

7
Patterns of Code Anomalies

As introduced in Chapter 5, one of the key obstacles for distinguishing

architecturally-relevant code anomalies is that current techniques do not analyze

inter-related code anomalies. The importance of analyzing such relationships is

due to the fact that an architectural component is usually implemented by multiple

code elements. Therefore, some architectural degradation symptoms could be

fully detected by analyzing inter-related code anomalies. For instance, Redundant

Dependencies (Stal, 2011) in the architectural design can only be observed

through the analysis of code anomalies that: (i) affect code elements localized in

the same component and, (ii) these elements access the same external data.

Furthermore, as mentioned in Section 6.4.6, imperfections in the architecture-

sensitive detection strategies are also given by their inability in analyzing

relationships among code anomalies. Therefore, by documenting inter-related

code anomaly occurrences we expect to overcome the accuracy imperfections of

both conventional and architecture-sensitive strategies.

However, there is no understanding on which recurring inter-related code

anomalies - code anomaly patterns - are likely to represent deterioration of the

software architecture. In fact, code anomaly patterns can affect the software

architecture in significantly different ways. They can range from inter-related

code anomalies that infect elements in the same component to inter-related

anomalies scattered over the architectural design. Thus, the impact analysis of

code anomalies on software architecture could be better supported by considering

the systematic classification of code anomaly patterns.

As discussed in Chapter 2, there are several attempts of classifying code

anomalies taking into consideration different criteria. Mäntylä and Lassenius

(2006) grouped code anomalies according to the software modularity property

they affect (e.g. complexity, cohesion). Wake (2003) categorized code anomalies

considering their scope (e.g. intra-class, inter-class), while Moha et al. (2009)

classified them according to their nature (e.g. structural, semantic).

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

172

These categorizations are preliminary steps towards the definition of a

catalogue of the relationships among code anomalies. However, the

categorizations suffer from some limitations. First, categorizations of code

anomalies are often solely based on the type or a particular characteristic of the

code anomaly rather than considering relationships among them. In addition, the

existing classifications do not take into consideration how code anomalies relate

to the system architecture, which could be an indicator of the their adverse

influence on the software architecture.

The previous chapter proposed a terminology and a formalism for code

anomaly analysis (Section 6.1). This chapter relies on this terminology and

formalism to present a systematic documentation of nine (09) code anomaly

patterns. Section 7.1 briefly describes how the code anomaly patterns have been

observed. The observed patterns are classified into four categories according to

the code anomalies localization. The Intra-Component Patterns category

comprises patterns that occur in a single component (Section 7.2). The Inter-

Component Patterns category is formed by patterns that are scattered over various

components (Section 7.3). The Inheritance-based Patterns category groups

patterns that occur in inheritance trees (Section 7.4). This category was created

because patterns in inheritance trees can be classified in the two above categories.

In other words, an inheritance tree can be completely contained in a component,

whereas other tree can group code elements defined in multiple components.

Lastly, the Concern-based Patterns category comprises patterns related to the

inappropriate modularization of architectural concerns (Section 7.5). We decided

to create this category even though its patterns could be also classified in the

previous categories. The reason is that the new category complements the

previous ones since it is not only related to the boundaries of the code anomalies.

It represents anomalous implementation of architectural concerns.

Furthermore, Section 7.6 discusses how the proposed anomaly patterns

relate to each other. Section 7.7 introduces a tool designed to identify the code

anomaly patterns as well as support the collection of the architecture-sensitive

metrics (Chapter 6.3), and the application of the architecture-sensitive detection

strategies (Chapter 6.4). Section 7.10 presents a study conducted to evaluate the

contribution of the anomaly patterns in the identification of architecturally-

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

173

relevant code anomalies. Finally, Section 7.9 summarizes the key points discussed

throughout this chapter.

