
4
Drawing the interface

A prototype in UISKEI is composed by presentation units, which are user

interface containers that can represent a window or a webpage, for example.

Elements are then added to the presentation units. An element can be a widget

(recognized element) or a scribble (unrecognized element). The elements‟ creation

process by drawing them will be detailed in the next sections, covering all steps

from the user drawing a stroke, to the stroke being recognized as a shape and,

finally, to the element being created.

Section 4.1 discusses how UISKEI converts the ink stroke to a Segment

data structure. Section 4.2 describes how the shapes are defined as a string.

Section 4.3 presents the ElementDescriptor concept to define an element in

UISKEI. Section 4.4 details the recognition process. Finally, Section 4.5

enumerates the available elements' properties.

4.1
Segments

When the user starts drawing, he/she may express his/her idea using a single

line or several lines. The ink SDK considers that a stroke was created every time

the user lifts up the pen, even if he/she is in the middle of a drawing. Multiple

strokes can therefore frequently be combined into a single segment. For example,

a rectangle can be drawn using a single stroke or more than one, as seen in the

figure below (where the dot marks the initial point of each stroke):

Figure 14: Drawing a rectangle in three different ways.

As can be seen, the leftmost rectangle (Figure 14a) was drawn with a single

stroke, while the other ones were drawn with different combinations of two

DBD
PUC-Rio - Certificação Digital Nº 0912900/CA

33

strokes: Figure 14b has the initial point of a stroke near the end point of the other,

whilst Figure 14c has the initial point and end point of the strokes near one

another. To simplify the shape recognition process, the strokes are converted into

a Segment, which is a list of points with a bounding box. When strokes can be

combined, like in Figure 14b and Figure 14c, they are merged into a single

Segment, only having to change the stroke‟s direction if needed (as happens in

Figure 14c).

Though merging solves part of the problem, the user can still have a

drawing with multiple strokes that can‟t be combined into a single one. For

example, if he/she wants to write the word “test” or draw a square with an “X”

inside, he/she may end up with three strokes in each drawing that should not be

combined, as illustrated in the figure below.

Figure 15: Multiple strokes that should be grouped but not merged.

Besides merging strokes into Segment, it is also needed to group strokes

that can‟t be merged. Therefore, a MultipleSegments is a list of Segment

with a bounding box.

When the user draws a stroke, it is converted to a Segment and added to

the current MultipleSegments being drawn, with three possible outcomes:

 The new Segment is merged with another Segment already in the

MultipleSegments (when its initial point is close enough to the

initial/end point of the other segment, like Figure 14b and Figure

14c);

 It is added to the MultipleSegments (when it couldn‟t be

merged to another Segment, but it is still close enough to be

considered part of the drawing, like in Figure 15);

 It can‟t be added.

When the new Segment cannot be added to the current

MultipleSegments (or there is none), the current MultipleSegments is

ready to be recognized and converted to an element (as will be show in Section

4.2) and a new MultipleSegments is created with the new Segment.

DBD
PUC-Rio - Certificação Digital Nº 0912900/CA

34

Another way that the current MultipleSegments may enter the recognition

process is when the user changes the current presentation unit or takes too long

between strokes, since we consider that the user finished his/her drawing after a

certain amount of time of inactivity.

4.2
Shapes

In order for the recognition process to take place, the user drawings (already

converted to Segment and MultipleSegments) must first be associated to a

known shape. In UISKEI, a Shape is defined by the series of stroke directions

that makes its drawing, similar to the work of (Cha, Shin, & Srihari, 1999). The

directions can be one of the four cardinal directions (N, S, E, W) or the four

ordinal directions (NE, NW, SE, SW). To simplify the notation, each direction

was associated with a single character, as shown in the following figure:

Figure 16: The directions compass rose.

