

1
Introduction

The design of a software architecture plays an important role in the software

development process because quality attributes of software systems depend on it,

such as maintainability and evolvability. Therefore, a well-designed architecture

should lead to high quality software systems. There are different definitions of

software architecture in the literature. In this research we focus on the software

architecture definition established by Bass et al. (2003): “The software

architecture is the structure of the system, which comprises of software

components, the externally visible properties of these components (i.e. interfaces),

and the relationship among them”.

Software systems can be developed using different architectures, which vary

from well-designed to badly-designed. A software architecture, even if initially

being well-designed, can degrade as the system evolves over time due to change

upon change (Lehman, 1980). A degraded architecture often makes changes in the

software system more costly and error prone than should be (Stringfellow et al.,

2006). The phenomenon of architectural degeneration manifests through

architectural erosion and drift processes (Perry and Wolf, 1992; Hochstein and

Lindvall, 2005). Architectural erosion corresponds to mismatches between the

implemented and the intended one prescribed by architects. A typical example of

erosion symptom is an unintended relationship between two components in the

implemented architecture. In contrast to erosion, architectural drift occurs when

the software architecture violates modularity principles. Typical examples of drift

symptoms are components with bloat interfaces or implementing several

responsibilities (Garcia et al., 2009; Perry and Wolf, 1992). In extreme cases,

symptoms of architectural degradation can cause the software reengineering (Eick

et al., 2001; Hochstein and Lindvall, 2005; MacCormack et al., 2006).

More directly, however, the degradation of a software architecture can be

observed in its implementation throughout the progressive introduction of code

anomalies, commonly referred as “code smells” (Karr, 1996; Fowler et al., 1999;

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

18

Eick et al., 2001; Hochstein and Lindvall, 2005). In particular, code anomalies

might be introduced in the system implementation as a result of drift symptoms in

the intended architecture. On the other hand, degradation symptoms in the

software architecture might be introduced by code anomalies, that is writing either

unintended or non-modular code for a given architecture (Eick et al., 2001;

MacCormack et al., 2006; Knodel et al., 2008; Sarkar et al., 2009b). For instance,

anomalous code elements (i.e. those infected by code anomalies) might introduce

unintended dependencies among architectural components, making the software

architecture hard to evolve. Studying the relationship between code anomalies and

architectural degradation is the main focus of this research.

1.1.
Motivation

Code anomalies are program structures that may indicate a maintainability

problem in the software (Fowler et al., 1999). A high number of code anomalies

may emerge in programs structured independently of the kind of modularization

technique, including object-oriented programming (Meyer, 2000) and aspect-

oriented programming (Kiczales, 1997). Some examples of code anomalies

include methods that are too long and contain several functionalities (Long

Method), and tightly coupled methods that change due to several reasons

(Divergent Change). Code anomalies are particularly harmful to software

maintenance when they are associated with architectural degradation symptoms.

An architecturally-relevant code anomaly represents an architectural degradation

symptom in the implementation.

There are several examples documented in the literature that offer

substantial evidence regarding the negative impact of code anomalies on the

system architecture. Eick et al. (2001) showed how complex code elements

related to unintended relationships among architectural components hinder the

evolution of the AT&T 5ESS telephone switching system. In particular, the high

number of code anomalies related to such undesirable relationships made it

impossible to make further changes in the system. MacCormack et al. (2006)

reported that complex code elements modularizing several responsibilities

introduced high coupling between architectural components. These complex code

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

19

elements were related to a Mozilla web browser re-engineering, which took about

five years to rewrite for seven thousand source files and two million source lines

of code (Godfrey and Lee, 2000). Similarly, code anomalies related to

architectural problems in the Linux-kernel implementation led to a two-year long

restructuring of release 2.6 (van Gurp and Bosch, 2002). Knodel et al. (2008) also

highlighted the harmful impact of code anomalies on the system architecture. In

particular more than 5000 architectural problems were related to anomalous code

structures in the Testo AG system. Sarkar et al. (2009) showed how the effort to

refactor code elements that impact on the architecture design took 2.100 man/day

to rewrite and retest 25 MLOC lines of code. These examples stand as evidence of

the relevance of supporting software engineers in the detection of architecturally-

relevant code anomalies.

