
 

1 
Introduction 

The design of a software architecture plays an important role in the software 

development process because quality attributes of software systems depend on it, 

such as maintainability and evolvability. Therefore, a well-designed architecture 

should lead to high quality software systems. There are different definitions of 

software architecture in the literature. In this research we focus on the software 

architecture definition established by Bass et al. (2003): “The software 

architecture is the structure of the system, which comprises of software 

components, the externally visible properties of these components (i.e. interfaces), 

and the relationship among them”. 

Software systems can be developed using different architectures, which vary 

from well-designed to badly-designed. A software architecture, even if initially 

being well-designed, can degrade as the system evolves over time due to change 

upon change (Lehman, 1980). A degraded architecture often makes changes in the 

software system more costly and error prone than should be (Stringfellow et al., 

2006). The phenomenon of architectural degeneration manifests through 

architectural erosion and drift processes (Perry and Wolf, 1992; Hochstein and 

Lindvall, 2005). Architectural erosion corresponds to mismatches between the 

implemented and the intended one prescribed by architects. A typical example of 

erosion symptom is an unintended relationship between two components in the 

implemented architecture. In contrast to erosion, architectural drift occurs when 

the software architecture violates modularity principles. Typical examples of drift 

symptoms are components with bloat interfaces or implementing several 

responsibilities (Garcia et al., 2009; Perry and Wolf, 1992). In extreme cases, 

symptoms of architectural degradation can cause the software reengineering (Eick 

et al., 2001; Hochstein and Lindvall, 2005; MacCormack et al., 2006). 

More directly, however, the degradation of a software architecture can be 

observed in its implementation throughout the progressive introduction of code 

anomalies, commonly referred as “code smells” (Karr, 1996; Fowler et al., 1999; 
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Eick et al., 2001; Hochstein and Lindvall, 2005). In particular, code anomalies 

might be introduced in the system implementation as a result of drift symptoms in 

the intended architecture. On the other hand, degradation symptoms in the 

software architecture might be introduced by code anomalies, that is writing either 

unintended or non-modular code for a given architecture (Eick et al., 2001; 

MacCormack et al., 2006; Knodel et al., 2008; Sarkar et al., 2009b). For instance, 

anomalous code elements (i.e. those infected by code anomalies) might introduce 

unintended dependencies among architectural components, making the software 

architecture hard to evolve. Studying the relationship between code anomalies and 

architectural degradation is the main focus of this research. 

 

1.1. 
Motivation 

Code anomalies are program structures that may indicate a maintainability 

problem in the software (Fowler et al., 1999). A high number of code anomalies 

may emerge in programs structured independently of the kind of modularization 

technique, including object-oriented programming (Meyer, 2000) and aspect-

oriented programming (Kiczales, 1997). Some examples of code anomalies 

include methods that are too long and contain several functionalities (Long 

Method), and tightly coupled methods that change due to several reasons 

(Divergent Change). Code anomalies are particularly harmful to software 

maintenance when they are associated with architectural degradation symptoms. 

An architecturally-relevant code anomaly represents an architectural degradation 

symptom in the implementation. 

There are several examples documented in the literature that offer 

substantial evidence regarding the negative impact of code anomalies on the 

system architecture. Eick et al. (2001) showed how complex code elements 

related to unintended relationships among architectural components hinder the 

evolution of the AT&T 5ESS telephone switching system. In particular, the high 

number of code anomalies related to such undesirable relationships made it 

impossible to make further changes in the system. MacCormack et al. (2006) 

reported that complex code elements modularizing several responsibilities 

introduced high coupling between architectural components. These complex code 
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elements were related to a Mozilla web browser re-engineering, which took about 

five years to rewrite for seven thousand source files and two million source lines 

of code (Godfrey and Lee, 2000). Similarly, code anomalies related to 

architectural problems in the Linux-kernel implementation led to a two-year long 

restructuring of release 2.6 (van Gurp and Bosch, 2002). Knodel et al. (2008) also 

highlighted the harmful impact of code anomalies on the system architecture. In 

particular more than 5000 architectural problems were related to anomalous code 

structures in the Testo AG system. Sarkar et al. (2009) showed how the effort to 

refactor code elements that impact on the architecture design took 2.100 man/day 

to rewrite and retest 25 MLOC lines of code. These examples stand as evidence of 

the relevance of supporting software engineers in the detection of architecturally-

relevant code anomalies. 

