

2
Background and Related Work

As software systems evolve, their size and complexity tend to grow. In this

context, the increasing manifestation of code anomalies is a key symptom of

architecture quality degradation. When those anomalies are not detected and

systematically removed, the evolution of software systems can be compromised

irreversibly, and, eventually, a complete redesign will become inevitable (Eick et

al., 2001; van Gurp and Bosch, 2002; Maccormack et al., 2006). Many studies

have broadly proposed mechanisms for code anomaly detection (Ratiu, 2004;

Lanza and Marinescu, 2006; Mara et al., 2011). However, identifying which

anomalies are more likely to adversely impact the system architecture is still a

challenging task.

In this context, this chapter outlines the software architecture terminology

we will use throughout this document (Section 2.1). Next, it presents the

architecture degradation phenomenon in terms of its main causes and the

techniques for supporting its prevention (Section 2.2). Afterwards, we discuss

code anomalies including: definitions, mechanisms for supporting their automatic

detection and empirical studies that investigate their harmfulness under different

perspectives (Section 2.3). For both research topics architectural degradation and

code anomaly, the chapter provides a critical review of their open issues that

motivate this research work.

2.1.
Software Architecture

Software architecture is the structure of the system, which comprises

software elements (e.g. components), the externally visible properties of these

elements, and relationships among them (Bass et al., 2003). Additionally,

software architecture is the key artifact providing information about the system

internal organization (Bass et al., 2003). The development of software

architecture can galvanize the diverse stakeholders into action towards a common

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

33

goal of realizing the envisaged system, or maintaining the delivered system

(Clements et al., 2002). In many cases, it can influence, or even dictate, the

organization of the various development teams (Booch, 2007).

From a structural perspective, the architecture captures the structure of a

system in terms of architectural components and how they interact (Gorton,

2006). Architectural components are architectural elements which address key

architectural concerns, including functionalities and behaviors (Taylor et al.,

2009). Functionalities refer to the component purpose whereas behaviors

represent the component interactions. Components interact by means of

connectors. In this sense an architectural concern is defined as an architect

interest that significantly influences the system architecture (IEEE 1471, 2010).

Architectural connectors provide the following types of interaction services

between architectural components: communication, coordination, conversion, and

facilitation (Mehta et al., 2000). Communication concerns the transfer of data

(e.g., messages, computational results, etc.) between components. Coordination

concerns the transfer of control (e.g., the passing of thread execution) between

components. Conversion is concerned with the translation of differing interaction

services between components (e.g., conversion of data formats, types, protocols,

etc). Finally, facilitation describes the mediation, optimization, and streamlining

of interaction (e.g., load balancing, monitoring, and fault tolerance).

As a conceptual solution, software architecture captures the foundational

design decisions made early in the development process (Bass et al., 2003; Jansen

and Bosch, 2005). These design decisions need to preserve modularity principles

and system qualities, which are central to the system success (Clements et al.,

2002). Modularity in architecture design refers to a logical partitioning of a

software architecture that allows it to become manageable for implementation

maintenance and evolution (Buschmann et al., 2007).

At any time during the process of engineering a software system, architects

will have made a set of architectural design decisions that reflect their intent.

These design decisions comprise the system intended architecture (or prescriptive

architecture). In other words the intended architecture comprehends design

decisions made by architects that have to be respected during the system

implementation (Taylor et al., 2009). Examples of the intended design decisions

are: the selection of system components, their interactions, and their constraints.

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

34

Implemented architecture (or actual architecture), on the other hand,

describes how the system has been actually built (Taylor et al., 2009). In an ideal

scenario, both architectures (i.e. intended and implemented) would be always

modular and identical. That is, the implemented architecture should be a perfect

realization of the intended architecture. However, in software systems, the

implemented architecture often presents modularity problems and more often does

not match the intended architecture (Taylor et al., 2009). Many intended

architecture decisions can be undesirably neglected by the actual implementation

of a system.

Architectural degradation symptoms represent the mismatches between the

intended and the implemented architectures as well as modularity problems in

these architectures (Section 2.2). In particular, such symptoms are challenged to

be identified when the intended architecture is only partially documented, as it

often occurs. In these scenarios, unfortunately the source code is usually the most

reliable artifact to be considered in the detection of architecture degradation

symptoms. In this research work we are particularly concerned with the

identification of architecture degradation symptoms through analysis of the source

code.

