ = 1000 its maximum average error goes over 60%. This corroborates the

idea that with a wider range to help the randomization process, the cardinality

can be estimated more accurately.

Figure IV.5 shows the variance of the average error for estimating

cardinality for different relations for ranges from the first 1000 tuples and then

for a range of the first 1500 tuples. As we can notice, the higher error is when we

sample fewer elements from the specified range L. However, when we increase

the number of elements being sampled from L, we are able to randomize the

sampling in a better way. This better randomization helps providing more

accurate cardinality estimates.
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Figure IV.4: Cardinality sampling using L = 1500.
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(b) The join selectivity parameter

Once having the cardinality estimate, the join selectivity parameter can

be estimated. We have to keep in mind that the simple statistics gotten so far

already have a margin of error explained in the previous section. It is worth

recall that we consider only binary joins for simplicity because the Merge join

algorithm of the Pig framework can only be applied to two relations at the

time. Furthermore, by considering Pig binary joins we also make the results of

each type of join operator comparable among them.

In traditional relational database systems join selectivity is usually

estimated by using simple statistics about the data, or by using additional

data structures such as equi-depth or equi-width histograms maintained by the

DBMS. This is done so accurate estimates of value occurrences cardinality can
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be obtained without actually having to read the entire relations. In addition

to this, some DBMS keep compressed histograms to keep exact counts for the

most frequently occurring values, or just regular histograms to estimate the

frequency of less frequent values. Histograms are heavily used in DBMS to

estimate predicate selectivity, but the problem with them is that they have to

be built and maintained by the DBMS. If simple statistics about the data were

available, the join selectivity could be calculated as follows [68]:

R onR .a=S.bS = min(
1

distinct(R.a)
,

1

distinct(S.b)
) (3)

In the HDFS system which is designed to maintain even less metadata,

building and maintaining such structures is still an open research problem

[52, 50, 49, 57].

We decided to use sampling methods to estimate join selectivity. We

do this because reading the entire relations to generate, or to maintain exact

statistics about them would represent totally different problems than the one

this work aims for. The main idea is to sample a small subset of tuples from

a large relation to measure the number of sample tuples that satisfy a specific

predicate, then, to extrapolate such measurement to the whole relation. In this

way, a sampling-based method can be favorable for estimating the selectivity

for join queries by avoiding repetitive table scans.

There are two types of sampling-based methods for estimating selectivity

studied in relational database systems: Sequential sampling technique [44, 79,

80] or a double sampling technique [55]. The former is characterized by how

sample gathering is done and by its stopping condition. It obtains sample units

one at a time, but checking the outcome of each sample in order to determine

whether an additional sample unit is to be taken or not. Its stopping criterion

is based on setting a lower bound on the required sample size for a given error

constraint.

The latter performs sampling in two stages. In the first stage, it gathers

a few sample units in order to determine some previous information about the

data like mean and variance. Then, based on this information, it computes

the needed sample size to guarantee that the estimate meets the precision

requirement with a certain confidence level. In the second stage, some other

sample units are taken for the final estimate to be computed. One of the

drawbacks of the double sampling technique is that there are not guidelines

to determine the amount of sampling to be done in the first stage which is

fundamental to the estimation accuracy. This is why we decided to use a

sequential sampling method for estimating join selectivity for our model.
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Lipton et al. [80] also use a sequential sampling method for their join

selectivity estimation strategy. For instance, if we consider the join query Q

: tR1onR2 and the Cartesian product R1 X R2 as their data population. The

authors’ method considers each tuple r from R1 as a sample unit which is Sr =

tX|X is a concatenation of r and a tuple in R2} in the Cartesian product R1 X

R2. Lipton et al. call S̄r the tuples in Sr that satisfy predicate F. In that way,

the authors draw a tuple r from R1 (i.e. a sample unit Sr from R1 x R2) and

evaluate the qualified tuples S̄r in Sr until a certain amount of tuples obtained

are enough to meet the stopping criterion.