 

1.1.1.  
Motivating Example 

In order to illustrate the adverse impact of code anomalies on the 

architectural design, Figure 1.1 depicts an example. This figure shows a partial 

representation of the component-and-connector view (Bass et al., 2003) of a web-

based system that manages complaints in public institutions. This system is called 

Health Watcher (Soares et al., 2002) and is one of the systems used in our 

assessments. As it can be observed, the architectural view represents the static 

structure of the system in terms of its components (i.e. View, Distribution, Business 

and Data) and the relationships among them (Bass et al., 2003). In particular, the 

components of the Health Watcher system architecture were structured following 

the Layers architectural style (Buschmann et al., 1996). 
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Figure 1.1: A design slice of the Health Watcher system architecture. 

Code Anomalies. From the implementation perspective, Figure 1.1 depicts 

an example of two code anomalies infecting the same code element. First, the 

InsertSComplaint.execute() method is infected by the Long Method anomaly. The 

problem is that this method deals with several system concerns (i.e. 

responsibilities or functionalities), such as Persistence and Transaction that should 

be implemented by other methods. The implementation of these concerns leads 

the method to present a high complexity in terms of lines of code and cyclomatic 

complexity (McCabe, 1976). Additionally, the pieces of code dealing with 

Persistence and Transaction concerns in the InsertSComplaint.execute() method are 

duplicated in other methods, such as InsertEmployee.execute() and 

InsertHealthUnit.execute(). Therefore, InsertSComplaint.execute() should be 

decomposed into several smaller methods in order to improve its readability and 

modularity. Second, this method also suffers from the Disperse Coupling 

anomaly. In this case the problem is that the method uses information from 

several classes that belong to different architectural layers (e.g. Distribution and 
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Data). As a consequence, the InsertSComplaint.execute() method was modified due 

to changes performed on these architectural layers.  

Architectural Degradation. From the architecture perspective, Figure 1.1 

presents two examples of architectural degradation symptoms. In particular, it can 

be noticed how multiple components are responsible for addressing the same 

system concern and, additionally, some of these components are responsible for 

independent ones. For instance, View and Data components address the Persistence 

concern and, at the same time, they implement independent ones such as View and 

JDBC Connection, respectively. This situation violates the principles of separation 

of concerns in two ways. Firstly, the Persistence concern is scattered across 

several architectural layers. Secondly, at least one component modularizes more 

than one independent system concern. This architectural degradation symptom is 

known in the literature as Scattered Parasitic Functionality (Garcia et al., 2009). 

Furthermore, Figure 1.1 depicts an example of a violation of the Layers 

architectural style (Buschmann et al., 1996). The problem is associated with the 

way exception handling is modularized in this system. Most exceptions are 

propagated through components interfaces across the system layers, thereby going 

against the architects’ original intent in some cases. For instance, 

InsertSComplaint.execute() method calls services provided by the requestFacade 

interface. However, it has to deal with different exceptions (e.g. TransactionExc) 

propagated by the ComplaintRepository interface, which belongs to the Data layer. 

The main issue is that these exceptions should be treated internally by the Data 

component. Specifically, Data should propagate only that exceptional information 

which is relevant to the final user or other modules, rather than propagate any kind 

of information. Otherwise, undesirable dependencies are introduced between View 

and Data layers. This means that accidental code couplings between code elements 

that belong to the View and Data layers are the sources of architectural violations. 

Impact of Code Anomalies on Architectural Design. A deeper analysis of 

both aforementioned architectural degradation symptoms (i.e. Scattered Parasitic 

Functionality and violation) revealed that they were introduced, in part, by the 

InsertSComplaint.execute() method, which suffers from a simultaneous occurrence 

of Long Method and Disperse Coupling code anomalies. Some of the relationships 

added by the Disperse Coupling occurrence were classified as violations because 

they introduced undesirable coupling between non-adjacent architectural 
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components. This was the case, for example, of different exceptions (e.g. 