2.2.
Architectural Degradation

Software systems evolve over time as features are added, changed or

removed or when corrective maintenance is performed. When these changes are

not carefully performed, the system architecture degrades due to architectural

erosion and architectural drift (Hochstein and Lindvall, 2005).

Architectural erosion occurs when the implemented architecture does not

reflect the intended architecture. The discrepancies between the intended and the

implemented architectures are called architectural violations (Perry and Wolf,

1992). Architectural violations can be introduced even in the first version of the

software system. They often increase the number of maintainability problems in

the system (Perry and Wolf, 1992). As an example of architectural violation,

consider a system architecture based on the Layer style (Buschmann et al., 1996).

This style has a well-known prescribed rule stating that only adjacent layers can

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

35

directly communicate with each other. Therefore, the implemented architecture

violates the intended architecture when relationships between non-adjacent layers

are introduced in the corresponding implementation.

Architectural drift occurs when decisions introduced in the intended or

implemented architecture violate modularity principles. Architectural drift

symptoms impair the adaptability of system architecture and, therefore, its

evolution (Perry and Wolf, 1992). These symptoms are usually caused by

applying a design solution in an inappropriate context, applying design

abstractions at the wrong level of granularity or misusing of modeling languages

(Perry and Wolf, 1992). Unlike erosion symptoms, drift symptoms manifest

themselves in the implemented architecture when it perfectly matches the

intended one. Similarly to (Garcia et al., 2009), each architectural drift symptom

is related to an architectural anomaly in the context of this research work. Few

catalogs documenting architectural anomalies can be found in the literature

(Garcia et al., 2009; Stal, 2011). They will be further discussed in Section 2.2.3.

2.2.1.
Causes of Architectural Degradation

Several researchers have discussed possible causes of architecture

degradation. Parnas (1994) suggested that software systems that are not properly

designed to accommodate changes degrade due to successive modifications. Some

of the reasons why this problem occurs include: (i) rushed development, (ii) poor

system implementation, (iii) intuitive development which is not modular, (iv) lack

of design documentation, (v) poor quality design documentation, (vi) lack of

training in design documentation, (vii) time pressure, and (viii) inadequate design

and coding tools.

Eick et al. (2001) also documented possible causes of degradation, based on

their study of a large telecommunication system. Such causes, which are related to

requirements and organization factors, include: (i) inappropriate architecture, (ii)

violations of the original design principles in the system implementation, (iii)

imprecise requirements, (iv) inadequate programming tools, (v) programmer

variability, and (vi) inadequate change process.

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

36

Finally, van Gurp and Bosch (2002) observed the following causes for

design degradation, based on their findings of industrial case studies: (i) lack of

traceability of design decisions, (ii) lack of modularity in the system

implementation, (iii) increasing maintenance costs, (iv) accumulation of design

decisions, and (v) iterative methods. Van Gurp and Bosch’s list places more

emphasis on the inevitability of degradation, stating that "even the optimal

strategy does not necessarily lead to an optimal design. It just delays inevitable

problems like architectural erosion and architectural drift" (van Gurp and Bosch,

2002).

2.2.2.
Prevention of Architectural Violations

It can be observed that architectural degradation could be avoided although

this seems to be quite hard (Section 2.1.1). In this sense, a number of techniques

address the prevention of architectural violations by defining and enforcing design

rules in the source code. The goal of these works is to warn developers when the

implemented architecture does not correspond to the intended architecture.

Reflexion Models (1995) - RM - pioneered the idea of encoding the

architecture via declarative mappings to the source code. RM is an analytical

approach that uses the modeled system architecture to observe deviations between

source code and intended architecture, which is reviewed by the architect. The

lack of hierarchical organization in Reflexion Models motivated the work on

Hierarchical Reflexion Models (Koschke and Simon, 2003). Expected

dependencies are inherited, and overriding is only possible if high level

dependencies are disallowed and low level exceptions allowed, but not vice versa.

Sangal (2005) and Sangal et al. (2005) discuss the scalability issue of

architecture descriptions and propose a hierarchical visualization for the method

called Design Structure Matrices (DSMs) model (Baldwin and Clark, 2000),

which originates from the analysis of manufacturing processes. The key

advantage of the matrices is that they facilitate the assessment of a layering

pattern (or cycles) in the architecture, via a predominance of dependencies in the

lower triangular half of the matrix (or mirroring entries in both triangular halves).