The authors use two stopping conditions, one for the cases in which a

fair amount of elements belonging to Sr have a non-empty tS̄r
i.e. enough

elements from the Cartesian product satisfy predicate F. And the other

stopping condition is when just a few Sr have non-empty tS̄r
i.e. too many

elements have been sampled and there are not too many matching tuples.

The work proposed by Lipton et al. was modeled for a centralized DBMS

where many access methods (indexes, views, among others) can be used to

facilitate sampling tuples from R1 and to avoid having to scan the entire

relation. This scenario is totally incompatible with our problem scenario where

such access methods do not exist yet. A scenario which shares some similar

features with ours is the one studied by Multi Database Management Systems

(MDBS) [14] as previously discussed.

In this manner, Zhu [112] extends the work done by Lipton et al. by

applying the techniques proposed by them to a MDBS scenario overcoming

difficulties such as not knowing the local structure of a relation, or not being

able to modify it. The author explains that the lower bound of complexity of

Lipton and Naughton’s method in an MDBS is N*(|R1|+|R2|) because every

time a sample tuple from R1 has to be drawn the whole table would probably

be fully scanned. Likewise, to find the tuples in R2 that match a sample tuple

in R1, the whole table R2 is usually scanned. Therefore, Zhu improved the join

selectivity strategy by using systematic sampling to draw sample tuples from

R1. Systematic sampling works with a relation R with cardinality N whose

tuples can be accessed in ascending/descending order on the join attribute(s)

of R; decide on the size n of the sample relation; to produce the sample relation,

select a tuple at random from the first k = dN
n
e tuples of R and every kth tuple

thereafter [46].

Furthermore, Zhu extends [79, 80] in two ways. First, by using a buffer

to hold column values of a number of samples tuples from R1. And second, by

finding the tuples from R2 that match with a certain number of sample tuples

from R1 in all scans of the table R2.
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The algorithm to calculate the join selectivity used by [112] is shown

below. For better understanding, let us consider the join query tR1onf R2 , where

f is R1.a = R2.b, B represents a buffer that can hold m values of R1.a, assuming

m < |R1|, and K = d |R1|
m
e. And for the stopping condition we denote k1 as

a value associated with a given confidence level, total match is the number

of qualified tuples accumulated so far, total sample is the number of samples

made, b is the maximum size of all r and e is the desired limit of a relative

error.

Zhu’s Join Selectivity Algorithm

Pseudocode

total match = 0;

total sample = 0;

while ( total match t<k1·b·(1+e)/e2 ) ) {
systematic sampling();

count the matching tuples from R2 with the sample tuples from R1;

total match = total match + x;

total sample = total sample + m;

}
selectivity estimate = total match / (total sample * |R1|);

Systematic Sampling Process

Pseudocode

systematic sampling(){
choose a random number γ between 1 and K;

obtain all R1.a from R1;

if K = |R1|/m, hold in buffer B the values of |R1|.a for the γth tuple,

the (γ+K)th tuple, ...m and the (γ+(m-1)*K)th tuple retrieved from R1;

if K > |R1|/m, hold in buffer B the values of R1.a for the γth tuple, ... ,

the (γ+(m-2)*K)th tuple, and a tuple randomly chosen among

(γ+(m-1)*K)th ...|R1|th tuples retrieved from R1;

}

The step of counting the matches from R2 with the sampled tuples from

R1 is implemented as a SQL query in Zhu method. His query finds the number

of the tuples in R2 that match at least one of the m sample tuples from R1

during one scan of R2. This is because their method focuses on MDBS that

will work with possibly heterogeneous DBMS, but that they will all share the

same query language. In our case, we cannot assume this due to the fact that
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our relations are stored in the HDFS which does not possess any type of easy

and fast access to the data e.g. indexes, views, query language, etc.

We performed cluster sampling [56] on R2 to maintain a certain amount

of data in memory to enable the counting of the matching tuples between R2

samples and the ones from R1. We do this due to the fact that R2 might be too

big to perform a full scan as proposed by Zhu where for each sampled tuple

from R1 a query obtaining the matches would be done on R2. We decided

to use ”cluster sampling” to obtain R2 samples because when a disk page is

brought into memory, all tuples on the page are sampled incurring in less I/O

costs. In addition to this, cluster sampling is more efficient because it avoids

moving file blocks across the network while sampling. However, it also has

disadvantages such as making the samples no longer independent which could

make the join selectivity process incur in extra errors. Later, we will explain

the parameters used in order to obtain a reasonable estimate without having

to read too many tuples from relation R2.