TransactionExc) propagated by the Data layer that were dealt by 

InsertSComplaint.execute() method defined in the View layer, even though these 

exceptions are not related to the method goal. Also, some concerns implemented 

by the Long Method InsertSComplaint.execute() (e.g. handling the Persistence 

exceptions) were also addressed by different layer, such as Data. Therefore, the 

InsertSComplaint.execute() method contributes for the View layer to suffer from 

Scattered Parasitic Functionality. This particular example also helps to illustrate 

how certain inter-related code anomalies (e.g. Long Method and Disperse 

Coupling affecting the same code element) may be an indicator of architectural 

degradation symptoms. 

 

1.2. 
Problem Statement 

Refactoring (Fowler et al., 1999) is the most common mechanism for 

removing code anomalies. However, refactoring is often not applied when it is 

complex, error-prone, time-consuming or, more importantly, when it seems not to 

be critical to maintain the longevity of the software (Murphy-Hill et al., 2009; 

Arcoverde et al., 2011). This means that software engineers often need to focus on 

the identification and removal of the most critical code anomalies. For example, if 

a code anomaly is associated with architectural degradation symptoms (Figure 

1.1) it may require closer, more immediate attention. The problem is that the 

detection and removal of architecturally-relevant code anomalies are difficult 

given the high number of code anomalies that often infect the implementation of 

software systems. For instance, current mechanisms for code anomaly detection 

(Marinescu, 2004; Lanza and Marinescu, 2006) tend to detect thousands of 

suspects even in small software systems (Sonarsource, 2010), making even more 

difficult those processes. Therefore, each code anomaly detected can be 

considered as a potential candidate to be related to architectural degradation 

symptoms. 

In these cases, developers can only resort to figuring out (or guessing) 

which code anomalies represent architectural degradation symptoms. The 

challenge is that there are no attempts to understand the manifestation of code 
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anomalies that are strong indicators of architectural degradation. There is a 

conventional wisdom that code anomalies adversely impact the software 

architecture. However, there is no knowledge about in what proportion this 

relationship manifests; i.e. do a great amount of code anomalies (not) affect the 

software architecture? This kind of analysis is important given the need to know 

whether it is worth focusing on code anomaly analysis to reveal the majority of 

the architectural problems. Furthermore, it is unknown when the relationship 

between code anomalies and architectural degradation manifests: (i) during the 

implementation of the intended architecture, (ii) as a consequence of mismatches 

between the intended and the actual architectures, and (iii) through the system 

evolution. Finally, developers do not know which characteristics or relationships 

among code anomalies are likely to be indicators of their harmful impact on 

architectural design. As a result, developers do not have any kind of knowledge 

about how to distinguish such critical code anomalies and, hence, identify 

refactorings to fix the architectural problems. This means that architecturally-

relevant code anomalies may remain in the system implementation over a long 

period of time, making its maintenance unnecessarily harder. 

However, the analysis of architecturally-relevant code anomalies is far from 

trivial due to several reasons. Firstly, it is questionable if all code anomalies do 

incur in any damage to the architectural design. Some anomalies might be related 

to architectural degradation while others are inserted on purpose by programmers 

as the best solution to a given problem (Fowler et al., 1999). This means that 

developers might be wasting time on removing anomalies that do not represent 

any threat to the architecture design. Secondly, code anomalies and their inter-

relationships manifest in significantly different ways and usually are scattered 

across the entire system implementation. Hence, software engineers should be 

given information not only on where the code anomalies are, but also on its 

harmful nature. Thirdly, there is no knowledge about whether and to what extent 

current mechanisms for code anomaly detection are able to identify the 

architecturally-relevant ones. In other words, conventional mechanisms might be 

guiding developers in wrong directions when addressing architecturally-relevant 

anomalies. Finally, and equally importantly, it is common that there is no proper 

and updated documentation about the system architecture, and only its 

corresponding source code remains as the reliable artifact. 
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1.3. 
The State of Art on Code Anomalies and their Empirical Evaluation 

A number of researchers have been interested in documenting code 

anomalies that affect the modularity of software implementation (Riel, 1996; 

