
 

5 
Analysis of Conventional Detection Strategies 

The previous chapter confirmed and provided empirical evidence about the 

harmful impact of code anomalies on the actual architecture of software systems. 

Following that, the goal of this chapter is to answer the second main research 

question of this thesis (Section 1.4): Whether the conventional detection strategies 

are able to accurately identify architecturally-relevant code anomalies? If so, to 

what extent? Detection strategies (Marinescu, 2004) were selected as a 

conventional mechanism to identify code anomalies in this thesis due to several 

reasons. First, they are the most applied and studied mechanism to identify code 

anomalies in the literature (Section 2.3.1). These strategies have been adopted by 

several well-known tools that support the static analysis of the source code such as 

Together, 2010; Marinescu et. al., 2010; Monha et. al., 2011; NDepend, 2011, 

Mara et. al., 2011. Finally, according to several studies, detection strategies tend 

to present accuracy rates around 60% when detecting code anomalies (Marinescu, 

2004; Lanza and Marinescu, 2006), which is considered an acceptable rate 

(Khomh et al., 2009; Olbrich et al., 2009, 2010; D’Ambros et al., 2010; Sjobert et 

al., 2013). 

In this context, this chapter describes a study that assesses the accuracy of 

conventional detection strategies when identifying code anomalies related to 

architectural degradation symptoms in the actual architecture. In particular, this 

study investigates the accuracy of conventional strategies when detecting those 

code anomalies classified by architects and developers as architecturally-relevant 

in the context of the previous study (Chapter 4). Consequently, the study 

presented in this chapter relies on information gathered during the data collection 

process described in Section 4.1.4 such as: target systems and architecturally-

relevant code anomalies. The reasons that led us to rely on that information are 

further discussed in Section 5.1.3. This study has been published in the 11
th

 

International Conference on Aspect-Oriented Software Development (Macia et 

al., 2012c). 
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In order to present the performed study, this chapter follows a similar 

structure of Chapter 4. That is, Section 5.1 describes the study definition and 

design. Section 5.2 presents and discusses the results of the study. Section 5.3 

describes the limitations of the study and discusses how they were mitigated. 

Finally, Section 5.4 summarizes the key points discussed throughout this chapter. 

 

5.1. 
Study Definition and Design 

As aforementioned, the study presented in this chapter aims to answer the 

second main research question of this thesis (Section 1.4): Whether the 

conventional detection strategies are able to accurately identify architecturally-

relevant code anomalies? If so, to what extent? In order to carry out this 

investigation, the analysis was decomposed into two perspectives by observing 

both violations and architectural anomalies. These perspectives allow us to better 

analyze the accuracy of conventional detection strategies when identifying code 

anomalies related to specific kinds of architectural degradation symptoms. Thus, 

the perspectives lead us to two research questions (RQ) as defined below. 

RQ2.1: To what extent are conventional detection strategies able to 

accurately identify code anomalies related to architectural violations (i.e. erosion 

symptoms) in the actual architecture? 

RQ2.2: To what extent are conventional detection strategies able to 

accurately identify code anomalies related to architectural anomalies (i.e. drift 

symptoms) in the actual architecture? 

A sample of nearly 600 architecturally-relevant code anomalies was 

considered to answer both research questions (Section 4.2.1). This sample is 

representative because it involves 70% of all code anomalies found in the target 

systems (Section 5.1.3). Additionally, it includes object-oriented and aspect-

oriented code anomalies and architectural degradation symptoms observed in the 

implementation of systems decomposed with such modularization techniques. 
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In this context, following Wohlin et al. suggestion (2000), the goal of the 

study is defined using the GQM format (Basili et al., 1994) as: 

Analyze: conventional detection strategies 

For the purpose of: assessing their accuracy 

With respect to: the identification of code anomalies related to architectural 

violations and architectural anomalies 

From the viewpoint of: architects, developers and researchers 

In the context of: five (05) software systems from multiple domains, 

implemented using various modularization techniques and following different 

architectural decompositions. 

 

5.1.1. 
Hypotheses 

The following null and alternative hypotheses have been defined in order to 

answer the aforementioned two research questions as shown in Table 5.1. 

Table 5.1: Research questions and hypotheses of the study. 

Research Questions Hypotheses 

RQ2.1 

For each of the conventional detection strategies studied: 

Null Hypothesis, H10: The conventional detection strategy accurately 

identifies code anomalies related to architectural violations. 