Another difference between the MDBS scenario and ours is that due to

the fact that the files on which we work are stored on a distributed file system,

the sampling process we used is different. In [112], the author performed

systematic sampling over the relations, but in our situation, this could not

be done in the same way because we are dealing with HDFS files. That is

the reason why we decided to perform systematic sampling on each file block

(a ”file split” in the HDFS). We had to take care of not sampling a single

block more than the rest of blocks. In order to sample the number of instances

uniformly from each split, we divided the total number of instances to be

sampled by the number of file splits, and obtain the same number of samples

from each file split in a systematic way.

As for the stopping criteria used, we use the same stopping condition

proposed by Zhu [112]. In such stopping condition, k1 varies depending on

the confidence level and if the central limit approximation applies or not [80].

We also assume this because the central limit approximation (CLT) states

conditions under which the mean of a sufficiently large number of independent

random variables will be approximately normally distributed i.e. the shape of

the sampling distribution is approximately normal. Then, we let the maximum

number of matches,b, be a percentage of the worst case which means it

would be a percentage of the Cartesian product between the relations. For

the results presented below, we set it as 0.00001 percent because of main

memory limitations, but we are aware that this value should probably be

set automatically by taking into account resources available in the computer.

For example, if we have two big relations about 100 million records each, the
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Cartesian product between them would be around 1016, and if each record is

only 10Bytes, then we would need more than 80PB to store such worst case.

That is why we chose such a small percent of the worst case.

At the same time as discussed in [80] there are situations in which a

large portion of the total query size is due to a small portion of the samples

i.e. the partitions sizes of the query are highly skewed. This occurs in our case

due to the sampling method used for obtaining R2 tuples, cluster sampling.

Lipton and Naughton also proposed a solution for these situations which is to

guarantee the error will be at most a fixed fraction of the worst-case size by

setting a sanity bound: total sample t>k2·e2 [80]. Here, tk2·e2 is the number of

samples taken, and k2 also depends on the desired confidence level.

Table IV.3 shows the values for the parameters used in each test run.

We run three different tests varying the default error from 0.1 to 0.9999. The

parameter ”SAMPLE RATIO” is based on a sampling ratio due to the fact

that we perform cluster sampling on R2 instead of the query done in [112],

and also because we let this relation, R2, always be the bigger one. Therefore,

we cannot sample the same amount of records from R2 as we would from

R1 because 60% of R2 could mean 100% or maybe even more of R1. This is

the reason why we use a sampling ratio between the two relations. In this

way, if we decide to sample 30% of the smaller relation, R1, this would mean

that we will get 15% of the amount of records of the bigger relation, R2. For

example, if the smaller one has 10’000 records, and we decide to sample 20%

of it, this means that we will get 2’000 records. But if the biggest relation has

1’000’000 records, and we sample the same percentage as in the smallest one,

20%, then we would get 20’000 records. Due to resource limitations and to

keep our method efficient, we always tried to sample as few tuples as possible.

For this reason, we used a sampling ratio to define this relationship

between the sampling percentages of these relations. Continuing with our

example, if the sampling ratio is 0.5, then we would only sample 10% of R2,

i.e. 10’000 records, which is still a bigger quantity compared to the amount of

samples taken from R1, but not too big as to be unmanageable. We decided this

due to resource limitations and due to the fact that we need to be able to create

the model without incurring in high costs for reading too many elements of the

relations. However, it would be interesting to test larger sampling parameters

with more computational resources; this is another aspect we would like to

investigate on future work. The ”DEFAULT ERROR” parameter is used as

the desired limit of a relative error. Varying this parameter lets us experiment

with the amount of samples needed to be taken to obtain good estimates. We

varied this parameter due to the observations made by [80] in which e was
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Table IV.3: Parameters Used for Join Selectivity Sampling.

