
5  
Drawing the behavior 

To define the behavior of the prototype, the designer must think about the 

event associated to the behavior and which element triggers it, the conditions 

under which the behavior will happen and which actions will be executed. This 

ECA (event, conditions and actions) represents a single case of the element’s 

behavior, since another set of conditions can trigger a different set of actions. This 

chapter explains both the ECA logic (Section 5.1) and how to define an ECA in 

UISKEI (Section 5.2). 

5.1  
ECA 

To define the interface behavior, we needed a language to express how to 

react to elements’ events (e.g. mouse clicks, text input), empowering the designer 

to choose what to do when the interface is at a given state. We found that ECA 

(Event Condition Action) languages could be an intuitive and powerful paradigm 

to this situation (Alferes, Banti, & Brogi, 2006). They are used in many 

applications — such as in active databases, workflow management, network 

management, etc. Also, they have a declarative syntax being more easily analyzed 

when compared to implementing with a programming language (Bailey, 

Poulovassilis, & Wood, 2002).  

In UISKEI, an ECA represents a behavior case, following the idea of ―when 

an <event> happens, if all <conditions> are satisfied, then the 

<actions> take place‖. It has a name that the user may enter to make the 

association to the behavior case defined clearer (the default name is ―<element 

associated to event> - ECA <number>―, the event which will trigger 

it, a list of conditions and a list of actions. All the ECAs are shown in the 

ECAMan sidebar (ECAs Manager), allowing the user to rapidly see them, as 

shown in Figure 21. 

DBD
PUC-Rio - Certificação Digital Nº 0912900/CA



42 
 

 

Figure 21: ECAMan interface. 

As can be seen in the right pane, the ECAMan sidebar shows all ECAs in 

the project (lower list) and gives the details of the current selected ECA, allowing 

users to edit the ECA name and see the list of conditions and actions. The events 

will be discussed in the following section, while conditions will be discussed in 

Section 5.1.2, and the actions in Section 5.1.3. In Section 5.1.4, the concept of a 

"valid ECA" is introduced. 

5.1.1.  
Events (When) 

An event is the action which may trigger an ECA. Each element has its 

own pre-defined events. While buttons, checkboxes and radio buttons can handle 

the ―Clicked‖ event, textboxes can handle the ―Text Changed‖ event and 

the dropdown lists can handle the ―Selection Changed‖ event. For now, an 

element can only have one event, but future work may overcome this limitation. 

5.1.2.  
Conditions (If) 

Conditions are expressions that must be satisfied in order to trigger an 

ECA. The conditions currently supported by UISKEI are related to the status of an 

element and are described below: 

 Element conditions 

o If the element is in state <state name> 

DBD
PUC-Rio - Certificação Digital Nº 0912900/CA



43 
 

o If the element is <visible / invisible> 

o If the element is <enabled / disabled> 

An ECA’s set of conditions has an internal operator of ―AND‖, so all 

conditions must be met to activate the ECA. The ―OR‖ operator can be achieved 

by defining a new ECA. Ideally, the ECAs of an element should be mutually 

exclusive, since if two or more of them can be activated in a given situation, only 

the first one in the list will do so. Therefore, the ECAs’ order in the ECAMan is 

important to the simulation. 

5.1.3.  
Actions (Do) 

An action is an operation that will be performed if activated, changing 

the simulation state. While conditions may only refer to elements, an action can 

refer to an element, to a presentation unit or to a default kind of message. The 

operations available to each group can be seen in the following list: 

 Element actions 

o Change element to state <state name> 

o Make the element <visible / invisible> 

o Toggle the element’s visibility status 

o Make the element <enabled / disabled> 

o Toggle the element’s enabled status 

 Presentation unit actions 

o <Change to / Pop up / Modal pop up> the 

presentation unit 

 Default message actions 

o Show a <information / warning / error> 

message with <text> 

When an ECA event is triggered, if the set of conditions is satisfied, all of its 

actions are executed. 

DBD
PUC-Rio - Certificação Digital Nº 0912900/CA



44 
 

5.1.4.  
Valid ECAs 

When an element is removed from the project, all ECAs triggered by the 

element’s event are also removed. However, it could also be associated to 

conditions or actions of other ECAs, but the remaining of these ECAs could still be 

valid. The same issue may happen to removed presentation units and removed 

states. To avoid greater impact, such as also removing the ECAs with the changed 

conditions or actions, the concept of ECA validity was created. 