It is important to note that, differently from Reflexion Model technique, DSM

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

37

does not perform the comparison between both models; it is just interested in

providing a mechanism to represent the structure of the architectural design.

D'Hondt et al. (2001) introduced the Logic-Meta Programming (LMP) in

order to enforce the synchronization between design and code. Aldrich et al.

(2002) proposed ArchJava, an extension to the Java programming language.

ArchJava unifies architecture with implementation, ensuring that the

implementation conforms to architectural constraints. Eichberg et al. (2008)

proposed Vespucci, an approach that uses declarative queries to support

architectural rules checking. Marwan and Aldrich (2009) developed SCHOLIA, a

technique for documenting the system architecture in the source code and

checking its conformance with the intended architecture. Terra and Valente

(2009) propose a Dependency Constraint Language (DCL) that facilitates

constructive checking of constraints on dependencies; discrimination of

dependencies by kind is also supported. DCL offers a textual Domain Specific

Language (DSL) for specifying constraints. Oliveira (2011) presented the PREViA

approach which provides features for defining components and expected

interactions in the intended architecture using UML class and component

diagrams. Other languages specialized on software constraints, such as LePUS3

(2011), Intensional Views (2011), PDL (2011), and Semmle .QL (2011) can also

be used to check detailed design rules, e.g., rules related to design patterns

(Gamma et al., 1995).

A number of commercial tools have been proposed for checking

dependency among modules and classes using implementation artifacts: Lattix

(Sangal et al., 2005), Sonar (2009), Structure101 (2010), Axivion (2010),

Klocwork (2010), Coverity (2011), Lindval (2007, 2008), and Bahaus (Raza et al.

2006). However, the scope of these tools is limited; they are just able to expose

violations of “certain” architectural constraints, such as inter-module

communication rules in a layered architecture. In other words, these tools do not

provide means for expressing system constraints.

Other works rely on the expressiveness of the mechanisms provided by

aspect-oriented programming (Kiczales, 1997) to define design rules in the source

code. Sullivan et al. (2005) propose Crosscut programming interface (XPI) for

specifying design rules between aspects and classes. Dósea et al. (2007) propose a

language to specify design rules that establish the minimum requirements to

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

38

enable the parallel development of class and aspects. Morgan (2007) developed a

domain specific language called Program Description Logic (PDL). PDL relies

on a fully static and expressive pointcut language and allows succinct declarative

definitions of programmatic structures which correspond to design rule violations.

Ubayashi et al. (2010) presented Archface, a programming-level interface to

represent the intended architectural design and check its conformance with the

source code.

Other researchers have been interested in providing reverse engineering

tools for recovering or extracting the implemented architecture from the source

code. There are two main categories of reverse engineering tools that can be used

for that purpose: filtering and clustering tools and architecture identification tools.

Filtering and clustering tools (Lung, 1998; Kazman and Carriere, 1998; Muller et

al., 1993) perform an analysis of the source code in order to identify components

using function-call dependencies. Through a user interface, users can remove

units from the model that are considered unimportant (filtering), and can

aggregate units (functions, classes, files) into a cohesive set of modules that form

a logical high-level unit (clustering) (Lung, 1998).

Architecture identification tools (Antoniol et al., 1997; Chase et al., 1998)

recover information about architectural components and connectors through an

analysis of the source code beyond extracting file and function-call dependencies.

The main advantage of these tools is the detection of components and connectors

that filtering and clustering tools cannot recognize.

2.2.3.
Architectural Anomalies

Unlike the existence of a vast research to prevent architectural violations,

only few research works are focused on the characterization of architectural

anomalies. In fact, catalogs of architectural anomalies are only recently beginning

to appear.

Garcia et al. (2009) documented a catalog of four (04) architectural

anomalies that manifest themselves in component-and-connector architectures,

but can be easily adapted to other architectural views, such as modules view.

Ambiguous Interface refers to interfaces that do not reveal which services the

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

39

component is offering. These interfaces usually offer only a single, general entry-

point into a component, reducing the system analyzability and understandability.

Scattered Parasitic Functionality takes place when multiple components are

responsible for realizing the same high-level concern and, additionally, some of

those components are responsible for independent concerns. The Scattered

Parasitic Functionality adversely affects maintainability, understandability,

testability, and reusability. The reason is because when the shared concern needs

to be changed, all the components that realized it can be updated and tested.