QZ JS 0.1 QZ JS 0.5 QZ JS 0.9999

SAMPLE RATIO 0.25 0.5 0.5
DEFAULT CONFIDENCE LEVEL 0.99 0.99 0.99

DEFAULT SAMPLE PERCENTAGE 0.6 0.5 0.5
MAX PERCEN NUM MATCHES 0.00001 0.00001 0.00001

DEFAULT ERROR 0.1 0.5 0.9999

set high to avoid ”sanity escapes” i.e. sample more tuples in order to get a

better estimate but taking care of not sampling too many of them.

The figure IV.6 shows a chart comparing the three runs varying the

”DEFAULT ERROR” parameter from 0.1 until 0.9999, and also the error of

executing the simple selectivity count explained at the beginning of the section.

As we can see, the simple count (called Raw in the figure) presents a higher

variability than obtaining the join selectivity with the same strategy as [112].

Although this raw count shows some good estimates when joining small data,

it becomes unstable when dealing with bigger data. On the other hand, the

method proposed by [112] also presents high errors but it remains predictable.

The relative error of the Zhu’s method ranges from 19% until 99%. We attribute

these errors to the lack of simple statistics such as cardinality, or average record

length.

The chart also shows that with a higher default error, the estimates

improve. This is due to the fact that with a higher error, ”sanity escapes” are

avoided i.e. we will sample more records but taking care of not sampling too

many of them. These observations are similar to the ones found by Lipton and

Naughton [80].

IV.4 Experimental setup

We used the queries designed for each specific type of join to create two

different set of experiments. The first experiment consists in performing cross

validation of the model generated for each type of join. Cross validation is

used for evaluating how the results of a statistical analysis will generalize

to an independent dataset. In K-fold cross-validation, the original sample

is randomly partitioned into K subsamples. Of the K subsamples, a single

subsample is retained as the validation data for testing the model, and the

remaining K - 1 subsamples are used as training data. The cross-validation

process is then repeated K times (the folds), with each of the K subsamples
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Figure IV.6: Selectivity Percentage Error varying according to table IV.3.

used exactly once as the validation data. The K results from the folds then

can be averaged (or otherwise combined) to produce a single estimation.

The advantage of this method over repeated random sub-sampling is that all

observations are used for both training and validation, and each observation

is used for validation exactly once.

In our approach, our model was validated using a 3-fold validation due

to the small size of our dataset, and to the long running times of our tests. In

the next following sections we describe and discuss the results obtained from

executing cross-validation on our data set of queries. Figure IV.7 represents

this process graphically. We can see that the initial dataset is divided into

three different parts, and then each part will be used for validation at least

once during the process. The other two parts will be used to train the model.

The second experiment tries to simulate a real workload where many

similar queries are executed in short periods of time. We decided to create such

workload based on previous observations made by similar research on parallel

computer systems. An important work is the one done by Downey et al. [27]

and Li et al. [78]. In such works, the authors argue about the uniformity of

users’ actions and their predictability in short periods of time. This behaviour

allows better predictions to be made which could help improving the whole

system. Based on these observations, we created three workloads, one for each

type of join implemented on the Pig framework.

We divided each group of queries in six subgroups with the same number

of queries. Then, we chose a subgroup to be replicated five times, two other

groups to be replicated three times, and we did not replicate the other three
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Figure IV.7: Graphical Three-Fold validation.

Figure IV.8: Workload structure.

subgroups. In this way, we created a workload simulating a specific group of

join queries being the most commonly used, another group being less common,

and a last group of queries being the ones rarely executed. Figure IV.8 shows

the structure of such workloads.

As a result of this, we obtained 238 queries for the hash join operator, 232

queries for the fragment replicate join, and 41 for the merge join. In addition

to this, we chose systematically 10% of queries from the original group in order

to obtain a subset of queries to validate the model created from each workload.

As far as the hardware configuration used, we employed three computers

with 4GB of RAM each running Ubuntu 10.4. We mounted a small Hadoop

cluster on them using Hadoop 0.20.2, and obtained almost 1.5 TB of storage

from these commodity machines. For executing the join queries, we used

Apache Pig framework version 0.7 which we installed as a complement for

our Hadoop cluster.