When a condition or action references a removed object, it becomes invalid, 

invalidating the ECA that contains it. An invalid ECA continues in the ECAMan, so 

the user can later make changes to make it valid again, but it is ignored during 

simulation, to avoid undesired or unplanned behavior. 

5.2  
Drawing ECAs 

As could be seen in Figure 13, the first version of UISKEI had a form-based 

approach to handle ECAs, forcing users to switch the interaction paradigm 

between the interface design mode (pen-based) and the interaction design mode 

(form-based). One of the new version’s biggest challenges was making this step 

more adequate to pen-based interaction. 

The first idea was based on the DENIM approach of navigation between 

pages, by connecting lines between an element and a page. This is effective when 

there is only one kind of behavior (when <element> is clicked, go to <page>) 

and two parameters (the beginning of the line defines the anchor <element> 

and the end, the target <page>. UISKEI, however, offers 3 different kinds of 

actions, and both conditions and actions have additional parameters to be defined, 

so a more complex approach was necessary. 

The proposed solution was to create a specific mode of interaction, Eca 

Mode (as opposed to the Drawing Mode / Recognition Mode used to 

create the interface). While in this mode, the user must focus on an element – 

which will be the one that raises the ECA’s event – and add an ECA to it. The 

manipulation of ECA’s (adding, removing, duplicating, activating the next or the 

DBD
PUC-Rio - Certificação Digital Nº 0912900/CA



45 
 

previous ECA) is done by clicking buttons that appear on the canvas when an 

element is focused, as shown below: 

 

Figure 22: ECA buttons. 

Conditions and actions can be added to the active ECA by drawing lines, 

with the start and the end point determining what is being added. The first idea 

was simple: if the line began on the focused element (the element associated with 

the ECA event), it was a condition, if it ended on it, an action. However, this 

solution demanded too much effort from the user, since it was necessary to draw 

long lines; was much too complex if an element of a different presentation unit 

was involved and made it impossible to have an action or condition associated to 

the focused element itself, since the start and end points would always be in the 

element, making the user’s goal unknown. Another solution was proposed, 

following the table below: 

Table 3: Condition and action creation. 

Start point End Point Creates 

Element Anywhere Element condition 

Canvas 

Element Element action 

Presentation Unit Presentation unit action 

None of the above Default message action 

Analyzing the start and end points we can only define which ―higher level‖ 

type of operation is being added, i.e., if it is an element condition, an element 

action, a presentation unit action or a default message action. The specific 

operation and its parameters are still undefined. For example, if an element 

condition is being created, we do not know if it is one of kind ―is in state <state 

name>― or ―is <visible / invisible>― with only the start and end points. 

So, we need to ask the user what operation he/she wants (e.g. is in state <>) and 

the parameters (e.g. <state name>). 

DBD
PUC-Rio - Certificação Digital Nº 0912900/CA



46 
 

To make the process more fluent and pen-like, it was decided to use a pie 

menu approach, since it reduces target seek time, ―lowering error rates by fixing 

the distance factor and increasing the target size in Fitts’s Law‖ (Callahan, 

Hopkins, Weiser, & Shneiderman, 1988). The pie menu pops up once the pen 

stops for a given amount of time, determining the end point of the line. Without 

raising the pen, the user chooses the last parameters of the condition or the action 

being created. Therefore, one single stroke can define a condition or an action, as 

can be seen in the following image: 

 

Figure 23: Pie menu allows a single stroke to define all parameters. 

The default message action is defined with only one pie menu, but an 

additional dialog is necessary to define the text that will be shown. 

Every element condition and action is defined through a two-level pie menu. 

Since an element can have a variable number of states, the choice of state was 

postponed to the second level of the pie menu. This decision was made in order to 

guarantee that the first level of the pie menu would always look the same, making 

it more recognizable to the user and, thus, more efficient. The visibility and 

activity status, although having a fixed set of operations, has different numbers of 

operations depending if it is a condition (2 options: is visible / is invisible, is 

enabled / is disabled) or an action (3 options: make visible / make invisible / 

toggle, make enabled / make disabled / toggle). So, to keep the menu coherent and 

make the first level the same between conditions and action, the options were 

organized in the second level. The final pie menu hierarchy when creating a 

condition or an action can be seen in the following figure. 