Extraneous Adjacent Connector occurs when two connectors of different types are

used to link a pair of components. The problem is that the beneficial effects of

each individual connector may cancel each other out. For example, while method

call connectors increase understandability, using an additional event-based

connector reduces this benefit because it is unclear whether and under what

circumstances the additional communication occurs. Connector Envy occurs in

components that encompass extensive interaction-related functionality that should

be delegated to a connector. This anomaly reduces reusability, understandability,

and testability. Reusability is reduced by the creation of dependencies between

interaction services and application-specific services, which make it difficult to

reuse either type of service without including the other. The overall

understandability of the component decreases because disparate concerns are

blended. Lastly, testability is affected by Connector Envy because application

functionality and interaction functionality cannot be separately tested.

Stal (2011) documented a catalog of five (05) architectural anomalies.

Dependency Cycle between architectural components implies that engineers

cannot understand, test, or change a given component without addressing other

components in the cycle. Inexpressive Component Names prevent engineers to

understand the architecture without digging deeper into more details. Component

Responsibility Overload means that a component is implementing too many

different responsibilities, preventing clear separation of concerns. Unnecessary

Indirection Layers do not only negatively affect developmental qualities, like

maintainability or extensibility, but also operational quality attributes, such as

performance. Implicit Dependencies often lead to a shift between desired

architecture and implemented architecture. One notable example is violating strict

layering, thus introducing unnecessary und unknown dependencies.

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

40

2.2.4.
Analysis of Existing Techniques to Prevent Architectural
Degradation

This section discusses the limitations of existing techniques for preventing

architectural degradation symptoms. Such limitations are addressed in the context

of this thesis.

2.2.4.1.
Lack of Prescribed Design Decisions

As we have observed, existing techniques for preventing architectural

degradation rely on the explicit specification of design rules. Thus, those

techniques assume the existence or documentation of the intended architecture.

However, in industry software systems, architectural design is often not explicitly

documented or kept out of date as the system evolves. The problem is that

specifying design rules usually demands a large amount of developer and architect

effort, as even small systems may contain many constraints. This situation tends

to get worse when design rules change, as new requirements are added or

modified along the system’s evolution. As a consequence, developers often

specify the design rules only in the first version of a system. In fact, the lack of

coherent design documentation is claimed in different sources to be one of the

most recurrent causes of architectural degradation (Section 2.2.1). We suspect that

this occurs because these situations hinder the usability of current techniques for

both enforcing design rules in the source code and performing an analysis of

architectural conformance (Section 2.2.2). Therefore, we can state that the

usefulness of current techniques for preventing architectural deviations could

possibly be restricted in practice.

2.2.4.2.
Lack of Mechanisms to Detect Architectural Anomalies

Although catalogs of architectural anomalies are documented in the

literature (Section 2.1.3), there is little empirical foundation about whether and to

what extent they impact the quality of the source code. There is also a lack of

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

41

empirical studies investigating whether architectural anomalies in the

implemented architecture correspond to code anomalies. Furthermore, developers

do not know how often architectural anomalies tend to be introduced due to code

anomalies while implementing the system. That knowledge is very relevant for a

variety of reasons. First, it could warn architects about the importance of carefully

analyzing the intended architecture before its implementation starts. Second,

developers could understand how architectural anomalies tend to manifest

themselves in the source code and, therefore, prioritize the refactoring of potential

candidates of architecturally-relevant code anomalies. Third and equally

important, without this knowledge the usefulness of these catalogs could be

jeopardized.

Furthermore, in contrast to the high number of techniques documented for

detecting architectural violations (i.e. erosion symptoms), there is a lack of tools

for automatically detecting architectural anomalies (i.e. drift symptoms). As a

consequence, architects and developers need to manually analyze the

implemented architecture in order to detect them. In some cases, developers need

to identify which elements in the source code are responsible for introducing those

architectural anomalies. As this process requires a considerable effort, developers

and architects tend to avoid this kind of analysis. Therefore, the usefulness of

these catalogs may be at risk.

2.3.
Code Anomalies

As we have mentioned in Section 2.1.2, some of the documented causes of

architectural degradation seem to be unavoidable (e.g. programmer variability). In

order to deal with this kind of situation, iterative development methodologies

(e.g., XP (2011)) advocate for refactoring the code whenever developers suspect

that degradation may be occurring. Therefore, in such cases, degradation is not

diagnosed by comparing the actual with the intended architecture of the system,

but by identifying anomalies that infect code elements and hinder their modularity

(Fowler et al., 1999). Code element in this context corresponds to fragments of

programming language code such as: attributes, operations and declarations.