Fowler et al., 1999; Iwamoto et al., 2003; Hannemann et al., 2005; Monteiro and 

Fernandez, 2005; Piveta et al., 2005; Srivisut and Muchenraisi, 2007). Other 

researchers have been interested in classifying code anomalies. Mantyla et al., 

2003 grouped code anomalies according to the software modularity property they 

affect (e.g. complexity, cohesion). Wake (2003) categorized code anomalies 

considering their scope (e.g. inter-class, intra-class), while Moha et al. (2009) 

classified them according to their nature (e.g. structural). However, the already 

documented classifications are solely based on the type of the code anomaly 

rather than considering different sorts of relationships between their occurrences.  

Taking into consideration the documented code anomalies, a number of 

researchers have developed techniques to support their identification (Emden and 

Moonen, 2002; Ratiu et al., 2004; Marinescu, 2004; Ratzinger, 2005; Lanza and 

Marinescu, 2006; Murphy-Hill, 2008; Tsantalis, and Chatzigeorgiou, 2009; 

Marinescu et al., 2010; Moha et al., 2010; Mara et al., 2011). These techniques 

are based on exploiting information that is extracted from the source code 

structure varying from the analysis of change couplings (Ratzinger, 2005) to the 

combination of static code metrics (Mara et al., 201). Such metrics combination, 

known as detection strategies in the literature (Marinescu, 2004), is the most 

common technique used to identify code anomalies. The reason is that they 

automatically generate a list of suspects; as a result, a wide range of analysis tools, 

including visualization ones (Wettel and Lanza, 2008; Carneiro et al., 2010), are 

based on such strategies. Others researches such as (Moha et al., 2010; Mara et 

al., 2011) proposed Domain Specific Languages (DSL) to support the 

construction of detection strategies. Unfortunately, detection strategies do not 

explore relationships among inter-related code anomalies. We referred to as 

conventional detection strategies those strategies that are only based on static 

metrics extracted from the source code structure. 
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Recently, there has been a growing body of relevant work in the literature 

that analyses the impact of code anomalies. For instance, Kim et al. (2005), 

Mäntylä and Lassenius (2006), Lozano et al. (2008), Olbrich et al. (2009, 2010), 

Khomh et al. (2009), Rahman et al. (2010) and Zazworka et al. (2011) studied to 

what extent automatically-detected code anomalies favor unexpected changes in 

the system implementation. Others such as Li and Shatnawi (2007), D’Ambros et 

al. (2010) and Zazworka et al. (2011) analyzed the correlation of code anomalies 

with fault occurrences. Other researchers investigated the impact of code 

anomalies on the maintenance effort, such as Deligiannis et al. (2003); Abbes et 

al. (2011); Yamashita et al. (2013); Sjobert et al. (2013). In particular, the last 

three works are the only ones that assessed the harmful impact of inter-related 

code anomalies. These works evidence a recent interest in understanding the 

effects of inter-relationships among code anomalies. However, these studies were 

designed to only analyze a specific type of relationship between code anomalies 

(i.e. when they infect the same code element). Additionally, as it can be noticed, 

none of the aforementioned studies investigated the impact of such inter-

relationships on the architecture design. 

Therefore, although there is a vast research in the code anomalies area, all of 

them do not address relevant challenges in this field, such as those presented in 

Section 1.2. In particular, two main limitations were identified in the related work. 

First, they do not carry out assessments regarding: (i) to what extent code 

anomalies are likely to be indicators of architectural degradation and (ii) the 

accuracy of conventional detection strategies on the identification of 

architecturally-relevant code anomalies. Second, they are unable to explore which 

recurring inter-related code anomalies are likely to degrade the system 

architecture. As shown in Figure 1.1, inter-related code anomalies might be better 

indicators of architectural degradation symptoms than single anomalies. 