7.1.
Defining Code Anomaly Patterns

The catalogue of code anomaly patterns presented in this chapter is inspired

by our previous studies (Chapters 3, 4 and 5). We observed these code anomaly

patterns through the evolution history of several software systems. The analyzed

systems include MobileMedia (Figueiredo et al., 2008), Health Watcher (Soares et

al., 2002; Greenwood et al., 2006), MIDAS (Malek et al., 2006; Garcia et al.,

2009), PDP (Chapter 4), Aspectual MobileMedia (Figueiredo et al., 2008) and

Aspectual Health Watcher (Soares et al., 2002; Greenwood et al., 2006). As

explained in previous chapters, these systems were used because they (i) come

from different domains, (ii) present different degrees of size and complexity, (iii)

implement architectures of different styles, and (iv) are affected by different types

of code anomalies.

Based on these previous observations, we document a catalogue of code

anomaly patterns, which are intended to facilitate the code anomaly analysis. Each

code anomaly pattern is presented in terms of: (i) a description and motivation

highlighting its possible harmful impact on the software architecture, (ii) an

example, (iii) a formalization that relies on the formalism introduced in Section

6.1, and (iv) an algorithmic solution to detect its occurrences. As far as examples

are concerned, we use a pictorial representation useful for distinguishing the

pattern occurrences and a concrete example. The concrete examples are extracted

from the software systems used in previous studies (Chapters 4 and 5).

7.2.
Intra-Component Patterns

The Intra-Component Patterns category represents code anomaly patterns

that involve a set of anomalous code elements located in the same architectural

component. In this category, software engineers identify sources of modularity

principle violations in an architectural component, such as Single Responsibility

Principle and Common Reuse Principle (Martin, 2003). The two patterns defined

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

174

in this category are: Multiple-Anomaly Syndrome and Similar Anomalous

Neighbors.

7.2.1.
Multiple-Anomaly Syndrome

Description and Motivation. The Multiple-Anomaly Syndrome pattern

consists of code elements that are simultaneously infected by different types of

anomalies. Occurrences of Long Method and Feature Envy (Fowler et al., 1999)

infecting the same method is a recurrent instance of this pattern. In particular, this

instance indicates that functionalities were incorrectly assigned in the component.

The reason is because the anomalous method implements functionalities that

should be modularized by other code elements in the component, violating the

Single Responsibility Principle (Martin, 2003). Therefore, the maintainability of

the component is decreased as different functionalities cannot be separately

maintained. Note that this negative impact could not be derived from analyzing a

single Long Method occurrence because some methods are expected to be

complex even when implementing a single functionality (e.g. parsers methods).

Moreover, the pattern detection benefits engineers on the choice of an

appropriate refactoring strategy to fix the anomalous code element. The

application of a proper sequence of refactorings reduces the effort to remove

multiple anomalies (Liu, 2011). Considering the previous co-occurrence example

(i.e. Long Method and Feature Envy), during the refactoring of the Feature Envy,

some parts of the method may be extracted or moved to another code element.

Hence, that decomposition would reduce the complexity of the method and

simplify the refactoring of (or dispel) the Long Method infection. The removal of

both anomalies by using a single refactoring strategy could not have been possible

if the developers had not been aware of their simultaneous occurrence.

Figure 7.1 presents an abstract representation of instances of the Multiple-

Anomaly Syndrome pattern. In this figure each color corresponds to a code

anomaly. Therefore, when a class is colored, it means that the class is infected by

a code anomaly. The infection corresponds to the specific color that appears in the

class. In this representation, two of the four classes are instances of the Multiple-

Anomaly Syndrome pattern because they are simultaneously affected by more than

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

175

1 code anomaly. Note that this pattern can also occur at the method level. For

instance, a method can be considered as an occurrence of the Multiple-Anomaly

Syndrome pattern when it suffers from multiple code anomalies.

C1 C2

C3

COMP1

C4

Figure 7.1: Abstract representation of Multiple-Anomaly Syndrome.