The data used is up to 3.5GB because we used Scale 1 for the TPC-DS

which means the data is up to a gigabyte. Furthermore, we used the default
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Figure IV.9: Query naming convention.

replication level of the HDFS, 3 which means that for each gigabyte used, we

would need three gigabytes for storing it. That explains why our data set is

about 3GB.

Another problem faced while building our query set was how to keep track

of the queries once they were executed. In order to accomplish this task, we

decided to name each query with the relations’ names and with the columns

used in the join operation. We also did this to be able to estimate the join

selectivity for each query. Figure IV.9 shows a query name and what each part

of it represents.

In addition to this, we executed the model construction process two

different times. The first time we generate the model, we did not use the

join selectivity parameter, and the second time we did use it. This was done in

order to be able to compare both models, but also to see the relevance of the

join selectivity parameter for the model. In the next section, we will discuss

the results obtained for each type of join on each workload.

IV.5 Results

A problem we noticed while running our tests was the number of reduce

processes used. This is because this feature does not vary along query execution

due to the fact that the number of reducers used depends on cluster’s capacity

if not set specifically to a lower number. The use of this feature makes all jobs

linearly dependent which in turn causes the model construction process to fail

because linear regression in the presence of collinearity can produce unstable

estimates. That is why we decided not to use the number of reducers as part

of our model as we work with the maximum number of reducers available. In

the following sections, we will describe the results obtained, and discuss the

problems and insights got from the experiments.
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Figure IV.10: Query execution times against time estimates for fragment
replicated joins.

(a) Cross Validation

The diagrams presented in this section show the difference between the

real query execution times against the estimated query execution time for the

3-Fold validation process. We performed such validation on three types of join

operators implemented in the Pig-Latin Framework.

Fragment Replicated Joins

We executed 96 queries of the fragment-replicated joins but using 32

queries for validation on each fold. We plot the results in the two charts

below. The former IV.10 shows the query execution times (QE Time) and

the estimates obtained using the join selectivity parameter (QE Time With

JSel), and not using the join selectivity parameter (QE Time WO JSel). A

first observation is that the variation between the estimates gotten using or

not the join selectivity parameter could almost pass unnoticed. This is because

as explained before, the error within our join selectivity parameter prevents

the model to take full advantage of it. There are two jobs that took longer than

the rest of them which are the jobs that involved moving more data through

the network. These jobs had to replicate relatively big files to the other nodes

where the join operation would occur. The files replicated were 9.9MB and

13MB respectively.

The chart IV.11 shows the query execution times from the 80th percentile

of the jobs and their execution time estimates because by restricting our results

to it we can omit the jobs which suffered from performance problems, execution

environment changes, and poor linear models. For example, the jobs that in

our case suffered from network latency which is a key piece for the MapReduce
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Figure IV.11: Query execution times against time estimates for the 80th
percentil of the executions.
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Figure IV.12: Error percentage for the 80th percentil of the executions.

framework.

Finally, the chart IV.12 shows a comparison between the relative error

from the two different estimates, using the join selectivity parameter and not

using it. The error goes from less than 2% until 205% for all jobs, but for the

80th percentile the error ranges from less than 2% until almost 85%.

Merge Joins

We executed the 23 queries created of this specific join operator, and

used 8 queries for validation. One of the biggest problems for creating such

queries is the difficulty of creating join operation between ordered data when

most of it is not. This type of join needs both relations to be ordered ascending

in the join key. As many of the relations of our data set have the primary key

- foreign key relationship, they do share the same key, but they are not sorted
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Figure IV.13: Query execution times against time estimates for merge joins.

on the same way on both relations.