1.1.1.
Motivating Example

In order to illustrate the adverse impact of code anomalies on the

architectural design, Figure 1.1 depicts an example. This figure shows a partial

representation of the component-and-connector view (Bass et al., 2003) of a web-

based system that manages complaints in public institutions. This system is called

Health Watcher (Soares et al., 2002) and is one of the systems used in our

assessments. As it can be observed, the architectural view represents the static

structure of the system in terms of its components (i.e. View, Distribution, Business

and Data) and the relationships among them (Bass et al., 2003). In particular, the

components of the Health Watcher system architecture were structured following

the Layers architectural style (Buschmann et al., 1996).

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

20

factoryFacade distributedSavingService

getFacade

Complaint Repository Employee Repository

Complaint Record Employee Record

requestFacade saveEntity

requestDistributedFacade saveDistributedEntity

savingService

Distribution

GUI

Business

Persistence

Transaction

G

D

B

P

T

Exception HandlingE

Legend:

required interface

provided interface

architectural component

C
on

ce
rn

s

MODEL

AnimalComplaint

Business Layer

FoodComplaint

PERSISTENCERBD

TransactionExc

Data Layer

RepositoryExc

Array

E

P

SpecialComplaint

T

B

P

E

FACADE

HealthWatcherFacade

Distribution Layer

IFacade

D

E

COMPLAINT

InsertSComplaint

P

EUpdateSComplaint

G

class InsertSComplaint{
...
public void execute(){

PrintWriter out = response.getWriter();
try{

String description = request.getInput(..);

String name = request.getInput(..);
...
Complaint c = new SpecialComplaint){...}
...

catch(TransactionExc ex){..}
catch(CommunicationExc ex){...}
catch(RepositoryExc ex){...}

}

}

G

G

P

E

View Layer

architectural violation

T

T

JDBC ConnectionJ

J

Figure 1.1: A design slice of the Health Watcher system architecture.

Code Anomalies. From the implementation perspective, Figure 1.1 depicts

an example of two code anomalies infecting the same code element. First, the

InsertSComplaint.execute() method is infected by the Long Method anomaly. The

problem is that this method deals with several system concerns (i.e.

responsibilities or functionalities), such as Persistence and Transaction that should

be implemented by other methods. The implementation of these concerns leads

the method to present a high complexity in terms of lines of code and cyclomatic

complexity (McCabe, 1976). Additionally, the pieces of code dealing with

Persistence and Transaction concerns in the InsertSComplaint.execute() method are

duplicated in other methods, such as InsertEmployee.execute() and

InsertHealthUnit.execute(). Therefore, InsertSComplaint.execute() should be

decomposed into several smaller methods in order to improve its readability and

modularity. Second, this method also suffers from the Disperse Coupling

anomaly. In this case the problem is that the method uses information from

several classes that belong to different architectural layers (e.g. Distribution and

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

21

Data). As a consequence, the InsertSComplaint.execute() method was modified due

to changes performed on these architectural layers.

Architectural Degradation. From the architecture perspective, Figure 1.1

presents two examples of architectural degradation symptoms. In particular, it can

be noticed how multiple components are responsible for addressing the same

system concern and, additionally, some of these components are responsible for

independent ones. For instance, View and Data components address the Persistence

concern and, at the same time, they implement independent ones such as View and

JDBC Connection, respectively. This situation violates the principles of separation

of concerns in two ways. Firstly, the Persistence concern is scattered across

several architectural layers. Secondly, at least one component modularizes more

than one independent system concern. This architectural degradation symptom is

known in the literature as Scattered Parasitic Functionality (Garcia et al., 2009).

Furthermore, Figure 1.1 depicts an example of a violation of the Layers

architectural style (Buschmann et al., 1996). The problem is associated with the

way exception handling is modularized in this system. Most exceptions are

propagated through components interfaces across the system layers, thereby going

against the architects’ original intent in some cases. For instance,

InsertSComplaint.execute() method calls services provided by the requestFacade

interface. However, it has to deal with different exceptions (e.g. TransactionExc)

propagated by the ComplaintRepository interface, which belongs to the Data layer.