Formal Definition. Given a software system, S, consider a function infect(..)

that counts the number of anomalies a given code element is infected by. The set

of occurrences of the Multiple Anomaly Syndrome (MAS) in S is defined in (1) as:

MAS (S,th) = {c| c ∈ CES, |infect(c)| >th} (1)

where:

e0,otherwis

FCE0,c
infect(c)

As defined in Section 6.1, FCE represents the set of code elements free of

code anomalies. In order to provide a general definition in (1), we opted for using

the generic constant, th, to represent a given threshold. This constant can be

chosen according to the characteristics of the system under analysis and the

engineer’s design decisions.

According to the abstract representation shown in Figure 7.1, we have that

the infect(..) function returns 2 for the C1 and C4 classes, while for C2 and C3

classes the function returns 0. Therefore, C1 and C4 classes are occurrences of the

Multiple-Anomaly Syndrome pattern if the selected threshold is less than or equal

to 1.

Algorithmic Solution. The algorithmic solution for detecting occurrences

of Multiple-Anomaly Syndrome is presented in Listing 7.1. First, the algorithm

identifies code elements infected by anomalies in a given component, using the

AnomalousCodeElements(..) function. This function relies on a predefined set of

detection strategies - conventional and architecture-sensitive - specifying which

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

176

types of anomalies will be identified. For each anomalous code element detected

(line 4), the algorithm counts the number of code anomalies the measured code

element suffers from, using the Anomalies(..) function (line 5). If the number of

code anomalies infecting the measured code element is higher than the selected

threshold, this code element represents a pattern occurrence (lines 5-7). This

algorithm is run for each architectural component of the project under analysis.

Listing 7.1: Detection of MAS occurrences.

01 Let co be the architectural component under analysis

02 result ={}

03 ACE = AnomalousCodeElements(co)

04 for each c in ACE do

05 if Anomalies (c) > Th then

06 result add c

07 end if

08 end for

09 return result

Concrete Example. Error! Reference source not found. depicts an

example of Multiple-Anomaly Syndrome pattern extracted from the MobileMedia

system. The MediaController.handleCmd(..) method is the source of three code

anomalies. First, this method suffers from the Long Method anomaly as it contains

many lines of code, presents high cyclomatic complexity, and implements several

concerns. For instance, it executes the actions when the method receives a video

command as parameter, rather than dispatching to other method in charge of

modularize the Video concern. This situation also occurs with other concerns, such

as Photo and Favorite. Additionally, the method is affected by the Feature Envy

anomaly because it implements concerns that should be modularized by other

code elements in the Controller layer. Finally, the MediaController.handleCmd(..)

method is infected by the Divergent Change anomaly because it often changes due

to modifications associated with each implemented concern. Therefore,

MediaController.handleCmd(..) method should be decomposed into smaller and more

cohesive methods.

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

177

...
handleCmd(Cmd)

MediaController

Controller Layer

Element in the pattern

Photo Video

Favorite

MEDIA

public boolean handleCmd(Command c){
String l = c.getLabel();
if(l.equals(“Add”)){..}
if (l.equals(“PlayVideo”)){..}
if(l.equals(“CapturePhoto”)) {..}
if(l.equals(“CaptureVideo”)) {..}
if(l.equals(“Sort”)){..}
if(l.equals(“ViewFavorites”)){..}

if(l.equals(“SetFavorites”)){..}
if(l.equals(“Save”)){..}
if(l.equals(“Cancel”)){..}

}

Figure 7.2: Occurrence of the Multiple-Anomaly Syndrome in MobileMedia.

As discussed above, occurrences of Long Method and Feature Envy

infecting simultaneously the same code element indicate that functionalities are

incorrectly assigned in the component. Additionally, in Figure 7.2 the Single

Responsibility Principle is neglected in the MediaController.handleCmd(..) method

because the method deals with different responsibilities that should be delegated

to other code elements. Finally, MediaController.handleCmd(..) method is related to

Ambiguous Interface architectural anomaly (Section 2.2.3) because it implements

the component interface and only has a generic command as parameter. In other

words, the method does not specify which commands it executes, making it hard

to understand the method’s purpose.

