

3
Code Anomalies in Aspect-Oriented Programming

As pointed out in the first chapter, this research work is going to tackle the

issue of understanding architecture degradation symptoms through the analysis of

code anomalies. The goal is to perform this investigation taking into consideration

software systems structured with different modularization techniques such as:

object-oriented programming and aspect-oriented programming (Kiczales et al.,

1997). These techniques have been selected due to existing initial evidence about

how the inappropriate modularization of architectural concerns impact the

architectural design.

However, the analysis of code anomalies in aspect-oriented systems is

particularly hindered by the fact that existing catalogs of anomalies in such

systems are very limited (Section 2.3.4.1). In addition, there is no knowledge

about whether and how often the documented aspect-oriented anomalies manifest

themselves in system implementations (Section 2.3.4.1). Consequently, before

analyzing the impact of code anomalies in architecture degradation symptoms,

including those anomalies that infect object-oriented and aspect-oriented

implementations, we need establish catalogs of anomalies that represent recurrent

misuses of aspect-oriented mechanisms.

In this context, this chapter presents the characterization and classification

of six (06) new code anomalies frequently introduced by developers in aspect-

oriented programs (Section 3.2.2). These anomalies are associated with various

mechanisms of aspect-oriented programming (Section 3.1). We illustrate concrete

examples of how the proposed anomalies manifest in system implementation.

Additionally, for each proposed anomaly we define a detection strategy (Section

2.3.1) that supports the anomaly identification. In order to further evaluate to what

extent the already documented (Section 3.2.1) and the new anomalies occur in

wider contexts, an empirical study was carried out involving three software

systems (Section 3.3). In addition, the study assesses which code anomalies are

likely to manifest themselves more often in aspect-oriented systems. It is

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

53

important to note that this study is not concerned about discussing how aspect-

oriented anomalies might impact on a system architecture decomposition, this will

be discussed in Chapter 4. Finally, the chapter summarizes the key points in

Section 3.4. All the information presented in this chapter has been reported in four

technical papers (Macia, 2011; Macia et al., 2010; Macia et al., 2011a; Macia et

al., 2011b).

3.1.
Aspect-Oriented Programming

This section presents key concepts and mechanisms of the aspect-oriented

programming. The understanding of such concepts and mechanisms is

fundamental for the comprehension of the aspect-oriented anomalies introduced

later in this chapter.

Aspect-Oriented Programming (AOP) (Kiczales et al., 1997) is a

modularization technique that supports a new flavor of separation of concerns that

crosscut multiple elements at the implementation level. To this end, AOP

introduces a new modularization abstraction called aspect and new composition

mechanisms called pointcut and advice.

Aspect is the term used to denote the abstraction that aims to support

improved isolation of crosscutting concerns. Aspects are modular units of

crosscutting concerns that are associated with a set of classes. An aspect can

affect, or crosscut, one or more classes in different ways. In AOP, aspects

modularize crosscutting concerns and classes modularize non-crosscutting

concerns. Besides conventional attributes and methods, an aspect includes

pointcuts and pieces of advice as described below.

Pointcut expression (or just pointcuts) is a first-order logic expression that

selects the join points that will be affected by the aspect crosscutting behavior.

Join points are well-defined points in the dynamic execution of a system. They

specify how classes and aspects are related. Examples of join points are method

calls, method executions, writing and reading of attributes, and object

initialization.

Advice is a special method-like construct attached to pointcuts. The advice

is executed when the program execution reaches a join point selected by some

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

54

pointcut expression. There are different types of advice: (i) a before advice runs

whenever a join point is reached and before the actual computation proceeds, (ii)

an after advice runs after the computation under the join point finishes, i.e. after

the method body has run, and just before control is returned to the caller, and (iii)

an around advice runs whenever a join point is reached, and has explicit control

whether and when the computation under the join point is allowed to run if it is

executed at all.

AspectJ (Kickzales et al., 2001) is the most well-known and used language

for AOP. It is an extension to the Java programming language. Besides the

aforementioned concepts, aspects in AspectJ can provide intertype declarations

that allow defining parent classes and insert attributes and methods into classes.

Figure 3.1 illustrates how AOP mechanisms are supported by AspectJ using an

example extracted from Health Watcher, a web software system (Soares et al.,

2002; Greenwood et al., 2006) that is used in our case studies. The

HWDataCollection consists of an inter-type declaration (lines 03 and 04), a pointcut

(line 06), an advice (lines 08-17). This covers the basics of what aspects can

contain.

The inter-type declaration defines that SystemRecord is the superclass of

ComplaintRecord, SpecialityRecord, HealthUnitRecord, and EmployeeRecord. The

pointcut named record defines as join points the call to constructor of any

descendant of SystemRecord and that call is not performed within the aspect

HWDataCollection or any of its descendants. Finally, the advice creates a system

record depending on the join point type.

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

55

 01 public aspect HWDataCollection {
 02 private interface SystemRecord {};
 03 declare parents: ComplaintRecord || SpecialityRecord || HealthUnitRecord ||
 04 EmployeeRecord implements SystemRecord;

 05
 06 pointcut records: call(SystemRecord+.new(..)) && !within(HWDataCollection+);

 07
 08 Object around (): records() {

 09 RepoFactory factory = RepoFactory.getRepositoryFactory();
 10 Class type = getSystemRecord(thisJoinPoint.getSignature().getDeclaringType());
 11 if (type.equals(ComplaintRecord.class)) {..}
 12 else if (type.equals(HealthUnitRecord.class)) {..}
 13 else if (type.equals(MedicalSpecialityRecord.class)) {..}

 15 ...
 16 return null;

 17 }
 18
 19 }

Figure 3.1: Example of an aspect in AspectJ.