The main issue is that these exceptions should be treated internally by the Data

component. Specifically, Data should propagate only that exceptional information

which is relevant to the final user or other modules, rather than propagate any kind

of information. Otherwise, undesirable dependencies are introduced between View

and Data layers. This means that accidental code couplings between code elements

that belong to the View and Data layers are the sources of architectural violations.

Impact of Code Anomalies on Architectural Design. A deeper analysis of

both aforementioned architectural degradation symptoms (i.e. Scattered Parasitic

Functionality and violation) revealed that they were introduced, in part, by the

InsertSComplaint.execute() method, which suffers from a simultaneous occurrence

of Long Method and Disperse Coupling code anomalies. Some of the relationships

added by the Disperse Coupling occurrence were classified as violations because

they introduced undesirable coupling between non-adjacent architectural

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

22

components. This was the case, for example, of different exceptions (e.g.

TransactionExc) propagated by the Data layer that were dealt by

InsertSComplaint.execute() method defined in the View layer, even though these

exceptions are not related to the method goal. Also, some concerns implemented

by the Long Method InsertSComplaint.execute() (e.g. handling the Persistence

exceptions) were also addressed by different layer, such as Data. Therefore, the

InsertSComplaint.execute() method contributes for the View layer to suffer from

Scattered Parasitic Functionality. This particular example also helps to illustrate

how certain inter-related code anomalies (e.g. Long Method and Disperse

Coupling affecting the same code element) may be an indicator of architectural

degradation symptoms.

1.2.
Problem Statement

Refactoring (Fowler et al., 1999) is the most common mechanism for

removing code anomalies. However, refactoring is often not applied when it is

complex, error-prone, time-consuming or, more importantly, when it seems not to

be critical to maintain the longevity of the software (Murphy-Hill et al., 2009;

Arcoverde et al., 2011). This means that software engineers often need to focus on

the identification and removal of the most critical code anomalies. For example, if

a code anomaly is associated with architectural degradation symptoms (Figure

1.1) it may require closer, more immediate attention. The problem is that the

detection and removal of architecturally-relevant code anomalies are difficult

given the high number of code anomalies that often infect the implementation of

software systems. For instance, current mechanisms for code anomaly detection

(Marinescu, 2004; Lanza and Marinescu, 2006) tend to detect thousands of

suspects even in small software systems (Sonarsource, 2010), making even more

difficult those processes. Therefore, each code anomaly detected can be

considered as a potential candidate to be related to architectural degradation

symptoms.

In these cases, developers can only resort to figuring out (or guessing)

which code anomalies represent architectural degradation symptoms. The

challenge is that there are no attempts to understand the manifestation of code

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

23

anomalies that are strong indicators of architectural degradation. There is a

conventional wisdom that code anomalies adversely impact the software

architecture. However, there is no knowledge about in what proportion this

relationship manifests; i.e. do a great amount of code anomalies (not) affect the

software architecture? This kind of analysis is important given the need to know

whether it is worth focusing on code anomaly analysis to reveal the majority of

the architectural problems. Furthermore, it is unknown when the relationship

between code anomalies and architectural degradation manifests: (i) during the

implementation of the intended architecture, (ii) as a consequence of mismatches

between the intended and the actual architectures, and (iii) through the system

evolution. Finally, developers do not know which characteristics or relationships

among code anomalies are likely to be indicators of their harmful impact on

architectural design. As a result, developers do not have any kind of knowledge

about how to distinguish such critical code anomalies and, hence, identify

refactorings to fix the architectural problems. This means that architecturally-

relevant code anomalies may remain in the system implementation over a long

period of time, making its maintenance unnecessarily harder.

However, the analysis of architecturally-relevant code anomalies is far from

trivial due to several reasons. Firstly, it is questionable if all code anomalies do

incur in any damage to the architectural design. Some anomalies might be related

to architectural degradation while others are inserted on purpose by programmers

as the best solution to a given problem (Fowler et al., 1999). This means that

developers might be wasting time on removing anomalies that do not represent

any threat to the architecture design. Secondly, code anomalies and their inter-

relationships manifest in significantly different ways and usually are scattered

across the entire system implementation. Hence, software engineers should be

given information not only on where the code anomalies are, but also on its

harmful nature. Thirdly, there is no knowledge about whether and to what extent

current mechanisms for code anomaly detection are able to identify the

architecturally-relevant ones. In other words, conventional mechanisms might be

guiding developers in wrong directions when addressing architecturally-relevant

anomalies. Finally, and equally importantly, it is common that there is no proper

and updated documentation about the system architecture, and only its

corresponding source code remains as the reliable artifact.