Alternative Hypothesis, H1A: The conventional detection strategy does 

not accurately identify code anomalies related to architectural violations. 

RQ2.2 

For each of the conventional detection strategies studied: 

Null Hypothesis, H20: The conventional detection strategy accurately 

identifies code anomalies related to architectural anomalies. 

Alternative Hypothesis, H2A: The conventional detection strategy does 

not accurately identify code anomalies related to architectural anomalies. 

  

Conventional detection strategies are considered to be accurate in the 

literature when their precision and recall rates are 60% or higher for identifying 

code anomalies (Marinescu, 2004; Lanza and Marinescu, 2006; Khomh et al., 

2009; Olbrich et al., 2009; Olbrich et al., 2010). As code anomalies are related to 

architectural problems (Chapter 4), we also used this threshold in this study to 

assess the strategies accuracy when localizing architecturally-relevant code 

anomalies. That is, in the context of this study a strategy is considered to be 

accurate whether it detects at least 60% of the architecturally-relevant code 

anomalies. 
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5.1.2. 
Variable Selection 

In order to test the hypotheses, the following independent and dependent 

variables are defined. 

Independent Variables. There are as many independent variables as there 

are types of code anomalies to be identified by detection strategies. Each variable, 

Ci,k,j, indicates the number of times that a code element i suffers from a code 

anomaly k in version vj. As described in Section 5.1.4, all code anomaly 

occurrences and thresholds used in testing these hypotheses were confirmed by 

more than twelve different developers, who have previous experience on 

identifying and removing code anomalies. 

Dependent Variables. This study investigates the accuracy of conventional 

strategies to detect code anomalies related to architectural violations and 

architectural anomalies. Therefore, there are two Boolean dependent variables, 

Vi,k,j and Ai,k,j, for H10 and H20 indicate whether the entity i affected by the code 

anomaly k relates to any violation or architectural anomaly in version vj, 

respectively. As presented in Section 5.1.4, all the architecturally-relevant code 

anomalies used in testing these hypotheses were confirmed by architects and 

developers of the target systems (Section 5.1.3). 

 

5.1.3. 
Selection Criteria and Target Systems 

A list of criteria was documented to support the selection of suitable target 

systems to this study. The criteria used are presented in Table 5.2. 

Table 5.2: Criteria used for the selection of target systems. 

 The target system: 

C1 was modeled using documented guidelines or well-known architecture styles. 

C2 has the intended architecture design available. 

C3 has architects and developers available. 

C4 has a manageable size  

C5 suffers from a rich set of code anomalies. 

C6 Presents multiple symptoms of architectural degradation.  

C7 underwent changes  

C8 was implemented by developers with different levels of programming skills. 

C9 was implemented using different programming languages and modularization techniques. 

C10 allows applying conventional detection strategies. 
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As it can be noticed, all selection criteria used in Chapter 4 (Section 4.1.3) 

can be used in the context of this study. Unlike the study presented in Chapter 4, 

criterion C10 is also mandatory for assessing the accuracy of detection strategies. 

The reason is because we need to ensure that conventional detection strategies can 

be employed in all the target systems. For instance, we cannot select software 

systems implemented using programming languages for which there are no 

detection strategies documented. Conventional detection strategies are available in 

the literature to identify code anomalies in both object-oriented (Marinescu, 2004; 

Lanza and Marinescu, 2006) and aspect-oriented implementations (Srivisut and 

Muenchaisri, 2007; Chapter 3). Consequently, Aspectual Watcher, Health 

Watcher, Aspectual Mobile, MobileMedia, and MIDAS are also considered as 

target systems in this study.  

 

5.1.4. 
Procedures for Data Collection and Analysis 

As this study relies on the target systems used in the previous study, several 

kinds of information have already been gathered for these systems. This implies 

that such gathered information can be reused in the context of this study, saving 

effort in the data collection process. For example, code anomalies related to 

architectural violations were identified and validated by architects and developers 

of target systems in the previous study. The same occurred for those code 

anomalies related to architectural anomalies in the target systems. The collection 

of both kinds of information is particularly relevant because they correspond to 

the dependent variables in this study (Section 5.1.2). 