3.2.
Identification of Code Anomalies

This section presents the set of aspect-oriented anomalies investigated

through this research work, including both the cases of already published and new

code anomalies. The investigated code anomalies were classified in three

categories. The first category comprises anomalies related to anomalous pointcut

definitions, such as duplication and complexity. The second group, aspect

definition, is formed by anomalies resulting from inappropriate modularization of

crosscutting concerns into aspects. The anomalies in the third category,

undesirable interdependencies, occurring due to modularization anomalies

involving two or more crosscutting concerns, thereby leading to tight

dependencies: (1) between an aspect and the base code, or (2) between two or

more aspects. We presented a brief description of documented anomalies and their

key characteristics (Section 3.2.1), the newly-revealed code anomalies are

presented with more emphasis on (Section 3.2.2).

3.2.1.
A Catalog of Already Documented Code Anomalies

This research relies on eight already documented anomalies because they

were described in a systematic fashion and, therefore, could be more precisely

identified. For instance, aspect-oriented code anomalies described by short and

abstract definitions were not considered. The reason for this is that such

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

56

definitions make code anomalies difficult to precisely interpret and also to define

strategies for their detection (Iwamoto et al., 2003; Hannemann et al., 2005). It is

important to highlight that we identified limitations (in terms of coverage of AOP

mechanisms) in some of these code anomalies. Such limitations were addressed

through the definition of a code anomaly catalog (Section 3.3).

Five anomalies are proposed in (Srivisut and Muenchaisri, 2007) while the

others are defined in (Piveta et al., 2006). The following 4 code anomalies are

related to pointcut declarations and, therefore, they are classified in the first

category. Duplicate Pointcut (DP) (Srivisut and Muenchaisri, 2007) occurs

whenever different pointcut definitions collect the same set of join points in base

code, and Anonymous Pointcut (AP) (Piveta et al., 2006) occurs whenever a

pointcut is directly defined in the advice signature. Junk Material (JM) (Srivisut

and Muenchaisri, 2007) refers to cases of pointcuts not referred by any advice.

Borrowed Pointcut (BP) (Srivisut and Muenchaisri, 2007) is a pointcut that is

referred by other aspects, which are not subaspects of the one in which the

pointcut is actually defined. We have considered the original definition of already

published anomalies, such as the case of Borrowed Pointcuts, independently if we

agreed or not with the characterization of the code structure as an anomaly.

The following three anomalies are related to aspect definitions and, as a

consequence, they are classified in the second category. Lazy Aspect (LA) (Piveta

et al., 2006) is an aspect that has either none or only fragmented responsibility.

An aspect is marked as realizing Various Concerns (VC) (Srivisut and

Muenchaisri, 2007) when the pointcut is associated with more than one advice

addressing different concerns. Abstract Method Introduction (AMI) (Srivisut and

Muenchaisri, 2007) occurs whenever an abstract method is added into an existing

class using inter-type declaration. Finally, Feature Envy (FE) (Piveta et al., 2006)

falls in the category of undesirable dependencies and occurs whenever there are

pointcuts defined within a class, and these pointcuts are externally referred by

aspects.

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

57

3.2.2.
A Catalog of New Code Anomalies

The discovery of the new code anomalies was mainly driven by our

experience in the development of aspect-oriented systems, our observations and

analysis of potentially-anomalous code structures and maintenance effort in

several systems: Telecom (2009), a Design Pattern library (Hannemann and

Kiczales, 2002), and Health Watcher (Soares et al., 2002; Greenwood et al.,

2007). In the proposed catalog, each anomaly is defined by a textual description

and potential relationships with other anomalies, a concrete example and a

detection strategy (Marinescu, 2004; Lanza and Marinescu, 2006). The discussed

examples were extracted from the software systems used in our case study

(Section 3.3).

As far as the detection strategies are concerned, they are structured in the

form name<entity> := condition. The name corresponds to the anomaly name

that the strategy detects. The entity indicates the code element type (i.e. aspect,

pointcut or advice) over which the strategy is applied. The condition part

compasses the combination of one or more measures outcome related to the

element under analysis. The definition of the strategies also relies on symbolic

constants in the place of thresholds (e.g. LOW and HIGH). The choice of these

values will depend on the system characteristics and programmers styles.

Furthermore, the detection strategies were defined on the basis of previous

guidelines reported in the literature (Marinescu, 2004; Lanza and Marinescu,

2006). In order to define the detection strategies for aspect-oriented anomalies, we

relied on available metrics for aspect-oriented programs (Sant’Anna et al., 2007;

Srivisut and Muenchaisri, 2007), which were useful to identify modularity

anomalies in previous studies (Soares et al., 2002; Greenwood et al., 2007;

Sant’Anna et al., 2007; Figueiredo et al., 2009).

3.2.2.1.
Anomalous Pointcut Definition

The code anomalies classified in the category of anomalous pointcut

declarations are: God Pointcut, Redundant Pointcut, and Idle Pointcut. Each

anomaly is presented in terms of a description, an example and, a detection

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

58

strategy. As aforementioned, detection strategies are organized following

Marinescu's guideline (Marinescu, 2004; Lanza and Marinescu, 2006).

3.2.2.2.
God Pointcut

Definition. God Pointcut (GP) occurs when: (i) a pointcut has either a

complex expression involving many keywords or picks out many scattered join

points, and (i) the respective advice has a complex implementation. When this

occurs, the pointcut expressions and advice are very difficult to read. As a

consequence, their decomposition would improve the readability and increase

their chance to be reused.

Example. An example of God Pointcut can be observed in the pointcut

synchronizationPoints in the iBATIS system, Figure 3.2. This pointcut is interested

in picking out the execution of specific methods. However, its definition specifies,

without using wildcards, more than 10 method executions and more than 12 logic

operators. In addition, its advice has more than 30 lines of code.

public aspect IBatisSynchronizationExecutingObject extends PessimisticSynchronization{

 ...
 protected pointcut synchronizationPoints(Object syncObj):
 ((execution(public void RuntimeException.setNextException(Exception)) ||
 execution(protected static int BaseLogProxy.getNextId()) ||
 execution(public void FifoController.putObject(CacheModel,Object,Object)) ||

 ...
 execution(public void LruController.putObject(CacheModel,Object,Object)) ||

 ...
 execution(public void MemoryController.putObject(CacheModel,Object,Object)) ||

 ...
 execution(private void LazyResultLoader.loadObject() throws RuntimeException) ||
 execution(public Object[] ResultMap.getResults(Request,Set) throws SQLException) ||
 execution(public static long SessionScope.getNextId()) ||
 execution(public Object OSCacheController.removeObject(CacheModel,Object)) ||
 execution(private void CacheModel.getObjectPartTwo())) && this(syncObj));

 ...
}

Figure 3.2: Example of God Pointcut.