Based on this abstraction, each shape of p points can be denoted as a string

of p-1 characters. But a shape can be drawn in different ways and the application

should respond to how the drawing looks, not how it was made (Sezgin,

Stahovich, & Davis, 2006). Taking for example the rectangle, the drawing has 5

points (to close it, the end point should be in the same position as the first point),

so it can be expressed as a string of 4 characters, as illustrated in the following

figure:

Figure 17: The rectangle shape as a string.

DBD
PUC-Rio - Certificação Digital Nº 0912900/CA

35

As can be seen, a shape can be expressed by different combinations of its n

directions. If the shape is open (i.e. the end point is different from the initial

point), like a „_|‟ shape, it has 2 variants: drawing from left to right (“DCA”) or

drawing from right to left (“EGH”). If the shape is closed, as in the rectangle

example, it depends on the starting point of the drawing (the columns in Figure

17), having n possibilities, and the direction of the drawing (the rows in Figure

17), having 2 variations (clockwise and counter-clockwise) to each previous

possibility, summing up to 2n variations.

When a user wants to create a new shape, he/she must create a text file with

only the “base case” of the shape and whether it is closed or not, name the file

with the name of the shape and with a .shp extension and place it in a specific

directory. The text should follow this pattern, where the first term indicates if it is

a closed shape (y) or not (n) and the second term is the string of the “base case”:

[y/n] ([A,B,C,D,E,F,G,H]+)

UISKEI will look for available shapes when building the shape library at

load time, creating all the variations in the process. For example, the

Rectangle.shp file should contain only the line

y CEGA

and UISKEI would generate the 8 possible strings (“CEGA”/”ECAG”,

“ACEG”/”GECA”, “GACE”/”AGEC”, “EGAC”/”CAGE”).

4.3
Element descriptors

Besides a list of Shapes, the recognition process also needs a list of

ElementDescriptors. An ElementDescriptor defines many

characteristics of a recognized widget, such as how it is drawn, what its possible

states are (to be described later, in Section 4.5), how it handles events, which

events it handles, and also how the elements can be recognized.

By having a descriptor, the behavior of an element is delegated to it,

allowing the customization of the known widgets. Ideally, the user should be able

to implement new widgets by creating new ElementDescriptors. However,

the definition of a description language to allow the customization of widgets,

DBD
PUC-Rio - Certificação Digital Nº 0912900/CA

36

such as described in (Hammond & Davis, 2006), lies outside the scope of this

dissertation. Consequently, the ElementDescriptors were hard-coded,

allowing for easier manipulation during the development phase and shedding

some light on which operations and operators the descriptor language should

support.

At the moment, UISKEI supports the following elements:

 Button

 Checkbox

 DropDown

 Frame

 Label

 Radio

 Spinbox

 Textbox

Since the creation of the elements is done through drawing, the

ElementDescriptor should know how the element is drawn. In order to do

that, it uses the Shape name and may apply some restrictions to it, such as a limit

in height and/or width and whether it was drawn inside a specific element. The

last restriction is responsible for the “evolution” of elements, a characteristic

unique to UISKEI among the researched tools. A summary of how the widgets are

created is seen in Figure 18:

Figure 18: Language to create elements.

DBD
PUC-Rio - Certificação Digital Nº 0912900/CA

37

While in recognition mode, a small circle will be converted into a radio

button and a small square, to a checkbox, for example. Figure 18 shows how both

restrictions work: the size restriction is what determines if the rectangle is a

checkbox, a button or a frame, and the evolution restriction determines if the

horizontal line is a label or a textbox.

4.4
Recognition

When a MultipleSegments enters the recognition process, each of its

Segments is simplified and converted into a string, following the same notation

described in Section 4.2. The simplification process uses the Douglas-Peucker

algorithm (Douglas & Peucker, 1973) to find the drawing‟s significant points,

reducing noise as can be seen in Figure 19, and a tolerance regarding the size of

which line segments should be converted into a “direction character”.