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

42

Many researchers documented code anomalies that affect the modularity of

a system implementation. The first evidence on this interest comes from Webster

(1995), who wrote a book on anomalies in the context of object-oriented

programming. Riel (1996) proposed 61 heuristics in order to detect deviations of

good programming practices and provided a basis for improving design and

implementation. Fowler et al. (1999) introduced the metaphor of "bad smell" -

referred to in this thesis as a code anomaly - in their book as: a sign of a deeper

design problem in the system implementation. Also, they documented 22 code

anomalies that infect methods and classes.

Some researchers (Iwamoto et al. 2003; Hannemann et al., 2005; Monteiro

and Fernandez, 2005) introduced the notion of code anomaly in aspect-oriented

systems by defining refactoring techniques to improve modularity in these

systems. Piveta et al. (2005) defined a preliminary set of code anomalies in

aspect-oriented systems. Srivisut and Muenchaisri (2007) defined five (05) other

aspect-oriented anomalies, extending Piveta’s catalog and defined metrics that

help to identify the anomalies proposed by him.

Moreover, some researchers have been interested in classifying code

anomalies. Wake (2003) classified anomalies into two categories according their

scope: anomalies within classes and code anomalies between classes. Mäntylä and

Lassenius (2006) proposed a classification for code anomalies according to the

modularity property they affect. For instance, Bloaters group refers to code

anomalies associated with higher complexities like Long Method and Large Class.

2.3.1.
Detection of Code Anomalies

There is a vast amount of techniques and tools that aim at identifying code

anomalies. Emden and Moonen (2002) describe jCosmo, an approach for

detecting code anomalies in Java systems based on the structural properties of

code elements. Ratzinger et al. (2005) and Wong et al. (2011) can detect specific

types of code anomalies (e.g. Duplicated Code) by examining change couplings.

Detection Strategies (Marinescu, 2004) is the most common mechanism, and the

most referred to in the literature, for identifying code anomalies. This mechanism

exploits information that is extracted from the source code structure, relying on

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

43

the combination of static code metrics and thresholds into logical expressions.

Each detection strategy is a heuristic that identifies code elements that possibly

suffer from a particular code anomaly (Marinescu, 2004; 2006). The example

below illustrates a well-known detection strategy (Lanza and Marinescu, 2006)

for identifying God Classes. This strategy and its thresholds have also been used

in previous studies (Olbrich et al., 2009; 2010).

GodClass<class> = (WMC > 47) and (TCC < 0.3) and (ATFD > 5)

In this detection strategy:

 WMC (Weighted Method Count) is the sum of the cyclomatic

complexity of all methods within the class under analysis;

 TCC (Tight Class Cohesion) represents ratio of methods that Access

the same instance variable with respect to the total number of

methods;

 ATFD (Access to Foreign Data) counts the number of attributes in

foreign classes accessed by the class under analysis.

A wide range of static analysis tools, including visualization ones (e.g.

Wettel and Lanza, 2008; D’Ambros et al., 2010), are based on such strategies.

Marinescu et al. (2010) also presented inCode, a tool used to automate the

application of certain detection strategies. Munro (2005) proposed some heuristics

for detecting code anomalies. Ratiu et al. (2004) approach relied on the use of the

historical information to increase the accuracy of the automatic identification of

code anomalies through detection strategies. Alikacem and Sahraoui (2006)

proposed a language to detect code anomalies. This language allows the

specification of detection strategies. Moha et al. (2010) presented the Décor tool

and a domain-specific language to automate the construction of detection

strategies. Mara et al. (2011) proposed a tool called Hist-Inspect to support the

definition and automatic application of history-sensitive detection strategies.

Table 2.1 summarizes some of the existing tools that support the identification of

code anomalies and code analysis based on detection strategies.

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

44

Table 2.1. Tools for code anomaly detection and source code analysis

Tool Platform Description

CloneDetections

/ Clever
 Java It supports the detection of Duplicated Code

CodeCity Java
It visualizes source code and its anomalies as interactive,

navigable 3D cities.

DECOR Java

It supports the application of detection strategies. Also, it

allows developers to create and adjust detection strategies

according to their needs.

Hint-Inspect Java

It supports the detection of code anomalies based on history-

sensitive metrics. It also supports the personalization of

detection strategies.

inCode Java
It supports the detection of a small number of Fowler's

anomalies: Feature Envy, Data Class and Long Methods.