Moreover, since an architectural component is often implemented by several code 

elements, architectural degradation symptoms could be better identified by 

analyzing inter-related code anomalies. Summarizing, developers are not 

equipped with knowledge to support the analysis of architecturally-relevant code 

anomalies.  
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1.4. 
Research Questions 

Based on the issues discussed in the previous section, the main goal of this 

thesis is to provide software engineers with a technique that supports them in the 

identification of architectural degradation symptoms through the analysis of code 

anomalies. The achievement of this goal was possible only through: (i) 

understanding the extent of the relationship between code anomalies and 

architectural degradation, and (ii) assessing to what extent conventional detection 

strategies are accurate to identify architecturally-relevant code anomalies. The 

output of the proposed technique is twofold: the lists of single code anomalies and 

the list of inter-related ones that are likely to be correlated with architectural 

degradation. In order to develop such a technique the following research questions 

were addressed in this thesis: 

 

RQ1: What is the relationship between code anomalies and architectural 

degradation throughout the evolution of software systems? 

RQ2: Whether the conventional detection strategies are able to accurately identify 

architecturally-relevant code anomalies? If so, to what extent? 

RQ3: How to accurately identify architecturally-relevant code anomalies? 

RQ4: To what extent leveraging architecture-sensitive information and inter-

relationships among code anomalies improves the accuracy of conventional 

strategies when identifying architecturally-relevant code anomalies? 

 

The first research question aims at systematically assessing the proportion 

of code anomalies that cause architectural degradation symptoms as well as what 

proportion of architectural degradation symptoms could be removed through 

refactorings anomalous code elements. The question is also concerned with 

identifying and assessing characteristics of code anomalies that might be reliable 

and strong indicators of their harmful impact on the architectural design.  

The second research question investigates how accurate the conventional 

detection strategies are for identifying architecturally-relevant code anomalies. 

Such investigation is useful to reveal to what extent relying only on the analysis of 
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the source code structure could benefit or hinder the identification of these critical 

code anomalies.  

The third research question aims at defining a set of detection strategies to 

help developers identify architecturally-relevant code anomalies. These strategies 

combine the source code information and how it relates to the system architecture. 

The proposed detection strategies also aim at reducing the number of neglected 

architecturally-relevant code anomalies, identified in the previous research 

question (RQ2). Based on the detected code anomalies, recurrent groups of inter-

related ones are identified. The goal of these groups is to encompass the 

architecturally-relevant code anomalies in order to help engineers in their 

distinction.  

The fourth research question focuses on evaluating the accuracy of our 

detection technique when identifying architecturally-relevant code anomalies. 

Such accuracy is also compared with the one obtained by using conventional 

detection strategies with the same purpose. By performing this comparison we 

will be able to analyze the advantages and shortcomings of leveraging 

architecture-sensitive information and inter-relationships among code anomalies 

in the detection and distinction of the architecturally-relevant ones. 

Table 1.1 presents the technical papers that have been published or are 

under submission and their associations with each research question. Table 1.2 

also illustrates published technical papers, but those that only have marginal 

relation to this thesis.  
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Table 1.1: Publications directly related to this thesis. 

Direct Publications Research Question(s) 

Macia, I.; Detecting Architecturally-Relevant Code Smells in Evolving 

Software Systems. In Proceedings of the 33
rd

 International Conference on 

Software Engineering (ICSE) - Doctoral Symposium, Hawaii, USA, 2011. 

All 

Macia, I.; Garcia, A.; and Staa, A. An Exploratory Study of Code Smells in 

Evolving aspect-oriented Systems. In Proceedings of the 10
th

 annual 

International Conference on Aspect-oriented Software Development 

(AOSD), pp. 203-214, 2011. 

RQ1 

Macia, I.; Arcoverde, R.; Garcia, A.; Chavez, C.; Staa, A. On the 

Relevance of Code Anomalies for Identifying Architecture Degradation 

Symptoms. In Proceedings of the 16
th

 European Conference on Software 

Maintenance and Reengineering (CSMR), pp. 277-286, 2012. 

RQ1 

Macia, I. Revealing Architecturally-Relevant Flaws in Aspectual 

Decompositions. In Proceedings of the 10
th

 International Conference on 

aspect-oriented Software Development (AOSD), Fourth place at ACM 

Competition, pp. 85–86, 2011. ACM. 

RQ1 

Macia, I.; Garcia, A.; Staa, A.; Garcia, J. and Medvidovic, N. On the 

Impact of aspect-oriented Code Smells on Architecture Modularity: An 

Exploratory Study. In Proceedings of the 5
th

 Brazilian Symposium on 

Software Components, Architectures and Reuse (SBCARS), 2011. 