7.2.2.
Similar Anomalous Neighbors

Description and Motivation. The Similar Anomalous Neighbors pattern

encloses a set of code elements that: (i) are localized in the same architectural

component – they are neighbors, and (ii) all suffer from the same anomaly. The

harmful architectural effects of this pattern vary according to anomaly type

infecting the code elements. For instance, consider an architectural component

co∈ ACS that contains several Data Classes (Fowler et al., 1999), where these

classes are barely referred by the code elements of co. When this occurs the

behavior associated with those Data Classes are likely to be defined in other

components. This situation reduces the component maintainability since the data

specification and corresponding behavior are not maintained in the same place.

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

178

Figure 7.3 presents an abstract representation of a particular occurrence of

this code anomaly pattern. As shown in the figure, three out of four classes are

infected by the same code anomaly - C1, C2 and C3. These code elements

constitute a pattern occurrence, for instance, if the sets of anomalous code

elements have to be composed by at least 3 elements.

C1 C2

C3

COMP1

C4

Figure 7.3: Abstract representation of Similar Anomalous Neighbors.

Formal Definition. Given a system, S, the set of occurrences of the Similar

Anomalous Neighbors (SAN) pattern in S is formally defined in (2) as:

SAN (S,th) = {c1 | a ∈ CAs co ∈ ACS, c1 ∈ CEcoa |c1| > th} (2)

Similarly to the previous pattern we opted for using a generic constant, th,

to represent the threshold. This representation allows us to provide a general

definition in (2). In order to identify the pattern instance illustrated in Figure 7.2

using this formalism – C1, C2 and C3 classes - we have that: th has to be less than

or equal to 2.

Algorithmic Solution. The algorithmic solution for detecting Similar

Anomalous Neighbors is presented in Listing 7.2. First the algorithm detects the

set of anomalous code elements that implement a given component (line 3),

similarly to the previous algorithm presented in Listing 7.1. Then, the algorithm

identifies the list of code anomalies infecting the system under analysis, using the

CodeAnomalies(..) function (line 4). For each code anomaly detected, the algorithm

identifies the anomalous elements infected by this anomaly, using the

ElementsInfectedByAnomaly(..) function (line 7). The algorithm then verifies

whether the number of these elements is greater than a given threshold (lines 8-

10). If so, the anomalous code elements constitute a pattern occurrence (line 9).

This algorithm is run for all components of the system under analysis.

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

179

Listing 7.2: Detection of SAN occurrences.

01 Let co be the architectural component under analysis.

02 Let S be the system under analysis.

03 ACE = AnomaousCodeElements(co)

04 CA = CodeAnomalies(S)

05 result = {}

06 for each a in CA do

07 L = ElementsInfectedByAnomaly(ACE,a)

08 if size(L) > Th then

09 result add L

10 end if

11 end for

12 return result

Concrete Example. Figure 7.4 shows an occurrence of the Similar

Anomalous Neighbors pattern extracted from the PDP system. The Attribute, Photo,

Attachment, AreaAttribute, and Area classes are affected by the Data Class anomaly

because they only contain getters and setters methods, such as getName() and

setName(). As explained previously, these classes are architecturally-relevant

because their associated behavior is defined in external code elements as

illustrated in Figure 7.4. Additionally, the Attribute, Photo, Attachment, AreaAttribute,

and Area classes are used together by different components - Proxies and Business.

However, these classes did not change together throughtout the system evolution.

Therefore, the classes caused that multiple changes associated with different

reasons were performed in the Proxies and Business components, violating the

Common Reuse Principle (Martin, 2003). In the case of the Area class, the

methods defined in the Proxies and Business components that manage the Area's

behavior (e.g. saveArea(..)) should be moved to the Area class. The Area class

should manage its data, rather than other classes, such as Proxy or AreaController.

Similar refactorings should be applied to the other classes.

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

180

BUSINESS

PhotoController

WCF

PDPServiceInterface

PROXIES

Communication

Proxy

ENTITIES

Attribute Photo

CommonElements

Element in the pattern

Dependency
Inheritance

Interfaces

AreaAttachment AreaAttribute

AttributeController

Figure 7.4: Occurrence of the Similar Anomalous Neighbors in PDP.