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

24

1.3.
The State of Art on Code Anomalies and their Empirical Evaluation

A number of researchers have been interested in documenting code

anomalies that affect the modularity of software implementation (Riel, 1996;

Fowler et al., 1999; Iwamoto et al., 2003; Hannemann et al., 2005; Monteiro and

Fernandez, 2005; Piveta et al., 2005; Srivisut and Muchenraisi, 2007). Other

researchers have been interested in classifying code anomalies. Mantyla et al.,

2003 grouped code anomalies according to the software modularity property they

affect (e.g. complexity, cohesion). Wake (2003) categorized code anomalies

considering their scope (e.g. inter-class, intra-class), while Moha et al. (2009)

classified them according to their nature (e.g. structural). However, the already

documented classifications are solely based on the type of the code anomaly

rather than considering different sorts of relationships between their occurrences.

Taking into consideration the documented code anomalies, a number of

researchers have developed techniques to support their identification (Emden and

Moonen, 2002; Ratiu et al., 2004; Marinescu, 2004; Ratzinger, 2005; Lanza and

Marinescu, 2006; Murphy-Hill, 2008; Tsantalis, and Chatzigeorgiou, 2009;

Marinescu et al., 2010; Moha et al., 2010; Mara et al., 2011). These techniques

are based on exploiting information that is extracted from the source code

structure varying from the analysis of change couplings (Ratzinger, 2005) to the

combination of static code metrics (Mara et al., 201). Such metrics combination,

known as detection strategies in the literature (Marinescu, 2004), is the most

common technique used to identify code anomalies. The reason is that they

automatically generate a list of suspects; as a result, a wide range of analysis tools,

including visualization ones (Wettel and Lanza, 2008; Carneiro et al., 2010), are

based on such strategies. Others researches such as (Moha et al., 2010; Mara et

al., 2011) proposed Domain Specific Languages (DSL) to support the

construction of detection strategies. Unfortunately, detection strategies do not

explore relationships among inter-related code anomalies. We referred to as

conventional detection strategies those strategies that are only based on static

metrics extracted from the source code structure.

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

25

Recently, there has been a growing body of relevant work in the literature

that analyses the impact of code anomalies. For instance, Kim et al. (2005),

Mäntylä and Lassenius (2006), Lozano et al. (2008), Olbrich et al. (2009, 2010),

Khomh et al. (2009), Rahman et al. (2010) and Zazworka et al. (2011) studied to

what extent automatically-detected code anomalies favor unexpected changes in

the system implementation. Others such as Li and Shatnawi (2007), D’Ambros et

al. (2010) and Zazworka et al. (2011) analyzed the correlation of code anomalies

with fault occurrences. Other researchers investigated the impact of code

anomalies on the maintenance effort, such as Deligiannis et al. (2003); Abbes et

al. (2011); Yamashita et al. (2013); Sjobert et al. (2013). In particular, the last

three works are the only ones that assessed the harmful impact of inter-related

code anomalies. These works evidence a recent interest in understanding the

effects of inter-relationships among code anomalies. However, these studies were

designed to only analyze a specific type of relationship between code anomalies

(i.e. when they infect the same code element). Additionally, as it can be noticed,

none of the aforementioned studies investigated the impact of such inter-

relationships on the architecture design.

Therefore, although there is a vast research in the code anomalies area, all of

them do not address relevant challenges in this field, such as those presented in

Section 1.2. In particular, two main limitations were identified in the related work.

First, they do not carry out assessments regarding: (i) to what extent code

anomalies are likely to be indicators of architectural degradation and (ii) the

accuracy of conventional detection strategies on the identification of

architecturally-relevant code anomalies. Second, they are unable to explore which

recurring inter-related code anomalies are likely to degrade the system

architecture. As shown in Figure 1.1, inter-related code anomalies might be better

indicators of architectural degradation symptoms than single anomalies.