The diagram IV.13 shows the differences between the real query execution

times (QE Time) against the estimates obtained using the model generated

with and without the join selectivity parameter (QE Time With JSel, and

QE Time WO JSel respectively). Similarly to the Fragment Replicate joins

experiment, the estimates obtained by using the join selectivity parameter

do not differ considerably from one to the other. There were two estimates

in which the model predicted long execution times. The first one is due to

the fact that a self-join of the third biggest relation (226MB) was performed,

and in spite of that, the query was executed in a very fast manner, it took

only 21 seconds to be completed. We hypothesize that this fast execution was

due to the fact that the column used for joining is sufficiently skewed for the

implementation of the merge join operator take advantage of it to perform

better than in the rest of the situations. The other high point in the chart is

also a join of the third biggest relation with a relation of 10MB. This joins

execution time is expected due to the size of the input and to the environment

variables (number of computers, network latency, etc.), and that is why the

predictions made on it do not defer too much from what it actually took. It

differs 7% with the prediction which did not used the join selectivity parameter,

and 13% with the one which used the join selectivity parameter.

The figure IV.14 shows the real query execution times against the

estimated values for the 80th percentile of the queries. In this case our error

ranges from 7% to 378% for the model not using the join selectivity operator,

and for the model using the join selectivity operator its error ranges from less

than 14% to 423%. This difference in the error from both models is due to

the fact that join selectivity parameter has already the error of the cardinality
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Figure IV.14: Query execution times against time estimates for the 80th
percentil of merge join executions.

estimate in addition to the its estimate itself.

The graphic IV.15 shows the percentage error obtained for the 80th

percentile of the queries using both models (applying the join selectivity

parameter (Error With JSel), and not applying it (Error WO JSel)). The

highest points in the graphic are due to the fact that the merge join operator

takes advantage of not having to read all of the big relations, but instead it

samples one of the relations and creates a sparse index on it. And then, it uses

this index to access the block directly at probing time. This makes this operator

the least memory intensive algorithm because it does not have to load a whole

block of data into memory. An interesting thing about the graphic is that the

error that the model which uses the join selectivity parameter seems to have

a more constant behavior compared to the one which uses the join selectivity

parameter. We hypothesize that this is also due to the error accumulated into

the join selectivity parameter which ends up not being so useful for building

the model.

Hash Joins

We executed 102 queries of the hash join operator using 34 queries for

validation. Similarly to the other join operators, we will describe the charts

comparing the actual execution time against the estimated execution time

using the models built. The chart IV.16 shows the difference between the real

execution time (QE Time), and the prediction values using the join selectivity

parameter (QE With JSelectivity) and not using it (QE WO JSelectivity) for

building the model. One important observation about it is that the actual

execution times where really fast compared to the estimated times. We think
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Figure IV.15: Error percentage for the 80th percentil of the merge join
executions.
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Figure IV.16: Query execution times against time estimates for hash joins.

this is due to the fact that this operator relies heavily on the hardware i.e. on

main memory for maintaining and probing tuples from one relation against

the other.

And even though we decide to keep only the 80th percentile of all the

queries, the diagram IV.17 does not change substantially. The real execution

times are still very fast compared to the estimated execution times.

Therefore, we expected high errors in our estimates. The graph IV.18

compares the estimate’s error for the cases of using or not using join selectivity

as a parameter of the model. The difference between both estimates is that

the join selectivity parameter causes the query execution time to vary along

the plot. This is because the error within such extra parameter is probably too

high for the model to take full advantage of it.

This huge difference between our estimates and the real values motivated
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Figure IV.17: Query execution times against time estimates for the 80th
percentil of hash join executions.
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Figure IV.18: Error percentage for the 80th percentil of hash join executions.

us to search for an explanation. That is the reason why we decided to look

into the actual jobs executions. In the picture IV.19, we show the variance

between the different query executions of the cross-fold validation. We recorded

each execution time from each run and then compared them against the other

query executions. As we can see in the picture, the job execution time varies

in hundreds of orders of magnitude from each different execution. This implies

that this join operator heavily depends on how the cluster is being used in

the specific moment when the hash join is executed. It varies because this join

operator always loads into memory the relation from the left, and the other

one is streamed through. Besides that, the Pig framework expands four times

the size of data when loading it from disk into memory i.e. if it loads a 1KB

file, the Pig framework will need 4KB of memory for it in memory [39]. This

join operator is the less stable compared to other operators because it heavily
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Figure IV.19: Hash join query execution variability.

depends on main memory which can vary along query execution.