Detection Strategy. In order to detect this code anomaly we defined the

detection strategy presented below. We always refrained from not implementing

overly complex detection strategies, i.e. involving many metrics and threshold

values. This policy enabled us to have a better control of threshold variability and

adjustments, and more control of potential false negatives (Chapter 4). As a

pointcut can be associated with one or more advice, we considered it as a God

Pointcut when the following detection strategy is true for at least one of its advice:

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

59

GP<pointcut> := (SPP > HIGH or SJP > HIGH) and

 (CC > HIGH or LOC > VERY_HIGH)

The metric SPP (Set of Primitive Pointcuts referring a pointcut) counts the

number of primitive pointcuts (e.g. call, execution) used in the pointcut

expression. The metric SJP (Set of Join Points) computes the Set of Joinpoint

shadows captured by a given pointcut. The metric CC (Cyclomatic Complexity)

corresponds to the complexity of the advice that referring a given pointcut

(McCabe, 1976). Finally, the metric LOC (Line Of Code) counts the number of

lines of code involving in the advice implementation. We are aware that SJP

metric could be a limited indicator because there are some primitive pointcuts of

AspectJ that pick out join points based heavily on the particular executions of a

system. This discussion is similar to the discussions on the effective use of static

and dynamic metrics Arisholm (2002), which is another point to be investigated

and is outside of the scope of this thesis.

3.2.2.3.
Idle Pointcut

Description. Idle Pointcut (IdP) is associated with pointcuts, which do not

match any join point. There are multiple causes for this problem. First, mistakes in

the pointcut expression may cause that any join point is captured. Second, the

pointcuts may no longer capture the intended join points as a consequence of

refactorings on the base code. Finally, pointcuts are not referred to by any advice,

and, therefore, no action is performed when the join points are reached. Idle

Pointcut is a case of code anomaly that was created to address limitations in the

definition of existing code anomalies. More specifically, it enables to capture

anomalies that are not covered by Junk Material (Section 3.2.1), which is only

focused on cases of pointcuts not referred by any advice.

Example. Figure 3.3 shows a typical scenario for this problem. The

callSqlExecuteUpdate pointcut, highlighted in gray, is part of the aspect

SqlmapEngineMappingECAspect implementation. The expression picks out calls to

the sqlUpdate method. Such calls should be fired within executeUpdate or

executeQueryCall methods from the GeneralStmt class. However, this pointcut was

broken during the refactoring of the method executeUpdate. This method uses

another method called executeUpdatePartOne, highlighted in gray in the base code.

This refactoring resulted in an Idle Pointcut instance.

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

60

//base code
public class GeneralStatement extends BaseStatement{

 ...
 public int executeUpdate() throws SQLException {

 rows = executeUpdatePartOne(..);
 }
}

//aspect code
public aspect SqlmapEngineMappingECAspect{

 ...
 public pointcut callSqlExecuteUpdate(): call(protected int sqlUpdate(..))
 && withincode(public int GeneralStmt.executeUpdate(..)) ||
 withincode(protected List GeneralStmt.executeQueryCall(..)));

 ...
}

Figure 3.3: Example of Idle Pointcut.

Detection Strategy. Based on the aforementioned characteristics of the

Idle Pointcut anomaly we defined the detection strategy as follows:

IdP<pointcut> := (SJP = 0) or (NAdP = 0)

The metric SJP (Set of the corresponding Join points of a given pointcut)

counts the number of join points picked out by a given pointcut. The metric NAdP

(Number of Advice referring to a Pointcut) (Srivisut and Muenchaisri, 2007)

counts the number of pieces of advice that are related to a given pointcut.

3.2.2.4.
Redundant Pointcut

Description. Pointcuts can be reused or combined by logical operators in

order to define new composite pointcuts. The Redundant Pointcut (RP) code

anomaly is associated with partial (not full) pointcut expressions equivalent to

others that have already been defined. This code anomaly can be characterized as

a variation of Duplicate Pointcut (Srivisut and Muenchaisri, 2007) because it

considered only a subset of the expressions used in the pointcut definition.

Example. The example in Figure 3.4 depicts two advice defined in the

context of the ComplaintStateAspect. These advice are interested in capturing

initializations of classes whose names match the “Complaint” prefix and such

initializations are made by a Complaint object. In this context, the advice

duplicated the definition of this requirement rather than isolating it in a single

pointcut expression.

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

61

public aspect ComplaintStateAspect{

 ...
 after(Complaint complaint): initialization(Complaint+.new()) && target(complaint){…}

 after(Complaint complaint, String complainer, String description,..):
 initialization(Complaint+.new()) && target(complaint) &&
 args(complainer, description, ..) {…}

 ...
}

Figure 3.4: Example of Redundant Pointcut.

Detection Strategy. Based on the aforementioned characteristics of the

Redundant Pointcut anomaly its corresponding detection strategy is defined as

follows:

RD<pointcut, advice> := (NPJP > 0)

The metric NPJP (Number of Pointcuts with Join Points in common)

counts the number of pointcuts or advice that have two or more primitive

expressions in common (i.e. that attempt the same of set of join points) with a

given pointcut.

3.2.2.5.
Undesirable Interdependencies

This subsection describes the three code anomalies in this category: Forced

Join Point, God Aspect and Composition Bloat. Similarly to previous section,

these anomalies are described in terms of a description, example and, a detection

strategy.

3.2.2.6.
Forced Join Point

Description. Forced Join Point (FJP) is associated with elements

(attributes or methods) in the base code that are only exposed to be used by

aspects. For instance, they might be methods in the base code whose

implementation details are exposed in their signatures just for the sake of passing

internal module information to the aspects. There are also instances of temporary

class fields, which reveal information that otherwise would be associated with

local variables. They might also represent cases of hook methods for enabling the

capture of certain method calls. As a result, some possible side effects are that

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

62

these base methods end up either implementing a non-cohesive part of an

algorithm or having empty bodies.