The independent variables (Section 5.1.2) were also gathered in the context 

of the previous study (Chapter 4). As described in Section 4.1.4, conventional 

detection strategies were used as a first step towards the identification of 

architecturally-relevant code anomalies. Additionally, the employed strategies and 

their corresponding thresholds were discussed and validated with developers in 

order to get the best possible results. This means that the code anomalies 

identified by detection strategies in Section 4.1.4 can be considered in the context 

of this study. 
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Analyzing the Accuracy of Conventional Detection Strategies. 

Afterwards, a stage was dedicated to investigate the accuracy of the conventional 

strategies when detecting the architecturally-relevant code anomalies previously 

identified by developers (Section 4.1.4). Therefore, this investigation was based 

on both lists: (i) automatically-detected code anomalies using conventional 

detection strategies and, (ii) lists of architecturally-relevant code anomalies 

detected by developers by means of code review (Section 4.1.4). In particular, the 

lists provided by developers were useful to assess the impact of non-

automatically-detected code anomalies on architectural decompositions. In order 

to reject H10 and H20, we calculated the precision and recall measures of detection 

strategies using the following formulas: 

FPTP

TP
precision


  

FNTP

TP
recall


  

where, True Positive (TP) and False Positive (FP) encompass all 

automatically-detected code anomalies that respectively were or were not 

confirmed as architecturally-relevant by architects and developers of the systems. 

To determine False Negatives (FN) developers performed a code review to detect 

architecturally-relevant code anomalies that were not automatically-identified by 

the detection strategies; as described previously (Section 4.1.4).  

It is important to reaffirm that we only considered a code element to be 

infected by a code anomaly when all the architects and developers involved in the 

process confirmed this. Therefore, a detection strategy that identifies code 

anomalies of type C achieves 100% of precision and 100% of recall if and only if 

it pinpoints the set of code anomalies of type C reported by developers and 

architects.  

In order to illustrate how precision and recall are measured, let's consider 

the example presented in Figure 5.1. This figure depicts the relationship between 

the architecture of a software system and its implementation, where such 

architecture is designed following the Layers style. In this example, the 

anomalous classes C1 and C7 are considered to be architecturally-relevant because 

they are related to cyclic dependencies between components and violations, 

respectively. However, only C7 is architecturally-relevant from the seven (07) 

classes identified by detection strategies (C1-C7). Thus, there are: a true positive 

(C7), three (03) false positives (C2, C4 and C6), and a false negative (C1), which 
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indicates that the precision and recall of detection strategies are 1/4 and 1/2, 

respectively. 

 

DATA
BUSINESSDATA GUI

C1

C2

C4 C6

C7C5C3

Class detected by strategies

Architectural design

Source code
Legend:

Anomalous class

Expected dependency

Degradation Symptom
 

Figure 5.1: Accuracy of detection strategies. 

 

5.2. 
Study Results 

The precision and recall of conventional detection strategies for identifying 

architecturally-relevant code anomalies is summarized in Table 5.3. The token '-' 

is used in this table to represent the cases where code anomalies did not occur or 

they were not related to architectural degradation symptoms. The average of 

precision and recall are also presented for code anomalies in both object-oriented 

and aspect-oriented implementations. 

In general, our analysis reveals that conventional detection strategies were 

inaccurate in identifying architecturally-relevant code anomalies in the target 

systems. Specifically, most of the code anomalies identified by conventional 

strategies were not associated with architectural degradation symptoms, leading to 

many false positives. In general, the average of the code anomalies identified by 

conventional detection strategies represented about 45% (or less) of the total 

number of code anomalies related to architectural problems. MIDAS was the only 

exception, which will be discussed later. Consequently, these results might imply 

a problem to developers who are interested in performing clean-up code revisions 

to avoid architectural degradation. In these cases, developers are likely to devote 

most of their time analyzing code anomalies that do not represent a threat to the 

architecture design. 
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Table 5.3: Results for the analyzed detection strategies. 