JDepend Java

It supports the collection of metrics for packages such as:

number of classes, coupling between classes, and

dependencies between packages.

Semmle Java

It supports the collection of code metrics. It also allows

developers to create rules based on Code Query Language

(CQL).

Sonar
 Java, C, PHP,

 Groovy

It supports the collection of source code metrics and

detection of several code anomalies. It also supports the

recovery of the implemented architecture.

SourceMiner Java It supports the visualization of high coupled code elements.

Together Java
It supports the collection of source code metrics and detect

many of the Fowler's anomalies.

Understand C, C++, Java, C#

It supports the collection of source code metrics, detection

cyclic dependencies and recovery of the implemented

architecture

JSLint JavaScript
It supports the detection of code anomalies and inappropriate

programming styles

ReSharper .NET, JavaScript
It detects code anomalies such as duplicated code. It also

allows developers to personalize code inspection process.

Ndepend .NET

It supports the collection of code metrics, indicating parts of

the code that should be reviewed. It also allows the definition

of new metrics based on code query language (CQL).

Flay Ruby It supports the detection of Duplicated Code.

Reek Ruby
It supports the detection of code anomalies such as: Long

Methods, Inappropriate Name and Feature Envy.

Saikuro Ruby
It supports the detection of complex methods based on the

cyclomatic complexity.

In the context of this thesis we rely on detection strategies to identify

occurrences of code anomalies due to several reasons. First, they were explicitly

conceived with the purpose of supporting the identification of any type of code

anomalies. The main focus of other works (e.g. Ratzinger et al., 2005; Wong et

al., 2011) is not the identification of code anomalies, even though they can

accidentally identify occurrences of specific code anomalies. Second, detection

strategies have been widely used and a plethora of tools are based on this

technique. Finally, a number of researchers have relied on detection strategies to

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

45

investigate the behavior of code anomalies throughout the system evolution as

well as their harmful impact on change-proneness, fault-proneness and

maintenance effort (Section 2.3.3).

2.3.2.
Removal of Code Anomalies by means of Refactorings

The refactoring process aims at removing anomalies by performing changes

on the internal structure of the system without changing its external behavior

(Fowler et. al., 1999). Several studies have been developed aimed at supporting

the automatic identification and application of refactorings. Higo et al. (2004)

proposed the Aries tool to identify possible refactoring candidates based on the

number of assigned variables, the number of referred variables, and dispersion in

the class hierarchy. Tsantalis and Chatzigeorgiou (2009) proposed a technique for

automatically identifying code refactoring needs via static slicing. Vidal et al.

(2012) proposes an expert software agent that assists developers when refactoring

an object-oriented system into an aspect-oriented one. It analyzes the user’s

interaction history for improving the agent’s effectiveness over time, guiding

developers through the steps they should take. Xi et al. (2012) also propose a

refactoring recommendation mechanism based on the observation of manual

refactoring steps. Their goal is to monitor common sequences of previous changes

on code structures in order to detect the occurrence of refactorings, and

recommend their automation on-the-fly, while the developer is programming.

Van Gurp and Bosch (2002) suggest that refactoring techniques cannot

effectively improve the global maintainability, especially when there are complex

structural problems which are widely dispersed over multiple components. In

addition, Murphy-Hill (2009) and Arcoverde et al. (2011) suggest that

refactorings are not usually applied if they are complex, error prone, time-

consuming or there is no evidence that they are effective in maintaining the

system’s modularity. A major factor that hinder the proper choose of refactorings

to be applied is that anomalies usually occur simultaneously (Liu et al., 2011). In

these situations, developers need to evaluate the characteristics of the different

anomalies in order to define the most appropriate sequence of refactorings. For

instance, removing the most critical anomalies leads to the removal of other

anomalies that affect the same piece of code (Liu et al., 2011).

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

46

2.3.3.
Empirical Studies about Code Anomaly Side Effects

Many works documented the impact of code anomalies on system

maintainability and evolvability. A number of researchers investigated the impact

of code anomalies on change-proneness. Mäntylä and Lassenius (2006)

investigated to what extent code anomalies can be used as a basis for subjective

evaluation of code evolvability. Olbrich et al. (2009, 2010) and Khomh et al.