7.3.
Inter-Component Patterns

The Inter-Component Patterns category includes those patterns related to

the communication among architectural components. This means that the software

maintenance effects of these patterns are spread over different architectural

components. In particular, the category helps engineers to identify code elements

that neglect the Interface Segregation Principle, the Common Closure Principle

and the Single Responsibility Principle (Martin, 2003) as well as introduce

architectural anomalies, such as Overused Interface and Redundant Interface

(Section 2.2.3). The three patterns defined in this category are named: External

Attractor, External Addictor and Replicated External Network.

7.3.1.
External Attractor

Description and Motivation. The External Attractor pattern groups

anomalous code elements that are used by (or attracts) several external anomalous

ones. A code element is considered to be external if it is localized in a component

different from where the assessed element is defined. The occurrence of this

pattern indicates the existence of different architectural anomalies. First, it

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

181

suggests that the accessed anomalous code element can be the source of an

Overused Interface architectural anomaly (Section 2.2.3). A even more harmful

situation manifests when: (i) the Overused Interface centralizes the realization of

different concerns, and (ii) the interface elements realizing each concern are

accessed by a different set of client code elements.

Furthermore, this pattern indicates that the accessed code element can favors

the further introduction of code anomalies in the client components. When the

accessed code element implements different concerns, its client components are

forced to deal with these concerns even when they are not interested in them.

Therefore, this situation neglects the Interface Segregation Principle (Martin,

2003) and increases the internal complexity of the client components. Finally, the

External Attractor pattern reduces the maintainability of the used component

because whenever the server code element needs to be changed, the client

components might need to be updated as well. Therefore, the refactoring of this

anomaly pattern should be performed as early as possible because its effects

impact adversely on multiple parts of the software architecture.

Figure 7.5 depicts an abstract representation of a particular occurrence of

this pattern. As it can be noticed, four (04) anomalous classes, localized in three

different architectural components, use information (data and behavior) from the

same infected class. These classes - C3, C5, C6 and C7 – together with the C2 class

constitute a pattern instance because the former group of classes, located in

different components, accesses data from C2. Note that, although we are

representing a pattern occurrence at the class level, the pattern also manifests at

the method level.

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

182

C1 C2

COMP1

C5 C6

COMP3

C3

C7 C8

C4

COMP2

COMP4

Figure 7.5: Abstract representation of External Attractor.

Formal Definition. Given a software system, S, the set of occurrences of

the External Attractor (EAT) pattern in S is formally defined in (3) as:

EAT(S,th1,th2) = {c1∪ c2 | (c1, c2) ∈ Dc1,c2

 co1 ∈ ACS co2 ∈ ACS,

 co1≠ co2 , c1 ∈ ACEco1 c2 ∈ ACEco2 |c1| >th1 |co1| >th2} (3)

In order to provide a general definition in (3), we opted for using generic

constants to represent the thresholds, th1 and th2. Both constants can be chosen

according to the characteristics of the system under analysis and the engineer’s

design decisions. In order to identify the pattern instance illustrated in Figure 7.5

– C2, C3, C5, C6 and C7 – using this formalism, we have that: th1 and th2 have to

be less than or equal to 3 and 2, respectively.

Algorithmic Solution. Listing 7.3 presents the solution for detecting

instances of the External Attractor pattern. First, the algorithm identifies the

anomalous code elements in a given component, using the

AnomalousCodeElements(..) function (line 3). For each element identified, the

algorithm computes the anomalous external elements that depend on the measured

element, using the AnomalousExternalClients(..) function (line 6). Then, the

algorithm stores each client element and its corresponding component in a

temporary structure (lines 8 and 9). If the number of stored client components and

external code elements are higher than the corresponding thresholds (lines 11 and

12), the client and server elements constitute a pattern occurrence (line 14). This

algorithm is run for each component of the system under analysis.

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

183

Listing 7.3: Detection of EAT occurrences.