Code Anomaly 
True Positives False Positives False Negatives Precision Recall 

HW MM MIDAS HW MM MIDAS HW MM MIDAS HW MM MIDAS HW MM MIDAS 

Disperse Coupling 7 1 4 14 2 43 19 2 2 0.33 0.33 0.09 0.27 0.33 0.67 

Feature Envy 5 2 - 27 6 - 9 3 - 0.16 0.25 - 0.36 0.40 - 

God Class 1 3 2 2 4 0 4 5 1 0.67 0.43 1.00 0.33 0.38 0.67 

Intensive Coupling 2 5 6 5 8 11 8 6 7 0.29 0.38 0.35 0.20 0.45 0.46 

Large Class 1 1 2 2 0 4 4 1 0 0.43 1.00 0.30 0.38 0.50 1.00 

Long Method 23 7 6 33 24 37 18 10 4 0.41 0.23 0.34 0.56 0.41 0.50 

Long Parameter List 4 - - 12 - - 5 - - 0.25 - - 0.44 - - 

Misplaced Class 2 1 - 5 2 - 1 2 - 0.33 0.33 - 0.50 0.33 - 

Shotgun Surgery 6 2 3 19 6 23 9 7 6 0.24 0.25 0.22 0.40 0.22 0.32 

OO Avg. Rates          0.35 0.40 0.33 0.41 0.44 0.63 

 AW AM - AW AM  AW AM  AW AM - AW AM - 

Disperse Coupling 7 2 - 10 5 - 10 4 - 0.47 0.29 - 0.41 0.33 - 

Feature Envy 16 3 - 14 7 - 14 2 - 0.53 0.30 - 0.53 0.60 - 

God Class 1 2 - 1 2 - 7 4 - 0.50 0.50 - 0.13 0.33 - 

Intensive Coupling 4 6 - 6 7 - 8 8 - 0.40 0.46 - 0.33 0.43 - 

Large Class 1 1 - 2 1 - 5 1 - 0.33 0.50 - 0.17 0.50 - 

Long Method 16 4 - 15 16 - 12 5 - 0.52 0.20 - 0.57 0.44 - 

Long Parameter List 8 6 - 8 3 - 3 2 - 0.50 0.67 - 0.73 0.75 - 

Misplaced Class 3 - - 4 1 - 8 2 - 0.50 - - 0.27 - - 

Shotgun Surgery 7 1 - 9 9 - 14 9 - 0.44 0.10 - 0.33 0.10 - 

OO Avg. Rates          0.47 0.32 - 0.38 0.44 - 

Composition Bloat 2 3 - 4 1 - 3 4 - 0.33 0.50 - 0.40 0.43 - 

Duplicate Pointcut 8 65 - 11 47 - 3 31 - 0.42 0.58 - 0.72 0.68 - 

Forced Join Point 6 1 - 6 2 - 9 6 - 0.50 0.33 - 0.40 0.14 - 

God Aspect 11 6 - 11 4 - 17 9 - 0.50 0.60 - 0.39 0.40 - 

God Pointcut 10 8 - 20 7 - 14 11 - 0.33 0.53 - 0.42 0.42 - 

Redundant Pointcut 52 3 - 17 3 - 32 2 - 0.75 0.50 - 0.62 0.60 - 

AO Avg. Rates          0.47 0.50 - 0.49 0.44 - 
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Even worse, many of the code anomalies that are harmful to the extracted 

architecture were not identified by conventional detection strategies, leading to a 

high rate of false negatives. Developers will miss a wide range of architectural 

erosion and drift symptoms. In particular, many of the conventional detection 

strategies exhibited recall rates close or much lower than 45%. That is, about 55% 

or more of the non-detected code anomalies were related to architectural 

problems. These results indicate that conventional detection strategies seem to 

have a tendency to send developers in wrong directions when addressing code 

anomalies related to architectural problems. 

The next subsections discuss how accurate the conventional detection 

strategies were when localizing code anomalies related to both types of 

architectural degradation symptoms: violations (Section 5.2.1) and architectural 

anomalies (Section 5.2.2). 

 

5.2.1. 
Accuracy of Detecting Architectural Violations 

On average about 41% of the code anomalies related to violations were 

identified by conventional detection strategies in the target systems. The results 

also show that code anomalies related to violations emerged in systems developed 

with both object-oriented and aspect-oriented modularization techniques. In 

object-oriented systems, these violations were related to undesirable 

interdependencies between classes responsible for implementing different 

architectural elements. For instance, 69% of the violations in Health Watcher were 

related to exception events propagated from the Data layer to the View layer. 

Consequently, all interfaces between Data and View layers propagated these 

exceptional events, even though the majority of these exceptions should be treated 

internally by classes defined in the Data layer according to the designers'. intent. 

The propagation of exception events introduced several occurrences of Long 

Method, Misplaced Class, Divergent Change, and Shotgun Surgery. However, just 

about 33% of these architecturally-relevant anomalies were detected by 

conventional detection strategies. 