Example. Figure 3.5 presents an example of Forced Join Point extracted

from Health Watcher system (2009). This example includes a method called init

defined as part of the implementation, in the base code, of the class HWServlet.

Note that the implementation of this method is very simple so its execution could

be exposed as events to the aspects. Specifically, it is picked out by the advice

defined in the aspect ServletCommanding. This advice is responsible for registering

more than thirty command objects that will be used in the system.

// base code
public class HWServlet extends HttpServlet{

 ...
 public void init(..) throws ServletException{

 facade = HealthWatcherFacade.getInstance();
 }
}

//aspect code
public aspect ServletCommanding{

 ...
 after(): execution(void HWServlet.init(..)){

 commandTable = new Hashtable();
 registerCommand(CommandConfigRMI, new ConfigRMI());
 registerCommand(CommandGetDataByDiseaseType, new GetDataByDiseaseType());
 registerCommand(CommandGetDataByHealthUnit, new GetDataByHealthUnit());
 registerCommand(CommandGetDataSpeciality, new GetDataBySpeciality());
 registerCommand(CommandInsertAnimalComplaint, new InsertAnimalComplaint());
 registerCommand(CommandInsertEmployee, new InsertEmployee());
 registerCommand(CommandInsertFoodComplaint, new InsertFoodComplaint());
 registerCommand(CommandInsertSpecialComplaint, new InsertSpecialComplaint());
 registerCommand(CommandLogin, new Login());
 registerCommand(CommandLoginMenu, new LoginMenu());
 registerCommand(CommandSearchComplaintData, new SearchComplaintData());
 registerCommand(CommandSearchDiseaseData, new SearchDiseaseData());

 ...
 }
 ...
}

Figure 3.5: Example of Forced Join Point.

Detection Strategy. Based on the characteristics of the Forced Join Point

anomaly, following detection strategy is proposed:

FJP<pointcut> :=(NAA < LOW or LOCjp < LOW) and

 (LOCadv > HIGH or NOP > HIGH)

The metric NAA (Number of Access Attributes) counts de number of

attributes accessed by the join point. The metrics LOCjp and LOCadv are referring to

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

63

the number of lines of code of the join point shadow and the advice, respectively.

Finally, the metric NOP (Number of Parameters) counts the number of parameters

in the pointcut signature.

3.2.2.7.
God Aspect

Description. God Aspect (GA) occurs when an aspect is realizing
1
 more

than one concern. In these cases, the aspect could be broken down into as many

aspects as the number of concerns it realizes. Therefore, instances of God Aspect

usually have the following characteristics: (1) they are extensive and complex, (2)

they have a high degree of coupling with other modules, and (3) their pointcut

expressions and other inner aspect members are not very cohesive. If the

measured aspect is heterogeneous and too large, this may indicate that it might be

better to decompose the aspect into other aspects. This code anomaly is a

specialization of Large Aspect (Piveta et al., 2006). Large Aspect is just related to

a high amount of inner members in an aspect, while God Aspect also encompasses

the complexity characteristics mentioned above.

Example. Figure 3.6 presents an example of God Aspect extracted from the

iBATIS system (2009). In this example the aspect named EngineECAspect is

responsible for recording contextual information about multiple types of

exceptions. However, these exceptions are throwed in the context of different

functionalities. To this end, the aspect implementation defines more than 30

members (i.e., attributes, methods, pointcuts, advice, inter-type declarations),

which are not cohesive.

1
 refers to when a code element implements partially or completely the concern.

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

64

aspect EngineCAspect

 public pointcut executionMap(..) : execution(..) && this(..);
 public ErrorContext executionBuildSqlMapEc;

 before(..): executionMap(context) {

 ErrorContext errorCtx = new ErrorContext();
 errorCtx.setActivity("creating the SqlMapClient instance");
 context.setContextObject(..);
 executionBuildSqlMapEc = errorCtx;
 }

 after(..) throwing(Exception e) throws MapException: executionMap(..){

 executionBuildSqlMapEc.setCause(e);
 throw new SqlMapException(..);

 }

 public pointcut executionParseConfig(..) throws ParserException: execution (..) && this(..);
 before(..) : executionParseConfig(..){

 ErrorContext errorCtx = (ErrorContext)context.getContext(..);
 errorCtx.setActivity("creating the ParserClient instance");
 throw new ParserException(..);

 }
 ...
}

Figure 3.6: Example of God Aspect.

Detection Strategy. Based on the aforementioned characteristics of the God

Aspect anomaly, we propose the following detection strategy:

GA:= (CBC > HIGH and AS > HIGH and LCOO > TWO-THIRDS)

The metric CBC (Coupling Between Components) (Sant’Anna et al., 2007)

counts the number of code elements with which a given aspect is coupled. The

metric AS (Aspect Size) counts the number of members defined as part of the

aspect implementation. Finally, the metric LCOO (Lack of Cohesion in

Operations) (Chidamber and Kemerer, 1994; Sant’Anna et al., 2007) counts the

number of pairs of methods/advice that do not access at least one attribute in

common. Since this metric has a normalized value (between 0 and 1) we used a

discrete threshold, two-thirds (0.66). The choice of this metric is derived from its

great success in other noteworthy studies related to modularity analysis

(Greenwood et al., 2007; Sant’Anna et al., 2007; Figueiredo et al., 2008).

Therefore, we considered that it to be a reliable cohesion metric.

It is important to highlight that the presence of a single non-cohesive aspect

is not enough to characterize the God Aspect anomaly. This can occur also in

cases where an aspect encapsulates a heterogeneous crosscutting behavior for the

family of join points that it picks out. However, if the aspect is non-cohesive and

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

65

too large, it may indicate that could be better to break this module down into

multiple aspects.