RQ1 

Macia, I.; Garcia, A.; Staa, A. Estratégias de Detecção de Anomalias de 

Modularidade em Sistemas Orientados a Aspectos. In Proceedings of the III 

Latin American Workshop on aspect-oriented Software Development 

(LAWASP), 2009. 

RQ1 

Gurgel, A.; Macia, I.; Garcia, A.; Mezini, M.; Eichberg, M.; 

Staa, A.; Mitschke, R. TamDera: Blending and Reusing 

Rules for Architectural Degradation Prevention (to be submitted). 

RQ1, RQ2 

Macia, I.; Garcia, A.; Staa, A. Defining and Applying Detection Strategies 

for aspect-oriented Code Smells. In Proceedings of the ACM SIGSoft 

XXIII Brazilian Symposium on Software Engineering (SBES), 2010.  

RQ2 

Macia, I.; Garcia, J.; Popescu, D.; Garcia, A.; Staa, A, Medvidovic, N. Are 

Automatically-Detected Code Anomalies Relevant to Architecture 

Modularity? An Exploratory Analysis of Evolving Systems. In Proceedings 

of the 11
th

 annual international conference on Aspect-oriented Software 

Development (AOSD), pp. 167-178, 2012. 

RQ2 

Macia, I.; Arcoverde, R.; Cirilo, E.; Garcia, A.; Staa, A. Supporting the 

Identification of Architecturally-Relevant Code Anomalies. In Proceedings 

of the 28
th

 IEEE International Conference on Software Maintenance 

(ICSM), 2012. 

RQ3 

Arcoverde, R.; Macia, I.; Garcia, A.; Staa, A. Automatically Detecting 

Architecturally-Relevant Code Anomalies. In Proceedings of the 3
rd

 

International Workshop on Recommendation Systems for Software 

Engineering (RSSE), held in conjunction with the 34
th

 International 

Conference on Software Engineering (ICSE), 2012. 

RQ3 

Macia, I.; Garcia, A.; Chavez, C.; Staa, A. Enhancing the Detection of 

Code Anomalies with Architecture-Sensitive Strategies. In Proceedings of 

the 17
th

 European Conference on Software Maintenance and Reengineering 

(CSMR), 2013 (to appear). 

RQ3, RQ4 

Macia, I.; Dantas, F.; Garcia, A.; Staa, A.; Mezini, M. Are Code Anomaly 

Patterns relevant to the Architectural Design? (to be submitted) 
RQ3, RQ4 
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Table 1.2: Indirect publications. 

Indirect Publications 

Herrera, J.; Macia, I.; Salas, P.; Pinho, R.; Vargas, R.; Garcia, A.; Araújo, J.; Breitman,K. 

Revealing Crosscutting Concerns in Textual Requirements Documents: An Exploratory Study 

with Industry Systems. In Proceedings of the ACM SIGSoft XXV Brazilian Symposium on 

Software Engineering (SBES), pp. 111-120, 2012 

Mitschke, R.; Eichberg, M.; Mezini, M. Garcia, A.; Macia, I. Modular Specification and Checking 

of Structural Dependencies. In Proceedings of the 13
th

 annual international conference on Aspect-

oriented Software Development (AOSD), pp. 167-178, 2013 (to appear). 

 

 

1.5. 
Outline of the Thesis Structure 

In the remainder of this thesis, we study the interplay of code anomalies and 

architectural degradation and demonstrate the inability of conventional detection 

strategies to identify architecturally-relevant code anomalies. We present the 

details of our technique to detect code anomalies and its composing elements, 

such as metrics, detection strategies, code anomaly patterns, and the proposed 

supporting tool. We also demonstrate how our technique can help a developer to 

better identify architecturally-relevant code anomalies and, thus, how the 

architectural information extracted from the source code benefits this process. 