Other kinds of violations emerged in aspect-oriented systems as they follow 

a different architectural design. For instance 26% of the total number of 
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architecturally-relevant anomalies were related to undesirable tight coupling 

between aspects and the base code. These relations were motivated by the fact that 

classes were exposing internal information just to be used by aspects. For 

instance, artificial methods had to be created in later system versions, aiming at 

allowing the expected composition between aspects. This situation leads to 

Interface Bloat occurrences and to the introduction of relevant Long Parameter 

Lists, Composition Bloat, and Forced Join Points. However, conventional 

detection strategies were able only to identify about 40% of these relevant 

occurrences. 

 

5.2.2. 
Accuracy of Detecting Architectural Anomalies 

Architectural anomalies were mostly related to the inappropriate 

modularization of architectural concerns in the target systems. Exception Handling 

for Aspectual Watcher and Connection for Aspectual Media presented the 

strongest relationship with architectural modularity problems as they are very 

context-specific with code. Exception Handling, for instance, was scattered among 

different architectural components and, therefore, it was related to Scattered 

Parasitic Functionality occurrences. On the other hand, the high tangling of 

Connection with Persistence and Logging led to the architectural components 

responsible for its modularization were classified as Component Concern 

Overload. The inappropriate modularization of these concerns was associated 

with several occurrences of Long Method, God Aspect, God Class, Divergent 

Change and Shotgun Surgery in the target systems. Exception Handling and 

Connection were responsible, respectively, for 53 % and 41% of the total of 

architecturally-relevant code anomalies in Aspectual Watcher and Aspectual 

Media. However, just about 47% of these relevant anomalies were detected by 

conventional detection strategies. 

 

5.2.3. 
Hypotheses and Overall Accuracy Results 

Based on the aforementioned results, we can conclude that conventional 

detection strategies were not accurate in detecting architecturally-relevant code 
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anomalies (Section 5.1). Therefore, we reject both null hypotheses H10 and H20 

(Section 5.1.1) for all the systems, except MIDAS (Table 5.3). Several 

conventional detection strategies presented recall rates greater than 60% in 

MIDAS. That is, more than a half of code anomalies related to architectural 

degradation symptoms were automatically identified by conventional detection 

strategies in MIDAS. We also observed that the number of architectural anomalies 

not related to code anomalies tend to increase compared with the other systems 

due to incomplete refactorings. 

The MIDAS case indicated that conventional detection strategies are more 

effective in systems where architecture conformance is more strictly enforced in 

the code. The better the code modularity reflects the architecture decomposition, 

the fewer the number of code anomalies. This finding was not actually exclusive 

to MIDAS. Similar results were observed in components of MobileMedia and 

Health Watcher with highest adherence to the architectural design decisions. In 

these components (e.g., Model for MobileMedia and Business for Health Watcher) 

the conventional detection strategies presented precision and recall rates higher 

than 60%. These components also presented the lowest number of architecturally-

relevant code anomalies. 

Another relevant characteristic that is likely to favor the success of 

conventional detection strategies (i.e., accuracy rates higher than 60%) is when 

the projection of an architectural element occurs in a few code elements. In these 

cases, single code anomalies will exert a more direct impact on the architectural 

element that they are implementing. This phenomenon was observed in all target 

systems. 

 

5.2.4. 
Analysis of Overlooked Code Anomalies 

Once we have discussed the accuracy of the conventional detection 

strategies, we reflect upon the key factors that contributed to their failure in 

localizing architecturally-relevant code anomalies (Sections 5.2.4.1 and 5.2.4.2). 

This discussion can provide insights on how to improve the techniques to detect 

architecture degradation based on source code analysis. 
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5.2.4.1. 
Inability to Analyze Properties of Architectural Concerns in the 
Source Code 

Code anomalies were often the source of architectural problems when they 

were located in modules realizing various architectural concerns. We noticed that 

62% of the total number of architecturally-relevant code anomalies exhibited this 

characteristic. This frequency reinforces that detection strategies should be more 

sensitive to the degree of concern scattering and tangling in the code. The reason 

is because the employed conventional strategies were not accurate when detecting 

anomalies associated with the inappropriate modularization of architectural 

concerns; they presented precision and recall rates around 43% and 48% 

respectively. 