(2009) investigated the evolution of code anomalies. The authors analyzed

whether the number of code anomalies increases over time, and the anomaly

influence on how often a code element changes. Olbrich et al. (2009) analyzed the

historical data of two open-source projects focusing on the God Class and

Shotgun Surgery code anomalies. An important conclusion of their analysis was

that the classes infected by the examined anomalies suffer more changes than non-

infected ones and they are affected by larger changes. In particular, this analysis

suggested that God Classes are more change prone than other classes. A similar

conclusion was reached in Khomh et al. (2009), where statistical analysis of 29

anomalies in several releases of two open-source projects revealed that classes

with anomalies are more likely to be the subject of changes. Also, Khomh et al.

(2009) suggested that specific anomalies are more correlated than others to

change-proneness. Zazworka et al. (2011) confirmed these results revealing that

God Classes are 5-7 times more change prone than others. Kim et al. (2005) and

Lozano et al. (2008) analyzed the impact of duplicated code in system changes.

While Kim et al. (2005) observed that 36% of the duplicated code needed to be

changed consistently, Lozano et al. (2008) found that at least 50% of the methods

with duplicated code required more change effort than the methods without such

duplications. Kapser et al. (2008), Jürgens et al. (2009) and Rahman et al. (2010)

also studied the impact of duplicated code in change-proneness, obtaining similar

results. In the context of these studies, Wong et al. (2010) was the only identified

that attends to observe how changes associated with code anomalies are likely to

drift from the intended design. In particular, they observed that when code

duplications change frequently together they often deviate from the intended

designer decisions.

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

47

The effects of code anomalies have also been studied from the perspective

of system defects. Li and Shatnawi (2007) investigated the relationship between

the class error probability and code anomalies, based on three versions of the

Eclipse project (2011). Their result showed that classes which are infected with

code anomalies (e.g. Shotgun Surgery, God Class or God Methods) are more

likely to present errors than non-infected classes. Also, D’Ambros et al. (2010)

investigated the influence of code anomalies on software defects in six open-

source systems. Their investigation suggested that an increase in the number of

code anomalies is likely to generate software defects. However, there is no a

single code anomaly that was consistently correlated to errors more than others

across the totally of the systems. Recently, Zazworka et al. (2011) suggested that

God Classes are 4-17 times more defect prone than other classes (affected or not

by any anomaly).

Other researchers studied the impact of code anomalies on maintenance

effort. Deligiannis et al. (2003) showed that a design (not code) without a God

Class was judged and measured to be better (in terms of time and quality) than a

design for the same system with a God Class. Deligiannis et al. (2004) observed

that a design without a God Class had better completeness, correctness and

consistency than a design with a God Class. From the empirical studies identified,

only the study by Abbes et al. (2011) brings up the notion of interaction effects

across code anomalies. They concluded that classes and methods identified as

God Classes and God Methods in isolation had no effect on effort, but when

appearing together, they led to a statistically significant increase in maintenance

effort.

2.3.4.
Analysis of Existing Research on Code Anomalies

We have identified several particularities of existing research on code

anomalies that are likely to plaster the early detection of architectural degradation

symptoms in the system implementation. These particularities are discussed as

follows.

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

48

2.3.4.1.
Lack of Extensive Catalogs of Aspect-Oriented Code Anomalies

As introduced in Chapter 1, the main focus of this research work is to

analyze the interplay between code anomalies and architectural degradation in

software systems implemented with different modularization techniques.

However, unlike object-oriented systems, there are few research works that

focused on the characterization of code anomalies in aspect-oriented systems.

Piveta et al. (2005) defined five anomalies occurring in AO systems. Srivisut and

Muenchaisri (2007) extended Piveta’s work in order to define metrics that help

identifying the code anomalies proposed by him. Moreover, such studies are

limited and mostly mimic classical well-known problems in object-oriented

programs, such as Lazy Aspect and Large Aspect that are minor adaptation from

object-oriented anomalies. Nevertheless, the expressive power of aspect-oriented

mechanisms might facilitate the introduction of particular code anomalies. That is,

code anomalies might emerge due to misuses of specific AOP facilities, such as

pointcut descriptions. These anomalies differ from those found in object-oriented

systems, as pointcuts are aspect-oriented specific constructs. Finally, existing

research on aspect-oriented anomalies only focus on the definition of code

anomalies, without empirically studying whether and how often these anomalies

manifest in software systems. Therefore, there are basically two needs: (i) the

documentation of code anomalies associated with the inappropriate use of the

aspect-oriented mechanisms and (ii) the investigation of the aspect anomalies

impact in the system maintenance.