This job variability shows why the model built from the job execution

times are not able to characterize this particular operator. We might need

a bigger dataset to be able to model this operator successfully. Another

interesting way to test this would be by using a more robust execution

environment i.e. using a cluster which supports loading the relations into

memory without degrading considerably its performance. In the next section,

we will describe the results obtained by simulating a workload from the queries

created.

(b) Workload Simulation

We decided to create and extra set of experiments by simulating a

workload from the queries created. We did this by replicating the queries in

different proportions in order to resemble query usage of the system. The

construction of such workload was explained in the section IV.4. In this

section, we will discuss the results obtained and the problems encountered

while attempting to predict query execution times.

Fragment Replicated Joins

We executed 232 queries using the fragment replicated joins. Seventeen

of them simulated to be the most used ones then they were replicated five

times in the workload; thirty-four of them simulated to be the second most

used ones as they were replicated three times, and fifty-one queries were not

replicated in order to simulate the queries rarely executed. The chart IV.20

shows the query execution times (QE Time) against the estimates made using
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Figure IV.20: Query execution times against time estimates for the simulation
workload of fragment-replicated joins.

the join selectivity parameter and not using it (QE Time With JSel and QE

Time WO JSel respectively).

We can notice the differences between the real values and the estimates

are really high. The relative error ranges from 48% to over 660%. We hypoth-

esized that this high errors are due to poor linear models, and to the size of

the query set constructed i.e. the number and variety of the queries executed

which probably led to overfit the model.

Merge Joins

We executed 41 queries using merge joins. Three of them simulated to be

the most used ones then they were replicated five times in the workload; six of

them simulated to be the second most used ones as they were replicated three

times, and eight queries were not replicated in order to simulate the queries

rarely executed. The chart IV.21 shows the query execution times (QE Time)

against the estimates made using the join selectivity parameter and not using

it (QE Time With JSel and QE Time WO JSel respectively).

Similarly to the fragment replicate join, the estimates done for the merge

join operator also presented really high relative errors that range from 164%

to almost 9’000%. We attribute these high errors to the even smaller quantity

of queries used. The main problem using this join operator is the preconditions

it poses on the data on which it will work e.g. both input relations having to

be physically ordered by the join key in ascending order. This fact obstructs

the construction of a bigger dataset for building the model.
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Figure IV.21: Query execution times against time estimates for the simulation
workload of merge joins.

Hash Joins

We executed 238 queries using the hash join operator. Seventeen of them

simulated to be the most used ones then they were replicated five times in

the workload; thirty-four of them simulated to be the second most used ones

and they were replicated three times, and finally, fifty-one queries were not

replicated in order to simulate the queries rarely executed. The chart IV.22

shows the query execution times (QE Time) against the estimates made using

the join selectivity parameter and not using it (QE Time With JSel and QE

Time WO JSel respectively).

The simulated workload for the hash join operator provides similar results

to the ones obtained by the other two types of join operators. The relative

error ranges from 23% to over 1500%. We consider that these high errors are

due to the job execution variability, and to the same problems encountered

while performing this experiment with the other join types. There is only

one job query execution estimate which seems more accurate than the rest

of them. This job performs a join between a relatively big relation (141MB)

and a small one (8.6KB), and this query belongs to the group of queries that

were not replicated within the workload. We consider this relatively accurate

estimate as prove that the model is overfitted because the model seems to be

exaggerating minor variations in the data.

We noticed that this last experiment results do not led us to any

conclusive assumptions about the workloads used. This is due to a common

problem with statistical methods known as overfitting the model. Overfitting

usually occurs when a model has too many parameters compared to the number

of observations, and an overfitted method usually performs poorly at predicting
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Figure IV.22: Query execution times against time estimates for the simulation
workload of hash joins.

values, and can also misrepresent small fluctuation within the data.

A solution to this problem is to create a richer dataset i.e. a larger

quantity of queries, and also with more diverse data distributions. Another

solution to such a problem is to use shrinkage methods [95] which are intended

to reduce the overfitting problem by making more modest predictions, but

which are closer to the average.
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