Moreover, since an architectural component is often implemented by several code

elements, architectural degradation symptoms could be better identified by

analyzing inter-related code anomalies. Summarizing, developers are not

equipped with knowledge to support the analysis of architecturally-relevant code

anomalies.

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

26

1.4.
Research Questions

Based on the issues discussed in the previous section, the main goal of this

thesis is to provide software engineers with a technique that supports them in the

identification of architectural degradation symptoms through the analysis of code

anomalies. The achievement of this goal was possible only through: (i)

understanding the extent of the relationship between code anomalies and

architectural degradation, and (ii) assessing to what extent conventional detection

strategies are accurate to identify architecturally-relevant code anomalies. The

output of the proposed technique is twofold: the lists of single code anomalies and

the list of inter-related ones that are likely to be correlated with architectural

degradation. In order to develop such a technique the following research questions

were addressed in this thesis:

RQ1: What is the relationship between code anomalies and architectural

degradation throughout the evolution of software systems?

RQ2: Whether the conventional detection strategies are able to accurately identify

architecturally-relevant code anomalies? If so, to what extent?

RQ3: How to accurately identify architecturally-relevant code anomalies?

RQ4: To what extent leveraging architecture-sensitive information and inter-

relationships among code anomalies improves the accuracy of conventional

strategies when identifying architecturally-relevant code anomalies?

The first research question aims at systematically assessing the proportion

of code anomalies that cause architectural degradation symptoms as well as what

proportion of architectural degradation symptoms could be removed through

refactorings anomalous code elements. The question is also concerned with

identifying and assessing characteristics of code anomalies that might be reliable

and strong indicators of their harmful impact on the architectural design.

The second research question investigates how accurate the conventional

detection strategies are for identifying architecturally-relevant code anomalies.

Such investigation is useful to reveal to what extent relying only on the analysis of

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

27

the source code structure could benefit or hinder the identification of these critical

code anomalies.

The third research question aims at defining a set of detection strategies to

help developers identify architecturally-relevant code anomalies. These strategies

combine the source code information and how it relates to the system architecture.

The proposed detection strategies also aim at reducing the number of neglected

architecturally-relevant code anomalies, identified in the previous research

question (RQ2). Based on the detected code anomalies, recurrent groups of inter-

related ones are identified. The goal of these groups is to encompass the

architecturally-relevant code anomalies in order to help engineers in their

distinction.

The fourth research question focuses on evaluating the accuracy of our

detection technique when identifying architecturally-relevant code anomalies.

Such accuracy is also compared with the one obtained by using conventional

detection strategies with the same purpose. By performing this comparison we

will be able to analyze the advantages and shortcomings of leveraging

architecture-sensitive information and inter-relationships among code anomalies

in the detection and distinction of the architecturally-relevant ones.

Table 1.1 presents the technical papers that have been published or are

under submission and their associations with each research question. Table 1.2

also illustrates published technical papers, but those that only have marginal

relation to this thesis.

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

28

Table 1.1: Publications directly related to this thesis.

Direct Publications Research Question(s)

Macia, I.; Detecting Architecturally-Relevant Code Smells in Evolving

Software Systems. In Proceedings of the 33
rd

 International Conference on

Software Engineering (ICSE) - Doctoral Symposium, Hawaii, USA, 2011.

All

Macia, I.; Garcia, A.; and Staa, A. An Exploratory Study of Code Smells in

Evolving aspect-oriented Systems. In Proceedings of the 10
th

 annual

International Conference on Aspect-oriented Software Development

(AOSD), pp. 203-214, 2011.

RQ1

Macia, I.; Arcoverde, R.; Garcia, A.; Chavez, C.; Staa, A. On the

Relevance of Code Anomalies for Identifying Architecture Degradation

Symptoms. In Proceedings of the 16
th

 European Conference on Software

Maintenance and Reengineering (CSMR), pp. 277-286, 2012.