3.2.2.8.
Composition Bloat

Description. Composition Bloat (CB) is a complex base computation (e.g.

long methods or constructors) that is advised by multiple aspects and, as a result,

leads to complex advice implementations in one or more aspects. The symptoms

of this code anomaly can be characterized by the complexity of the pointcut

(and/or advice) and the number of aspects that match the same join point. For

instance, whenever complex join points (e.g. methods with long signatures) are

shared and affected by multiple aspects, they promote non-trivial interaction

between aspects. This phenomenon may be a candidate of accidental complexity,

when for example, each of these pointcuts are interested in different information

associated with the complex join point (e.g. both client-server information,

specific parameters of a long signature, etc). In such cases, the implementation of

the base computation or the corresponding advice may be broken down,

decreasing the number of aspects sharing the same join point and potentially

simplifying their complexity.

Example. The concrete example presented in Figure 3.7 is derived from an

optional feature problem extracted from the AspectualMedia system. The

MainMidlet.startApp() method is a joint point shared and picked out by several

aspects (e.g. PhotoAspect, MusicAspect, VideoAspectand and SMSAspect). The

startApp advice is part of the implementation of the PhotoMusicVideoAspect aspect.

This aspect tries to modularize the information shared by the Photo, Music and

Video concerns. Although this aspect, at first glance, might fall in the anomaly

category of God Aspect, this is not the case. It contains only a few pointcuts and

inner aspect members. Even though the pointcut expression is not complex – one

of the possible characteristics of Composition Bloat – this aspect is still

characterized as an instance of this anomaly. The issue is that the relationship

between multiple concerns within the aspect increases the internal complexity of

the advice code. The code inspection revealed that the shaded code should be

moved to existing aspects already in charge of realizing the corresponding

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

66

concerns. For instance, the lines that implement the Photo feature can be defined

as part of the implementation of the aspect PhotoAspect.

Detection Strategy. Based on the characteristics described above the

detection strategy is defined as follows:

CB<pointcut> := (NAsJP > HIGH) and (LOCadv > VERY_HIGH or NOP > HIGH)

The metric NAsJP (Number of Aspects referring to shared Join Point)

counts the number of aspects that pick out the same set of join points. The metric

LOCadv counts the number of lines of code in the advice implementation. Finally,

the metric NOP counts the number of parameters of the pointcut signature

3.3.
Experimental Evaluation

This section presents the evaluation of the code anomalies in the context of

three software systems. Following Wohlin et al. suggestion (2000), we defined

our study and its goals using the Goal Question Metric (GQM) format (Basili et

al., 1994), as:

Analyze: aspect-oriented code anomalies

For the purpose of: understanding

With respect to: whether, to what extent, and how (e.g. isolated or

simultaneously) they manifest themselves in software systems implementation

From the viewpoint of: the system developers and researchers

public aspect PhotoMusicVideo{

 ...
 pointcut startApp(MainMidlet mdlt): execution(public void MainMidlet.startpp())
 after(MainMidlet mdlt): startApp(mdlt){

 AlbumData imgModel = mdlt.imageModel;
 AlbumData musicModel = mdlt.musicModel;
 BaseController vCtr= mdlt.videoRootController;
 ... // 13 lines of code removed
 selectcontroller.setMusicController(mCtr);
 selectcontroller.setVideoAlbumData(videoModel);
 mainscreen.append("Photos");
 mainscreen.append("Music");
 mainscreen.append("Videos");
 ...
 }
}
Legend:

 Photo Music Video

Figure 3.7: Example of Composition Bloat.

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

67

In the context of: three (03) software systems from different domains,

implemented using different design principles in mind, and by different

developers teams.

3.3.1.
Target Systems

The first major decision that had to be made in our study was the selection

of the target applications. These systems should meet a number of relevant criteria

for our study, which are listed in Table 3.1.

Table 3.1: Criteria used for the selection of target systems.

 The target system:

C1
has an implementation with a rich set of aspects, such as implementations of design

patterns and widely-scoped crosscutting concerns.

C2 has size (varying from 30 to 60 KLOC)

C3 has an implementation with relevant complexity in terms of number of aspects.

C4 was implemented by different programmer teams with different levels of AspectJ skills.

C5 was developed with modularity and changeability principles as driving design criteria.

C6 has a significant lifetime, comprising several releases.

C7 has its developers available to validate the identified code anomaly instances

Criteria C1 and C3 allow identifying code anomaly in software systems with

vary implementation. Criterion C2 enables an in-depth analysis of code anomalies,

as required for this kind of study. Criterion C4 allows analyzing whether (or not)

code anomalies are specific for developers teams or levels of AspectJ skills.

Criterion C5 avoids the introduction of "noise" in the results because designs

modeled without taking into consideration good practices are not considered.

Criterion C6 supports the observation of the code anomaly behavior throughout

the system evolution. Finally, C7 ensures the validation of the identified code

anomalies in order to carry out a feasible and reliable analysis.

Based on the aforementioned criteria, 18 releases of 3 medium-size systems

were selected. The first one, called iBATIS, is an open source framework for data

mapping. It was first released in 2002, and four (04) releases of an aspect-oriented

implementation can be found at the SourceForge.net repository (iBATIS, 2009).

All the four (04) releases of iBATIS were considered in this study. The second,

called Aspectual Health Watcher (Soares et al., 2002; Greenwood et al., 2007;

AW, 2009), is a Web-based information system that allows citizens to register

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

68

complaints about health issues in public institutions. It was first released in 2000

and 10 other releases are also available at (AW, 2009). All 10 releases of

Aspectual Health Watcher were considered in this study. The last system is a

product line for deriving applications that manipulate photos, videos and music on

mobile devices called Aspectual MobileMedia (Figueiredo et al., 2008). It was

first developed in 2004 and 8 releases are available at SourceForge.net repository.

Four (04) releases were considered due to widely-scoped changes that were

realized in them. A change was considered to be widely scoped when classes

and/or aspects underwent many changes across all the systems versions and/or

many program elements were added. Table 3.2 lists the analyzed crosscutting

concerns for each target system. The characteristics of each target system are

presented in Appendix A.

Table 3.2: Analyzed concerns in target systems.