Chapter 2 provides an overview of the background material necessary to 

understand the thesis and evaluate its contributions. Firstly, we present definitions 

of software architecture (Section 2.1). Then, we describe the architectural 

degradation phenomenon in terms of its main causes and the techniques for 

supporting its prevention (Section 2.2). We also discuss code anomalies including 

definitions, mechanisms for supporting their automatic detection and empirical 

studies that investigate their harmfulness under different perspectives (Section 

2.3). For both research topics architectural degradation and code anomaly, we 

provide a critical review of their open issues that motivate this research work. 

Chapter 3 presents the definition and assessment of code anomalies 

recurrently observed in three aspect-oriented software systems. It starts presenting 

the main concepts of the aspect-oriented programming (Kickzales, 1996) in 

Section 3.1. Then, it describes how the new code anomalies were recurrently 

observed (Section 3.2). These new code anomalies and the already published ones 

are classified in three categories according to their common characteristics. We 

empirically evaluate the anomalies in the context of three software systems 
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(Section 3.3). The documentation of these code anomalies, their corresponding 

detection strategies and evaluation, form the first contribution of this thesis. 

In Chapter 4, we assess the interplay between code anomalies and 

architectural degradation in the context of five software systems developed using 

aspect-oriented and object-oriented techniques (Section 4.1). Besides assessing 

the correlation and cause-effect relationships between code anomalies and 

architectural degradation, we evaluate the impact of two characteristics of code 

anomalies, type and earliness, on such relationships (Section 4.2). We also study 

how often developers apply refactorings to address architecturally-relevant code 

anomalies. Finally, the limitations of the study are presented in Section 4.3. The 

description of the design of the case study, and the discussion of the findings we 

have encountered, constitutes the second contribution of our work. 

In Chapter 5, we evaluate the accuracy of conventional detection strategies 

when identifying architecturally-relevant code anomalies. This evaluation is 

carried out in the context of the five target systems used in Chapter 4 (Section 

5.1). Specifically, fifteen detection strategies including both aspect-oriented and 

object-oriented ones were assessed in this study. As result the study revealed that 

conventional strategies are not accurate to identify architecturally-relevant code 

anomalies (Section 5.2) due to their inability to exploit architecture-sensitive 

information and relationships among code anomalies. We describe the limitations 

of the study in Section 5.3. The description of the design of this study, and the 

empirical evidence and reasons about the inability of conventional detection 

strategies to identify architecturally-relevant code anomalies, form the third 

contribution of this thesis. 

Based on the findings gathered in Chapters 4 and 5, Chapter 6 describes the 

foundations of the proposed technique to detect architecturally-relevant code 

anomalies. First, we present the basic terminology and formalism for this 

detection (Section 6.1). Then, we present a suite of seven architecture-sensitive 

metrics that is formalized using the proposed formalism and can be gathered from 

the source code in absence of explicit architecture description (Section 6.2). We 

also propose a suite of eight detection strategies that rely on these metrics (Section 

6.3). Then, we systematically evaluate the accuracy of the architecture-sensitive 

detection strategies in the context of five software systems (Section 6.4). The 

proposed architecture-sensitive metrics and architecture-sensitive detection 
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strategies, form the fourth contribution of our work. Additionally, the findings 

gathered while assessing the strategies accuracy constitute the fifth contribution of 

this thesis. 

In Chapter 7, we present the second part of the proposed technique, which 

involves the distinction of architecturally-relevant code anomalies by analyzing 

the relationships among anomalous code elements. We present and classify nine 

recurring inter-relationships among anomalous code elements – code anomaly 

patterns – observed in a sample of six software systems (Section 7.1). The 

anomaly patterns are classified in four groups (Sections 7.2 to 7.5) according to 

their common characteristics. We also discuss some of the possible correlations 

among the anomaly patterns (Section 7.6). We present our tool, SCOOP, which 

provides support to the collection of the proposed metrics, application of the 

proposed strategies and identification of the documented anomaly patterns 

(Section 7.7). The correlation of the anomaly patterns with architecturally-relevant 

code anomalies is investigated in Section 7.8. The documented anomaly patterns, 

our tool and the systematic assessment of their correlation with architecturally-

relevant code anomalies, constitute the sixth contribution of this thesis.  

Chapter 8 presents the final remarks, summarizes the contributions of this 

work and points out the future directions to be followed. 
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