RQ1

Macia, I. Revealing Architecturally-Relevant Flaws in Aspectual

Decompositions. In Proceedings of the 10
th

 International Conference on

aspect-oriented Software Development (AOSD), Fourth place at ACM

Competition, pp. 85–86, 2011. ACM.

RQ1

Macia, I.; Garcia, A.; Staa, A.; Garcia, J. and Medvidovic, N. On the

Impact of aspect-oriented Code Smells on Architecture Modularity: An

Exploratory Study. In Proceedings of the 5
th

 Brazilian Symposium on

Software Components, Architectures and Reuse (SBCARS), 2011.

RQ1

Macia, I.; Garcia, A.; Staa, A. Estratégias de Detecção de Anomalias de

Modularidade em Sistemas Orientados a Aspectos. In Proceedings of the III

Latin American Workshop on aspect-oriented Software Development

(LAWASP), 2009.

RQ1

Gurgel, A.; Macia, I.; Garcia, A.; Mezini, M.; Eichberg, M.;

Staa, A.; Mitschke, R. TamDera: Blending and Reusing

Rules for Architectural Degradation Prevention (to be submitted).

RQ1, RQ2

Macia, I.; Garcia, A.; Staa, A. Defining and Applying Detection Strategies

for aspect-oriented Code Smells. In Proceedings of the ACM SIGSoft

XXIII Brazilian Symposium on Software Engineering (SBES), 2010.

RQ2

Macia, I.; Garcia, J.; Popescu, D.; Garcia, A.; Staa, A, Medvidovic, N. Are

Automatically-Detected Code Anomalies Relevant to Architecture

Modularity? An Exploratory Analysis of Evolving Systems. In Proceedings

of the 11
th

 annual international conference on Aspect-oriented Software

Development (AOSD), pp. 167-178, 2012.

RQ2

Macia, I.; Arcoverde, R.; Cirilo, E.; Garcia, A.; Staa, A. Supporting the

Identification of Architecturally-Relevant Code Anomalies. In Proceedings

of the 28
th

 IEEE International Conference on Software Maintenance

(ICSM), 2012.

RQ3

Arcoverde, R.; Macia, I.; Garcia, A.; Staa, A. Automatically Detecting

Architecturally-Relevant Code Anomalies. In Proceedings of the 3
rd

International Workshop on Recommendation Systems for Software

Engineering (RSSE), held in conjunction with the 34
th

 International

Conference on Software Engineering (ICSE), 2012.

RQ3

Macia, I.; Garcia, A.; Chavez, C.; Staa, A. Enhancing the Detection of

Code Anomalies with Architecture-Sensitive Strategies. In Proceedings of

the 17
th

 European Conference on Software Maintenance and Reengineering

(CSMR), 2013 (to appear).

RQ3, RQ4

Macia, I.; Dantas, F.; Garcia, A.; Staa, A.; Mezini, M. Are Code Anomaly

Patterns relevant to the Architectural Design? (to be submitted)
RQ3, RQ4

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

29

Table 1.2: Indirect publications.

Indirect Publications

Herrera, J.; Macia, I.; Salas, P.; Pinho, R.; Vargas, R.; Garcia, A.; Araújo, J.; Breitman,K.

Revealing Crosscutting Concerns in Textual Requirements Documents: An Exploratory Study

with Industry Systems. In Proceedings of the ACM SIGSoft XXV Brazilian Symposium on

Software Engineering (SBES), pp. 111-120, 2012

Mitschke, R.; Eichberg, M.; Mezini, M. Garcia, A.; Macia, I. Modular Specification and Checking

of Structural Dependencies. In Proceedings of the 13
th

 annual international conference on Aspect-

oriented Software Development (AOSD), pp. 167-178, 2013 (to appear).

1.5.
Outline of the Thesis Structure

In the remainder of this thesis, we study the interplay of code anomalies and

architectural degradation and demonstrate the inability of conventional detection

strategies to identify architecturally-relevant code anomalies. We present the

details of our technique to detect code anomalies and its composing elements,

such as metrics, detection strategies, code anomaly patterns, and the proposed

supporting tool. We also demonstrate how our technique can help a developer to

better identify architecturally-relevant code anomalies and, thus, how the

architectural information extracted from the source code benefits this process.