01 Let co be the architectural component under analysis

02 result ={}

03 ACE = AnomalousCodeElements(co)

04 for each c in ACE do

05 occurrence = {}

06 EC = AnomalousExternalClients(c)

07 for each client in EC do

08 occurrence{0} add client

09 occurrence{1} add component(client)

10 end for

11 if size(occurrence{0}) > Th1 and

12 size(occurrence{1}) > Th2 then

13 occurrence{0} add c

14 result add occurrence{0}

15 end if

16 end for

17 return result

Concrete Example. Figure 7.6 shows an occurrence of External Attractor

pattern extracted from the Health Watcher system, which hinders the software

architecture in multiple manners. In the figure, the IFacade interface is affected by

the Bloat Interface and Overused Interface anomalies because it is large, non-

cohesive, and its methods are called by many classes. Additionally, it neglects the

Single Responsibility Principle. In particular, the methods provided by this

interface are called by different client classes and components, indicating the

inappropriate declaration of these methods in a single interface. The classes

highlighted in the Complaint, HealthUnit and Employee components are infected by

the Long Method anomaly because they deal with different kinds of information

that are propagated by the IFacade interface, such as Persistence and Transaction.

Additionally, these classes have been affected by several changes due to

modifications performed in the IFacade interface. In summary, this pattern

occurrence harms the software architecture in multiple ways, such as introduction

of architectural anomalies as well as neglecting modularity principles in the

architecture design.

In order to solve these problems, several refactorings should be applied.

First, the IFacade interface should encapsulate exceptions coming from

components in the Data layer and then, throw business exceptions containing only

relevant information for components in the View layer. Therefore, code elements

in the View layer will decrease their internal complexity. Second, the IFacade

interface should be decomposed into smaller ones that are more cohesive than the

original interface structure. Consequently, each component in the View layer will

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

184

access different interfaces, decreasing the coupling between the IFacade interface

and the View layer.

UpdateComplaint InsertComplaint

COMPLAINT

FACADE

IFacade

Distribution Layer

UpdateHealthUnit InsertHealthUnit

HEALTHUNIT

HealthWatcherFacade

...
updateComplaint(..)
insertComplaint(..)

updateHealthUnit(..)
insertHealthUnit(..)
updateEmployee(..)
insertEmployee(..)

Element in the pattern

Dependency
Inheritance

Complaint
HealthUnit

View Layer
UpdateEmployee InsertEmployee

EMPLOYEE

Employee

...
updateComplaint(..)
insertComplaint(..)

updateHealthUnit(..)
insertHealthUnit(..)
updateEmployee(..)
insertEmployee(..)

Figure 7.6: Occurrence of the External Attractor pattern in HW.

7.3.2.
External Addictor

Description and Motivation. In an opposite way of External Attractor,

External Addictor pattern consists of anomalous code elements that depend a lot

(or are addicted) of external anomalous code elements. The occurrence of this

pattern alerts engineers about different architectural degradation symptoms. For

instance, the External Addictor pattern highlights the presence of an anomalous

code element that can be targeted as a consequence of modifications in several

components. Thus, when this occurs, change ripple effects are introduced in the

system architecture.

Second, this pattern indicates a source of tight coupling degree among

architectural components because an anomalous code element centralizes the

communication between its enclosing component and the adjacent others. Ripple

effects and tight coupling among components are architectural problems that have

been recognized as sources of software systems reengineering and discontinuation

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

185

(Eick et al., 2001; Maccormack et al., 2006; Knodel et al., 2008). These evidences

highlight the relevance of engineers being aware of the occurrences of this pattern

and, consequently, on performing their early refactoring.

Figure 7.7 illustrates the abstract representation of a particular occurrence of

the External Addictor pattern. As it can be noticed this representation is very

similar to the External Attractor pattern; there is a difference in the direction of

the communication among components in both patterns. Apart from that, they are

similar. An anomalous class named C2 uses information from anomalous classes

located in several components – C3, C5, C6 and C7. These five classes constitute

an occurrence of the External Addictor pattern. It is important to note that,

although we are representing a pattern occurrence at the class level, the pattern

can also manifest at the method level.