Target System Crosscutting Concerns

iBATIS

Concurrency, Exception Handling, Type Mapping,

Connection, Transaction, Error Context, and 4 Design

Patterns

Aspectual Health Watcher (AW)
2

Concurrency, Exception Handling, Distribution,

Persistence, and 5 Design Patterns

Aspectual Mobile Media (AM)
3

12 Product-Line Concerns: Capture, Controller, Copy,

Favorites, Labeling, Media, Music, Persistence, Photo,

SMS, Sorting, and Video

3.3.2.
Study Phases and Assessment Procedures

After the selection of the target applications, the study encompassed three

major phases including: the identification of documented code anomalies in the

target systems; the identification of the proposed code anomalies; and the analysis

of code anomalies through system evolution.

Identification of Documented Code Anomalies. In order to detect the

documented code anomalies in the target systems, we used the conventional

metrics proposed by Srivisut and Muenchaisri (2007) as well as those proposed by

Piveta et al. (2006). In addition, we did not have to adjust the thresholds related to

these metrics because they were Boolean values. These metrics were collected

2
 Aspectual Health Watcher is refer to from now on as Aspectual Watcher.

3
 Aspectual Mobile Media is refer to from nowon as Aspectual Mobile.

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

69

manually due to the lack of available automated tools supporting them. However,

in order to avoid code reviewer fatigue and potential errors in the collection,

during sixty (60) days two hours of work per day were dedicated to perform this

task. A checklist of review steps was produced in order to guide the process. For

instance, all the results were double-checked and all the measures for reviewed

using visual inspection to detect false positives. The false negatives were

computed using a reference list of actual anomalies recorded and double-checked

by the application developers.

Identification of New Code Anomalies. The identification of the proposed

code anomalies was also driven by detection strategies and code review. As

expected, the measures (and respective detection strategies) led to well-known

false positives and false negatives. A code review stage was dedicated to evaluate

the accuracy of the detection strategies and overcome their limitations. This stage

was based on a systematic visual inspection. We exhaustively analyzed all the

cases of false positives and false negatives and needed more time (approx. 90

days) to discover the new code anomalies, as they occurred far more often than

the already documented anomalies.

Analysis of Code Anomalies. The goal of the third phase was to trigger

some insights for helping maintainers to understand how often the anomalies

manifest themselves in software systems. The impact of these anomalies on

software architecture as well as which of them are usually removed are further

investigated in Chapter 4.

3.3.3.
Findings on Code Anomaly Occurrences

There was a significant difference on how often each investigated code

anomaly occurred in the target systems. We have analyzed the frequency of both

already documented and new code anomalies. The results are summarized in

Tables 3.3, 3.4 and 3.5, which show the frequency of anomaly occurrences in the

releases of each target system. The new code anomalies are highlighted in the

tables with the symbol ‘*’. The “Occ” column indicates the number of times each

code anomaly occurred in each release. The “Occ %” column presents the

percentage of the anomaly occurrence in terms of the total number of all anomaly

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

70

occurrences in a particular release. The “Total” column presents the total number

of anomaly occurrences detected in all the analyzed releases of a system.

Table 3.3: Code anomaly occurrences in iBATIS.

Code Anomaly
iBATIS 1.0 iBATIS 1.3 iBATIS 1.5 iBATIS 2.0

Total
Occ Occ % Occ Occ % Occ Occ % Occ Occ %

Anonymous Pointcut 0 0.0% 1 1.6% 101 64.3% 104 60.0% 216

Redundant Pointcut* 9 27.3% 24 38.1% 25 15.9% 40 21.1% 98

God Pointcut* 9 27.3% 16 38.1% 10 6.4% 13 6.8% 48

Idle Pointcut* 3 9.1% 7 11.1% 9 5.7% 8 4.2% 27

Lazy Aspect 6 18.2% 7 11.1% 2 1.3% 3 1.6% 18

God Aspect* 0 0.0% 1 1.6% 6 3.8% 8 4.2% 15

Composition Bloat* 1 3.0% 1 1.6% 3 1.6% 4 2.2% 9

Duplicated Pointcut 1 3.0% 1 3.2% 2 1.3% 2 1.1% 7

Forced Join Point* 2 6.1% 1 1.6% 1 0.6% 1 0.5% 5

Total 31 100% 60 100% 159 100% 193 100% 443

Table 3.4: Code anomaly occurrences in Aspectual Watcher.

Code Anomaly
AW 1.0 AW 4.0 AW 7.0 AW 10.0

Total
Occ Occ % Occ Occ % Occ Occ % Occ Occ %

Anonymous Pointcut 12 46.2% 27 44.3% 27 40.3% 27 40.3% 93

Redundant Pointcut* 6 23.1% 18 29.5% 18 26.9% 18 26.9% 60

God Aspect* 2 7.7% 4 6.6% 7 10.4% 7 10.4% 20

God Pointcut * 1 3.8% 4 6.6% 6 9.0% 6 9.0% 17

Forced Join Point* 3 11.5% 4 6.6% 4 6.0% 4 6.0% 15

Duplicate Pointcut 2 7.7% 2 3.3% 2 3.0% 2 3.0% 8

Lazy Aspect 0 0.0% 1 1.6% 2 3.0% 2 3.0% 5

Composition Bloat* 0 0.0% 1 1.6% 1 1.5% 1 1.5% 3

Total 26 100% 61 100% 67 100% 67 100% 221

Table 3.5: Code anomaly occurrences in Aspectual Media.