For instance, the AlbumData class in MobileMedia (Figure 5.2) was 

classified by developers as an architecturally-relevant occurrence of God Class 

since it defines more than few methods and realizes different architectural 

concerns (e.g. Photo, SMS, and Persistence). However, differently from 

MediaController class (Figure 4.1), it was not identified by conventional detection 

strategies. Although AlbumData was the source of highly tangled and scattered 

concerns, its methods do not present high complexity in terms of Line of Code or 

Cyclomatic Complexity (Section 2.3.1). However, changes associated with each of 

the architectural concerns were performed in this class, confirming its anomalous 

nature. This class was particularly related to two architectural anomalies, namely 

Component Concern Overload and Scattered Parasitic Functionality (Section 

2.2.3). 
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As a conclusion, the results seemed to suggest that conventional detection 

strategies are not accurate on the identification of architecturally-relevant code 

anomalies largely due to their lack of sensitivity to properties of architectural 

concerns in the code. Conventional detection strategies are limited to metrics of 

structural properties (detected by static analysis tools) of modules in the code. 

Existing concern metrics (Sant'Anna et al., 2007) and concern tracing tools 

(FEAT, 2009) should be leveraged to improve the accuracy of detection strategies 

used to assess architecture degradation. 

 

5.2.4.2. 
Inability to Identify Architectural Information in the Source Code 

Architecturally-relevant code anomalies often occurred in code elements 

responsible for implementing different architectural elements. Specifically, 49% 

of the architecturally-relevant code anomalies fell in this category. However, 

public abstract class AlbumData { 
     ... 
    protected MediaAccessor mediaAccessor; 

 
     public String[] getAlbumNames() { 

       mediaAccessor.loadAlbums(); 
       ... 

     } 
     ... 
     public MediaData[] getMedias(..) throws ...  { 
       ... 

       result = mediaAccessor.loadMedia(..); 
       ... 

     } 
 
     public void createNewAlbum(..) throws ... { 

       mediaAccessor.createNewAlbum(albumName); 
       ... 

     } 
 
     public void addVideoData(..) throws ... { 

       ((VideoAccessor)mediaAccessor).addVideo(..); 
       ... 

     } 
     ... 
     public void addImageData(..) throws .. { 
       ... 

       ((ImageAccessor)mediaAccessor).addImage(..); 
       ... 

     } 
     ... 

  } 
 
Legend: 

     Photo Concern           Video Concern         Persistence Concern          SMS Concern 

Figure 5.2: Example of neglected God Class. 
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precision and recall rates of the strategies were 36% and 44%, respectively, when 

identifying these code anomalies. 

For instance, the method InsertEmployee.execute() in Health Watcher 

represents an example of an architecturally-relevant code anomaly that was not 

automatically detected by conventional strategies. In particular, this method was 

classified as Disperse Coupling by developers since it accesses information and 

calls methods of classes responsible for implementing different architectural 

elements. The method InsertEmployee.execute() also introduces undesirable 

dependencies between non-adjacent layers, condition to be classified as an 

architecturally-relevant occurrence. However, such method was not identified by 

conventional detection strategies because the method does not call many methods 

from other classes. Note that this imperfection cannot be addressed by calibrating 

the used thresholds. The choice of lower thresholds would lead the strategy to 

present a higher rate of false positives. 

As a result, it was observed that detection strategies were not effective in 

identifying this kind of code anomaly as they are not sensitive to which 

architectural elements a code element is responsible for implementing. The key 

issue is that conventional detection strategies cannot rely on information about 

how the code elements are associated with architectural elements and their inter-

dependencies; this information cannot be extracted using code metrics. This might 

indicate the need for further investigating how detection strategies could exploit 

architecture-to-code traceable information. 

 

5.2.4.3. 
Patterns of Code Anomalies 

It was observed that certain patterns of code anomalies tend to be better 

indicators of architectural degradation symptoms than single code anomalies. 

However, these patterns cannot be directly identified by conventional detection 

strategies, which focus on identifying individual code anomalies. They do not 

capture, for instance, a chain of inter-related code anomalies. 

Co-occurrences of Code Anomalies. Certain recurring patterns of co-

occurring code anomalies tend to be stronger indicators of architectural 

degradation symptoms. For instance, co-occurrences of Long Method and 
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Divergent Change were associated with architectural problems in all the systems. 

That is, methods with either many lines of code or realizing several architectural 

concerns and, high coupling degree with different architectural elements were 

better indicators than single Long Method occurrences. More than 75% of these 

combined occurrences were associated with architectural problems while just 

about 43% of single Long Method and 36% of Divergent Change occurrences 

were related to architectural problems. 