Figure 19: Douglas Peucker algorithm
14

14

 Image taken from:
 http://softsurfer.com/Archive/algorithm_0205/algorithm_0205.htm#Douglas-Peucker
Algorithm

DBD
PUC-Rio - Certificação Digital Nº 0912900/CA

38

Then, this string is compared to all strings corresponding to each preloaded

shape using the Levenshtein distance algorithm (Gusfield, 1997, p. 215), using the

difference between directions as a cost to the algorithm‟s operation. The overall

distance between the Segment‟s string and the shape‟s string is calculated

proportionally to the segment‟s length, so that longer Segments, more prone to

noise and less accurate, can still be recognized.

If the smallest distance (i.e., the best match) is less than a threshold, the

Segment is associated to the Shape. If an association is made, it runs through

the list of loaded ElementDescriptors to check for the first possible match.

For the elements‟ evolution to work, the list should be ordered by the descriptor

complexity: if it does not evolve, its complexity is 1; otherwise its complexity is 1

+ the complexity of the “ancestor” element. This guarantees that the most

complex elements will be checked first, ensuring that, for example, a horizontal

line will generate a label only if it is not possible to generate a textbox with it.

If no association to a Shape is made or no ElementDescriptor

matches the configuration, the Segment remains as it was drawn (an

unrecognized element is called a Scribble). This way, the user can create and

manipulate any kind of new element, even if it is not turned into a widget, making

the software more flexible.

4.5
Element properties

Each element, no matter whether recognized, unrecognized, or a group, has

a number of properties which will be defined in the next sections.

 Name: The element‟s name is how the designer will reference the

element throughout the design process. By default, each element will

be created with a name in the form <type of element><id>

(e.g.: Button1, Checkbox4, Radio42), assigning a unique name to

each new one in the same presentation unit (elements from different

presentation units may have the same name).

DBD
PUC-Rio - Certificação Digital Nº 0912900/CA

39

 Label: The label is an auxiliary text that accompanies the element

and varies its position accordingly, as can be seen in Figure 20 (the

names of the elements were written as their labels):

Figure 20: Labels.

 Position: The position (x,y) in the presentation unit, always

referring to the top-left position of the element related to the top-left

of the presentation unit, disregarding the element‟s label.

 Size: The element‟s width and height, disregarding the element‟s

label dimensions. Some elements are created with fixed values in

either direction, regardless of their drawing. For example,

checkboxes are always created with the same width and height,

while buttons are always created with the same height to help to

establish a more consistent look and feel.

 Enabled / Disabled: This relates to how the element is first

displayed during a simulation with the client. When the element is

disabled, its representation is grayed, so the designer can know what

the initial configuration is.

 Visible / Invisible: Similar to enabled/disabled, indicates if the

element is visible in the beginning of the simulation. If the element

is invisible, it is drawn in a light shade of blue in the “design view”

and it does not appear to the client during the simulation. If the

element is disabled and invisible, the representation of invisible is

the one shown.

 States: States are possible values for the elements. Each one has its

own set, expressed in the following table:

DBD
PUC-Rio - Certificação Digital Nº 0912900/CA

40

Table 2: Elements‟ states.

Element Number of states States

Button No states

Checkbox 3 states Checked / Unchecked / Mixed

DropDown Custom states A string that the user can select later

Frame No states

Label No states

Radio 2 states Checked / Unchecked

Spinbox 2 states Up / Down

Textbox 3 pre-defined +

Custom states

Blank / Valid / Invalid

A name, a pattern and a sample text

In the textbox case, the states are defined in a table-like fashion.

Each one has a name, which is how the state is presented to the

designer, may have a pattern, which is used in the simulation to

propose the state after the user‟s input of text, and may have a

default text, which is the text to appear at the initial state. The

pattern is a regular expression, which will be used when a text is

entered in the textbox to determine its new state.

 Initial state: The state shown to the user at the beginning of the

simulation.

DBD
PUC-Rio - Certificação Digital Nº 0912900/CA

	4 Drawing the interface
	4.1 Segments
	4.2 Shapes
	4.3 Element descriptors
	4.4 Recognition
	4.5 Element properties