Code Anomaly
AM 4.0 AM 5.0 AM 6.0 AM 7.0

Total
Occ Occ % Occ Occ % Occ Occ % Occ Occ %

Duplicate Pointcut 11 57.9% 13 54.2% 20 54.1% 28 60.9% 72

Lazy Aspect 5 26.3% 3 12.5% 6 16.2% 7 15.2% 21

God Aspect* 1 5.3% 3 12.5% 5 13.5% 4 8.7% 13

God Pointcut * 1 5.3% 2 8.3% 4 10.8% 4 8.7% 11

Composition Bloat* 0 0.0% 1 4.2% 1 2.7% 2 4.3% 4

Redundant Pointcut* 1 5.3% 2 8.3% 0 0.0% 0 0.0% 3

Forced Join Point* 0 0.0% 0 0.0% 1 2.7% 1 2.2% 2

Total 19 100% 24 100% 37 100% 46 100% 126

Notice that a code anomaly can be observed in a release, but addressed by

programmers only in the next. Some code anomalies might have a longer life time

and be removed only in later releases. In an extreme case, they might have never

been removed until the latest release. Therefore, we included in the count for a

certain release (Tables 3.3, 3.4 and 3.5), the code anomaly occurrence that

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

71

emerged in that release and those reminiscent from previous releases. It was not

trivial sometimes to distinguish between both categories in cases where a code

element infected by an anomaly suffered significant modifications (e.g. inclusion

of new functionalities and refactorings performed). We considered that the

anomaly was a new one only if the infected code element had suffered significant

structural and semantic modifications. In order to facilitate our analysis, the tables

are clustered in two groups, which are separated by dashed lines. The first and

second groups contain the code anomalies that occur more and less frequently,

respectively. Finally, we opted for not representing the code anomalies that never

occurred.

The Variation of Anomaly Occurrences. The total number of code

anomalies varied in the target systems. For instance, iBATIS presented the highest

number of code anomalies. This happened because the other systems underwent a

number of perfective and corrective changes along their longer project history.

Therefore, as expected, the consistently-refactored releases of Aspectual Watcher

and Aspectual Media implementations would yield less code anomalies than

iBATIS. A deeper analysis of the tables shows that the new code anomalies

clearly occurred more often than the others in two systems, namely iBATIS

(Table 3.3) and Aspectual Watcher (Table 3.4). This result indicates that such

anomalies are not specific to a group of developers or particular system

characteristics. This is also somehow confirmed in the Aspectual Media case

(Table 3.5) as 5 (out of 6) new code anomalies manifested in at least one release.

Code Anomalies that Never Occurred. The anomalies Abstract Method

Introduction, Feature Envy, Various Concerns and Borrowed Pointcut never

occurred in any of the systems. We suspect that this occurs due to the following

reasons. First, they might represent silly anomalies that are usually not realized

even by programmers with little experience (e.g. Abstract Method Introduction).

This hypothesis is somehow supported by the fact that they were not encountered

even in iBATIS aspects implemented by junior programmers (i.e. who had less

than 12 months of experience with AspectJ). Second, it is questionable whether

some of these anomalies are really anomalies (e.g. Various Concerns). Finally, it

might be the case that they have very specific definitions that tend to rarely occur

in practice. For instance, Feature Envy only considers as foreign members the

specific cases of pointcuts defined within a class (allowed in previous versions of

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

72

AspectJ). However, other specific members, such as code blocks, should be

considered. For example, in some join points classified as Composition Bloat it is

interesting to move part of the source code from the base code to the aspect. We

consider that the definition for Feature Envy (Piveta et al., 2006) should be

extended in order to consider such cases.

Code Anomalies with the Highest Frequencies. The code anomalies

associated with the problem of replicated pointcuts (e.g. Redundant Pointcut and

Duplicate Pointcut) always fell in the first group considering all target systems.

For example, Redundant Pointcut accounts for about 20% and 30% of all

anomalies in iBATIS and Aspectual Watcher, respectively and Duplicate Pointcut

accounts for about 56% in Aspectual Media. We also observed that these

duplications increased along the releases. A careful analysis made us suspect that

this probably occurred because the aspects in those systems were implemented by

several developers, who did not know the details about the pointcut expressions

defined by others. This finding suggests that the occurrence of Redundant or

Duplicate Pointcuts represents a threat to the system maintenance, as it is likely to

trigger ripple effects when pointcut descriptions need to be revisited. Anonymous

Pointcut (Section 3.2.1) considerably increased along system releases too. We

suspect that this occurred due to specific programming styles. In the Aspectual

Watcher system, for example, the pointcut expressions were neither complex nor

large. They also tended to be referenced by a single advice. We believe that, in

this context, these pointcuts should not be regarded as a code anomaly instance,

since their expressions are not being reused in other contexts. Differently, the

Anonymous Pointcut expressions in iBATIS are more complex and some of them

were also classified as Duplicate and God Pointcuts (Section 3.2.2).

Early vs. Late Code Anomalies. We also observed that code anomalies

tended to appear in different stages of the software projects. This is an indication

that the occurrence of code anomalies largely depends on the software evolution.

That is, some code anomalies tend to appear in preliminary releases while others

just emerged in later releases. For example, Composition Bloat tends to appear in

later stages due to the incremental addition of aspects that pick out the same join

point. For example, the number of pointcuts that pick out the join point startApp

(Figure 3.7) increases along the releases. Furthermore, the same situation occurs

with God Pointcut, which increases due to the incremental addition of classes and

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

73

methods in the base code that should be picked out by a pointcut. On the other

hand, we can observe that occurrences of Lazy Aspect and Duplicate Pointcut

tended to appear since the first system releases (Tables Table 3.4 and 3.5).

This finding provides insights into the code anomaly occurrences that can be

useful for programmers and software maintainers. For example, the incremental

addition and extension of pointcuts that pick out the same set of join points can

alert the need to define them in a generic way (Section 3.2.3). Furthermore, the

addition of aspects that pick out the same join points, but each of them interested

in diverse contextual information (Section 3.2.3), can alert possible occurrences of

Composition Bloat. This seems to be an indication that the use of detection

strategies for aspect-oriented anomalies, which rely on historical information of

evolving aspect code (Gîrba et al., 2004, Marinescu et al. 2004), can be more

effective than detection strategies based on static analysis of a single code version

of the system.

Simultaneous Occurrence of Code Anomalies. Table 3.6 presents the

identified simultaneous occurrences of code anomalies in the target systems. Each

line indicates which pair of code anomalies occurred in one or more systems. In

some cases, the same anomaly co-occurrences manifested in more than one

system. The last column indicates how many co-occurrences were found in the

systems. It is important to highlight that these anomalies did not always occur

together. In fact, the number of single instances is higher or equal than the number

of simultaneous occurrences. For example, we observed that single instances of

Duplicate or Redundant Pointcut also manifested themselves in a separate fashion

through all the systems. The same applies to all the other cases, including

instances of Idle Pointcut and Forced Join Point that occurred in iBATIS and

Health Watcher systems.