It is important to point out that many of these relevant co-occurrences 

cannot be detected by simply combining multiple strategies using logical 

operators (Section 2.3.1). Aiming at identifying these co-occurrences, detection 

strategies must rely on some kind of architectural information (Section 5.2.4.2). 

For instance, it would be also useful to consider how many different architectural 

elements a method is accessing. Otherwise, detection strategies will just detect 

such relevant co-occurrences that present similar characteristics of non-

architecturally-relevant co-occurrences. That is, those co-occurrences that present 

tight coupling degree with several elements, disregarding their distribution on 

architectural decompositions. 

Code Elements suffering from the Same Anomaly. Interesting findings 

emerged from analyzing groups of code elements that suffer from the same code 

anomaly. For instance, when a group of classes that suffer from God Class or 

Large Class are implementing the same architectural component A and realizing 

different concerns it may indicate that A suffers from Component Concern 

Overload. This assumption departs from the fact that God Classes and Large 

Classes are likely to be related to the inappropriate modularization of architectural 

concerns. Furthermore, when other architectural components and God Classes of 

A are sharing the same architectural concern, it may suggest that A is affected by 

Scattered Parasitic Functionality. This situation was observed in all the systems. 

Propagation of Architectural Problems. The propagation of architectural 

problems from parents to children in the inheritance trees of all the systems was 

also often observed. There are two main categories related to such propagation of 

architectural problems. The first is related to architectural problems that are 

propagated to all the children in the inheritance tree whereas in the second 

category the architectural problem is not propagated to all the children, i.e. some 

children are free of architectural problems. Examples of both categories were 
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found in all systems. For instance, in Health Watcher we observed that several 

interfaces were introducing undesirable relationships via their parameter types. 

These interfaces were not identified by detection strategies because they had a 

well-defined interface (e.g. several members, without a high coupling degree). 

However, they had a considerable negative effect as these violations were 

propagated down through the class hierarchies. Usually these undesirable 

references are left in a system over a long period due to the ripple effects when 

refactorings are applied to remove them. 

The limitations of conventional detection strategies for localizing 

propagated relevant occurrences of code anomalies are the same for localizing 

single relevant occurrences. This is due to the propagation of code anomalies in 

the inheritance trees itself could be detected using static code analysis. 

 

5.2.4.4. 
Architectural Design and Strategy Accuracy 

There was a direct influence of the lack of modularity of certain 

architectural concerns on the architecturally-relevant anomalies when analyzing 

different architectural decompositions. We observed that when the modularization 

of architectural concerns is more explicit in the source code the number of 

architecturally-relevant anomalies tend to decrease. For instance, object-oriented 

systems presented a higher number of code anomalies than aspect-oriented 

systems. We suspect this occurred due to most of the code anomalies being related 

to the inappropriate modularization of architectural concerns, which are more 

scattered in object-oriented systems. As aspect-oriented programming 

mechanisms tend to improve the modularization of crosscutting concerns in single 

aspects, they may remove relevant anomalies related to this factor. It is not our 

intention to compare the results in both decompositions, as we discussed in 

previous sections the inadequate use of aspect-oriented mechanisms may 

introduce other kinds of architecturally-relevant code anomalies. 

Even more interesting is the fact that we have observed how the 

conventional strategy accuracy for identifying architecturally-relevant anomalies 

seem to be similar in both kinds of architectural decompositions. This assumption 

is derived from results regarding to the “average rows” in Table 5.3. The accuracy 
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rates of conventional detection strategies are about 40% for detecting 

architecturally-relevant code anomalies in all aspect-oriented and object-oriented 

systems, except in MIDAS. 

 

5.3. 
Threats to Validity 

This section discusses the threats to validity according to the classification 

proposed by Wohlin et al. (2000). 

Construct Validity. Threats to construct validity are mainly related to 

possible errors introduced in the identification of code anomalies and architectural 

problems. There are different kinds of detection strategies documented in the 

literature. In particular, we opted for not selecting history-sensitive detection 

strategies as they tend to be less predictive and require multiple versions of the 

system (Ratiu et. al., 2004; Mara et. al., 2011). Consequently, they accurately 

reveal code anomalies just in later releases, when the system may have already 

achieved critical degradation stages. 