2.3.4.2.
Lack of Knowledge about the Code Anomaly Influence on
Architectural Design

Even though several researchers have highlighted the impact of anomalies

on architectural decompositions (Fowler et al., 1999; Eick et al., 2001; Hoschtein

and Lindvall, 2005; Maccormack et al. 2006; Wong et al., 2011), none of the

existing reports (Section 2.3.3) investigate the impact of code anomaly on system

architecture. Compared to the widely-studied anomaly effects (i.e., changes, faults

and maintenance effort), their impact on system architecture is even more harmful

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

49

since it can impair the continuity of the project, leading to architectural

degradation (Eick et al., 2001; van Gurp and Bosch, 2002; Maccormack et al.,

2006). The identification of these code anomalies is specially challenging when

the architectural designs are not explicitly documented or are incomplete -

recurrent situations in industry software systems. Clearly, then, there is an actual

need for empirical understanding of which particular characteristics of code

anomalies adversely impact architectural designs.

2.3.4.3.
Lack of Documentation on Code Anomaly Patterns

It has been observed that the vast majority of documented researches

investigate the impact and behavior of isolated anomaly occurrences and specific

types of code anomalies (Fowler et al., 1999). Only Abbes et al. (2011) brings up

the notion of interaction effects across code anomalies. However, their study is

rather limited since it only focuses on investigating the impact of simultaneous

occurrences of God Classes and God Methods on system defects. Therefore, none

of the existing empirical studies have explored whether and to what extent inter-

related code anomalies might be indicators of architectural degradation symptoms.

Even worse, relationships among code anomalies cannot be detected with existing

mechanisms, because they solely focus on identifying isolated occurrences of

code anomalies. This means that developers may not be able to perform the

appropriated sequence of refactoring strategies in order to completely remove the

code anomaly.

Code anomaly patterns can alert developers that the occurrence of an

anomaly might be a sign that other anomalies are also affecting the same code

element. This is particularly handy when one of the co-occurring anomalies is not

easy to identify. As mentioned in the previous chapter, code anomaly patterns

might also allow developers to identify the existence of architectural problems in

the system implementation. In particular, there are architectural problems that

cannot be detected without analyzing relationships between code elements (e.g.

Component Responsibility Overload). Finally, the detection of code anomaly

patterns benefits the proper choice and application of refactoring techniques and

consequently, reduces costs and resources during the system implementation

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

50

stage. Therefore, there is a need for documenting recurrent relationships between

code anomalies as well as assessing their impact on the system architecture.

2.4.Summary

This chapter presented the main concepts addressed in this thesis. It also

presented an overview of existing studies and a critical discussion of their

limitations. Section 2.1 presented the definitions of the main terms discussed

throughout this research work, such as software architecture, intended architecture

and implemented architecture. Section 2.2 presented the definition of architectural

degradation and discussed the symptoms by means it manifests: architectural

erosion and architectural drift. There is a variety of techniques and tools that help

engineers to identify violations of the intended architecture in the system

implementation (Section 2.2.2). However, the use of these techniques is restricted

because they depart from the assumption of the existence or documentation of

prescribed design decisions and such rules are often not explicitly documented or

is not kept up to date as the system evolves. Section 2.2.3 presented catalogs

documenting symptoms of architectural drift. Nevertheless, there are neither

techniques nor tools that automatically identify such symptoms in the system

implementation. There is also little empirical foundation about whether and to

what extent these symptoms impact the quality of the source code. As a

consequence, architects and developers need to manually analyze the system

implementation in order to detect the architectural drift symptoms.

Section 2.3 reported the existing research on code anomalies. In particular,

this section presented catalogs of code anomalies in aspect-oriented and object-

oriented programming. Section 2.3.3 presented current research that explores the

impact of code anomalies on change-proneness, system defects and maintenance

effort. However, there is no work that analyzes code anomalies with the intent of

providing evidences about their harmful impact on the architectural design, even

though such impact has been recognized. Unlike the studied anomaly effects, their

impact on system architecture is even more harmful since it can impair the

continuity of the project, due to severe architectural degradation. Consequently,

although there are a lot of efforts to provide developers with mechanisms that

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

51

support the anomaly detection (Section 2.3.1), it is unknown to what extent such

mechanisms accurately identify the architecturally-relevant code anomalies.

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