Chapter 2 provides an overview of the background material necessary to

understand the thesis and evaluate its contributions. Firstly, we present definitions

of software architecture (Section 2.1). Then, we describe the architectural

degradation phenomenon in terms of its main causes and the techniques for

supporting its prevention (Section 2.2). We also discuss code anomalies including

definitions, mechanisms for supporting their automatic detection and empirical

studies that investigate their harmfulness under different perspectives (Section

2.3). For both research topics architectural degradation and code anomaly, we

provide a critical review of their open issues that motivate this research work.

Chapter 3 presents the definition and assessment of code anomalies

recurrently observed in three aspect-oriented software systems. It starts presenting

the main concepts of the aspect-oriented programming (Kickzales, 1996) in

Section 3.1. Then, it describes how the new code anomalies were recurrently

observed (Section 3.2). These new code anomalies and the already published ones

are classified in three categories according to their common characteristics. We

empirically evaluate the anomalies in the context of three software systems

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

30

(Section 3.3). The documentation of these code anomalies, their corresponding

detection strategies and evaluation, form the first contribution of this thesis.

In Chapter 4, we assess the interplay between code anomalies and

architectural degradation in the context of five software systems developed using

aspect-oriented and object-oriented techniques (Section 4.1). Besides assessing

the correlation and cause-effect relationships between code anomalies and

architectural degradation, we evaluate the impact of two characteristics of code

anomalies, type and earliness, on such relationships (Section 4.2). We also study

how often developers apply refactorings to address architecturally-relevant code

anomalies. Finally, the limitations of the study are presented in Section 4.3. The

description of the design of the case study, and the discussion of the findings we

have encountered, constitutes the second contribution of our work.

In Chapter 5, we evaluate the accuracy of conventional detection strategies

when identifying architecturally-relevant code anomalies. This evaluation is

carried out in the context of the five target systems used in Chapter 4 (Section

5.1). Specifically, fifteen detection strategies including both aspect-oriented and

object-oriented ones were assessed in this study. As result the study revealed that

conventional strategies are not accurate to identify architecturally-relevant code

anomalies (Section 5.2) due to their inability to exploit architecture-sensitive

information and relationships among code anomalies. We describe the limitations

of the study in Section 5.3. The description of the design of this study, and the

empirical evidence and reasons about the inability of conventional detection

strategies to identify architecturally-relevant code anomalies, form the third

contribution of this thesis.

Based on the findings gathered in Chapters 4 and 5, Chapter 6 describes the

foundations of the proposed technique to detect architecturally-relevant code

anomalies. First, we present the basic terminology and formalism for this

detection (Section 6.1). Then, we present a suite of seven architecture-sensitive

metrics that is formalized using the proposed formalism and can be gathered from

the source code in absence of explicit architecture description (Section 6.2). We

also propose a suite of eight detection strategies that rely on these metrics (Section

6.3). Then, we systematically evaluate the accuracy of the architecture-sensitive

detection strategies in the context of five software systems (Section 6.4). The

proposed architecture-sensitive metrics and architecture-sensitive detection

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

31

strategies, form the fourth contribution of our work. Additionally, the findings

gathered while assessing the strategies accuracy constitute the fifth contribution of

this thesis.

In Chapter 7, we present the second part of the proposed technique, which

involves the distinction of architecturally-relevant code anomalies by analyzing

the relationships among anomalous code elements. We present and classify nine

recurring inter-relationships among anomalous code elements – code anomaly

patterns – observed in a sample of six software systems (Section 7.1). The

anomaly patterns are classified in four groups (Sections 7.2 to 7.5) according to

their common characteristics. We also discuss some of the possible correlations

among the anomaly patterns (Section 7.6). We present our tool, SCOOP, which

provides support to the collection of the proposed metrics, application of the

proposed strategies and identification of the documented anomaly patterns

(Section 7.7). The correlation of the anomaly patterns with architecturally-relevant

code anomalies is investigated in Section 7.8. The documented anomaly patterns,

our tool and the systematic assessment of their correlation with architecturally-

relevant code anomalies, constitute the sixth contribution of this thesis.

Chapter 8 presents the final remarks, summarizes the contributions of this

work and points out the future directions to be followed.

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