We are aware that detection strategies, manual inspections and other 

mechanisms used to identify code anomalies and architectural problems could 

introduce imprecision. However, we mitigated this threat by: (i) involving original 

developers and architects in this process, and (ii) using architectural models where 

architectural components were mapped to different levels of granularity. That is, 

the relationships between components and packages were often not 1-to-1. 

Furthermore, the architectural problems were identified by architects, who had 

previous experience with the detection of architectural violations and anomalies in 

other systems. The correlation analysis between code anomalies and architectural 

problems was also validated with the architects and developers. 

Conclusion Validity. We have two issues that threaten the conclusion 

validity of our study: the number of evaluated systems and assessed anomalies. 

Two versions of MIDAS, eight versions of MobileMedia, eight versions of 

Aspectual Media, ten versions of Health Watcher and, ten versions of Aspectual 

Watcher were used for the purposes of this study, totaling 38 versions. Of course, 

a higher number of systems would always be desired. However, the analysis of a 

bigger sample in this study would be impracticable for several reasons. 
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First, the relationship between code anomalies and architectural problems 

needed to be confirmed by architects. Second, the number of systems with all the 

required information and stakeholders available to perform this study is rather 

scarce. Then, our sample can be seen as appropriate for a first exploratory 

investigation (Kitchenham et al., 2006). All the findings (for example, those 

discussed in Section 5.2.4) contribute with more specific hypotheses that should 

be further tested in repetitions or more controlled replications of our study. 

Related to the second issue (completeness of code anomalies and 

architectural problems), our analysis was concerned with a wide variety of code 

anomalies and problems that occur in system architecture. We analyzed the 

accuracy of detection strategies for identifying all architecturally-relevant code 

anomalies that occurred in the target systems. In addition, certain code anomalies 

were not discussed (e.g. Small Class) since their occurrences did not influence the 

system architectures we have studied. 

Internal and External Validity. The main threats to internal and external 

validity are the following. First, the level of experience of programmers of the 

systems could be an issue. In order to mitigate this, we used systems that were 

developed by more than 20 programmers with different levels of software 

development skills. The main threat to external validity is related to the nature of 

the evaluated systems as well as their representativeness. In order to minimize 

these threats we have tried to use applications with different sizes, that suffer from 

a different set of code anomalies and that were implemented using different 

architectural styles and context (i.e. academy and industry). Additionally, these 

applications were developed under different managerial pressures and following 

distinct software development methodologies (e.g. agile and waterfall). However, 

we are aware that more studies involving a higher number of systems should be 

performed in the future. 
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5.4. 
Summary 

This chapter investigated the accuracy of conventional detection strategies 

when identifying architecturally-relevant code anomalies. To this end, a sample of 

nearly 800 architecturally-relevant code anomalies distributed in 38 versions of 

five (05) real-life software systems was considered. Our results confirmed that 

conventional detection strategies were not accurate to identify code anomalies that 

attempt against architectural design in the target systems. More specifically: 

 More than 50% of the code anomalies identified by conventional 

detection strategies were not correlated with architectural problems. 

This means that developers could spend considerable time reviewing 

code that in fact do not represent threats to the system architectural 

design. 

 Even worse, more than 50% of the false negatives observed using 

conventional detection strategies were found to be correlated with 

architectural problems. This means that developers will be lead to not 

consider code anomalies that are critical to architectural design. 

 The inaccuracy of conventional detection strategies cannot be simply 

addressed by calibrating specific metric thresholds or determining 

different combinations of particular measures. It seems that their 

imperfection is largely due to their inability to exploit architectural 

concern properties or the projection of architecture elements (e.g. 

components) in the source code. 

 Certain recurring patterns of anomaly co-occurrences seem to be better 

indicators of architecture problems than individual code anomaly 

occurrences. These patterns usually cannot be directly specified and 

identified by conventional detection strategies (Lanza and Marinescu, 

2006; Srivisut and Muenchaisri , 2007; Moha et. al., 2010; Chapter 3). 

The aforementioned findings are interesting because they question the 

effectiveness of existing strategies and tools in supporting "architecture revision" 

based on the source code. It is important to highlight that current mechanisms for 

"architecture revision" (Section 2.2.2) rely on a detailed specification of the 

intended architectural design. Furthermore, the findings seem to indicate the need 
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to exploit mappings between architectural design and source code in the code 

anomaly detection in order to reduce the number of false positives and false 

negatives. Finally, these findings also revealed the need to analyze recurrent 

relationships among code anomalies in order to identify their adverse impact on 

the architectural design of software systems. 
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