DBD
PUC-Rio - Certificação Digital Nº 0912900/CA



47 
 

 

Figure 24: Element condition (left) and action (right) pie menus. 

The presentation unit action is defined with only one pie menu, but the 

problem was that the list of presentation units didn’t appear in the canvas, being a 

drop-down list in the lower bar of the window. A first idea was to follow the 

DENIM approach and have multiple zoom levels, but this would mean that the 

user should have a two-dimensional space awareness of where his/hers 

presentation units were. To make it similar to the dropdown list available off the 

canvas, a one-dimensional filmstrip was added to the canvas, showing a 

thumbnail of every presentation unit and allowing the user to scroll among them. 

The presentation unit filmstrip can be seen in Figure 25, along with the 

presentation unit action pie menu. 

 

Figure 25: Presentation unit filmstrip. 

DBD
PUC-Rio - Certificação Digital Nº 0912900/CA



48 
 

The conditions and actions were added, but how should they be represented 

on the canvas? DENIM showed that multiple conditions could lead to a 

combinatorial explosion, as can be seen in Figure 26 taken from (Lin, Thomsen, 

& Landay, 2002). Note that there are multiple copies of a page, each one 

representing a combination of its possible states. Also, the usage of the same 

representation to indicate either interaction or navigation adds to the confusion 

and may further hinder the design process. 

 

Figure 26: DENIM combinatorial explosion. 

The first decision to overcome this problem was to show only one ECA at a 

time, avoiding screen pollution with the cost of losing sight of the ―big picture‖. 

The initial idea was to display the same lines used in the creation of conditions 

and actions, but this idea was abandoned. First, because it would also make the 

screen polluted, as there could be many lines, connecting different presentation 

units or distant elements. Also because a single element could be associated with 

different conditions and actions, so it was necessary to make a distinction between 

them. 

Instead of lines connecting objects, the proposed solution uses a mind-map-

like representation. Reflecting the ―if / when / do‖ of an ECA, the ―mind-map‖ 

shows a block of connections on the left to represent the conditions and a block of 

connections on the right for the actions. In the middle, the ―when‖ block, 

displaying the active ECA and its associated event. By doing so, it is possible to 

see all the ECA’s conditions and actions in an ordered and centered manner, 

making it easier to view, comprehend and edit. 

DBD
PUC-Rio - Certificação Digital Nº 0912900/CA



49 
 

Originally, these blocks appeared over the focused element, but this 

occluded the elements behind it, making it difficult or even impossible to 

associate conditions or actions to the occluded elements. So, a special area is now 

reserved for the active ECA on the top of the canvas, making it always visible 

even when the canvas is scrolled. 

The approach of drawing lines to define conditions and actions raised an 

issue: while in ECA mode, the user should be able to manipulate (move and 

resize) the focused element and to make it part of a condition or an action. If the 

user clicks inside the selected element and drags it, the element should move. 

Since the language to create an element condition is to ―draw a line from the 

element to the canvas‖ and this results in moving the element, the solution was to 

use the ―when‖ block as a hotspot for the focused element. So, if he/she clicks 

inside the ―when‖ block and drags to its outside, a condition related to the selected 

element is created, thus solving this impasse. 

Finally, to give users a feedback of which objects are related to the active 

ECA, they are painted with a color code to specify if they are related to a condition 

(green), an action (orange) or both (brown), as shown in Figure 27. The command 

button is in green (indicating it is part of a condition), the radio button and the 

target presentation unit are in orange (indicating they are part of an action), and 

the checkbox is in brown (indicating that it is both part of a condition and part of 

an action). 

 

Figure 27: ECA mind-map-like representation. 

DBD
PUC-Rio - Certificação Digital Nº 0912900/CA


	5  Drawing the behavior
	5.1  ECA
	5.1.1.  Events (When)
	5.1.2.  Conditions (If)
	5.1.3.  Actions (Do)
	5.1.4.  Valid ECAs

	5.2  Drawing ECAs