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

74

Table 3.6: Simultaneous occurrences of code anomalies.

System
Code Anomalies

Total
AP CB DP FJP GP IdP RP

AW * * 4

AW/iBATIS * * 31/68

iBATIS * * 27

iBATIS * * * 3

iBATIS * * 9

iBATIS/AM * * 7/3

AM * * 3

AM * * 2

There was an actual casual connection of Composition Bloat to both

Redundant and Duplicate pointcuts for the vast majority of the 16 instances. It

was often the case that a Composition Bloat instance was replaced by another

instance in further releases. For example, all the pointcuts that pick out the join

point startApp (Figure 3.7) were identified as Redundant Pointcut instances. These

duplications are even more aggravating because they are scattered across several

aspects. This leads to ripple effects in the software maintenance as the changes are

not localized and it is possible to miss an important change.

Similar situations were observed with respect to Forced Join Point and Idle

Pointcut. For example, in Aspectual Media and Aspectual Watcher, some Forced

Join Point occurrences were classified as Redundant Pointcut and Duplicate

Pointcut, respectively. In addition, simultaneous occurrences of Anonymous

Pointcut and Redundant Pointcut were observed in Aspectual Watcher and

iBATIS systems. Many occurrences of the Anonymous Pointcut in iBATIS were

also classified as God Pointcut. In addition, we can observe that Redundant and

Duplicate Pointcut are usually accompanied by other code anomalies. This

observation indicates that duplication of pointcuts often leads to other code

anomalies.

3.3.4.
Threats to Validity

This section discusses the threats to validity according to the classification

proposed by Wohlin et al. (2000).

Construct Validity. First, threats to construct validity are mainly related to

possible errors introduced in the identification of code smell instances. We are

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

75

aware that detection strategies, manual inspection and new metrics can introduce

imprecision. However, we limited such threat by using and double-checking

results collected from other studies (Soares et al., 2002; Greenwood et al., 2007;

Sant’Anna et al., 2007; Figueiredo et al., 2009), such as the automatically-

collected measures used in the detection strategies. We have also used code

inspection to resolve false positives and false negatives. In addition, at the end, the

identified anomalies were all validated with the original developers and the

techniques were applied in a way similar to the used in other noteworthy studies

(Ferrari et al., 2009; Figueiredo et al., 2008; Figueiredo et al., 2009).

Conclusion Validity. We have two issues that threaten the conclusion

validity of our study: the number of evaluated systems and the evaluated AOP

mechanisms. We have used in total 18 releases from 3 different systems. Of

course, a higher number of systems would always be desired. However, we do

believe our sample was appropriate to conduct a thorough investigation of

anomaly occurrences, and that it was able to raise hypotheses that can be further

tested in replications. Our evaluation was also enough to provide initial

statistically-relevant evidence for all hypotheses and findings in the context of an

exploratory study. In addition, for each application we ensured that significant

changes took place between releases. Related to the second issue, our analysis was

concerned with the recurring mechanisms of most AOP languages, such as

pointcut–advice and inter-type declarations.

Internal and External Validity. The main threats to internal and external

validity are the following. First, the level of experience of the developers in

system implementations could be an issue. We used systems that were developed

by more than 30 programmers with different levels of AOP skills. The main threat

to external validity is related to the nature of the evaluated systems. We have tried

to use applications with different sizes and that were implemented using different

methodologies and environments. However, we are aware that more studies

involving a higher number of systems should be performed in the future.

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

76

3.4.
Summary

The analysis of code anomalies that infect software systems

implementations is a relevant research field since it allows developers to be aware

about possible design problems in their implementations. However, the analysis of

aspect-oriented code anomalies is particularly hindered by the fact that existing

catalogs are very limited (Section 2.3.4.1). Existing catalogs basically mimic

object-oriented anomalies, without documenting recurring misuses of strictly

aspect-oriented mechanisms. In addition, there is no knowledge about how often

code anomalies manifest themselves in aspect-oriented implementations (Section

2.3.4.1).

To fill this gap, this chapter presented and discussed a series of code

anomalies related to the misuse of aspect-oriented mechanisms introduced by

developers when implementing software systems. These anomalies were derived

from our observations and analysis of potentially-anomalous code structures in

several systems, reports in the literature, and our experience in the development of

aspect-oriented systems. The documented anomalies and the already published

ones were classified in three categories according to the aspect-oriented

abstraction of mechanisms they are related to: (i) anomalous pointcut definitions,

(ii) aspect definition, and (iii) undesirable interdependencies. For each new code

anomaly, concrete examples of its manifestation were provided as well as a

detection strategy to support its identification.

Furthermore, the chapter presented an empirical study that aims at

investigating the frequency rate of aspect-oriented code anomalies in systems'

implementation. This study involved the analysis of 790 aspect-oriented code

anomalies, distributed in three (03) software systems. These systems represents

different domains and were implemented with different design principles in mind

and by multiple developers teams.

Our key findings (Section 3.3.3) suggest that:

 Already published anomalies in aspect-oriented code did not occur as

often as claimed or expected. Our analysis also indicated that certain

anomalies, which were not reported elsewhere, might occur more often

than those well-known anomalies.

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

77

 Some code anomalies, such as those related to code duplication, tended to

manifest themselves in early software releases while others appeared only

in later releases, such as those associated with aspect dependencies.

 When aspects are introduced in later releases, many of the aspect-specific

code anomalies are a direct consequence of bad object-oriented design of

the base code.

All the aforementioned findings and observations provided initial evidence

that many of the assessed code anomalies represent recurrent ways in which

developers misuse aspect-oriented abstractions and mechanisms. Therefore, we

are able to study the impact of code anomalies, including object-oriented and

aspect-oriented implementations, considering system architectures (Chapter 4),

which is the main goal of this thesis.

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