C1 C2

COMP1

C5 C6

COMP3

C3

C7 C8

C4

COMP2

COMP4

Figure 7.7: Abstract representation of External Addictor.

Formal Definition. Given a software system, S, the set of occurrences of

the External Addictor (EAD) pattern in S is formally defined in (4) as:

EAD(S,th1,th2) = {c1∪ c2 | (c1, c2) ∈ Dc1,c2

 co1 ∈ ACS co2 ∈ ACS,

 co1≠ co2 , c1 ∈ ACEco1 c2 ∈ ACEco2 |c2| >th1 |co2| >th2} (4)

Similarly to the definition of EATS, the used thresholds were represented

using generic constants, th1 and th2. Both constants can be materialized according

to the characteristics of the system under analysis and the engineers’ design

decisions. In order to identify the pattern instance illustrated in Figure 7.7 – C2,

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

186

C3, C5, C6 and C7 – using this formalism, we have that: th1 and th2 have to be less

than or equal to 3 and 2, respectively.

Algorithmic Solution. Listing 7.4 presents the solution for detecting

occurrences of the External Addictor pattern. First, the algorithm identifies the

anomalous code elements in a given component, using the

AnomalousCodeElements(..) function (line 3). For each element identified, the

algorithm computes the anomalous external code elements from which the

identified element depends, using the AnomalousExternalServers(..) function (line

6). From this point, the algorithm is similar to that presented in Listing 7.3. This

algorithm is run for each component of the system under analysis.

Listing 7.4: Detection of EAD occurrences.

01 Let co be the architectural component under analysis

02 result ={}

03 ACE = AnomalousCodeElements(co)

04 for each c in ACE do

05 occurrence ={}

06 AES = AnomalousExternalServers(c)

07 for each extElem in AES do

08 occurrence{0} add extElem

09 occurrence{1} add component(extElem)

10 end for

11 if size(occurrence{0}) > Th1 and

12 size(occurrence{1}) > Th2 then

13 occurrence{0} add c

14 result add occurrence{0}

15 end if

16 end for

17 return result

Concrete Example. Figure 7.8 illustrates an occurrence of the External

Addictor pattern extracted from Health Watcher system. In this figure HealthUnit,

TransactionExc, ObjNotValidExc, ObjNotFoundExc, and RepositoryExc are anomalous

classes because they only define attributes or assessors methods. Therefore, these

classes are affected by the Data Class anomaly. The IFacade class, as

aforementioned, is infected by the God Class anomaly because, among other

reasons, it defines a great amount of non-cohesive methods. Additionally, IFacade

propagates several exceptions that should be treated internally. This propagation

forces InsertHealthUnit to deal with Persistence and Transaction exceptions when the

class should not perform these actions. This phenomenon increases the internal

complexity of the InsertHealthUnit’s methods. Even worse, the propagation of these

exceptions violates the architects’ design decisions as dependencies are introduced

between View and Data, non-adjacent layers.

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

187

In order to remove this occurrence, refactorings can be performed in a

similar manner to the previous example. In other words, the IFacade interface

should encapsulate exceptions coming from components in the Data layer in order

to remove dependencies between View and Data layers. Consequently, this

refactoring should decrease the internal complexity of the InsertHealthUnit’s

methods as they do not have to deal with additional information.

FACADE

IFacade

View Layer

InsertHealthUnit

HEALTHUNIT

MODEL

HealthUnit

PERSISTENCE UTILS

ObjNotValidExc ObjNotFoundExcTransactionExc RepositoryExc

Data Layer

Element in the pattern

Dependency
Inheritance

Distribution Layer

Bussiness Layer

Figure 7.8: Occurrence of the External Addictor pattern in HW.

7.3.3.
Replicated External Network

Description and Motivation. Replicated External Network pattern consists

of anomalous code elements within an architectural component that depend on the

same external code elements. This pattern indicates the presence of three potential

architectural degradation symptoms. First, it suggests the lack of a common

component interface. In other words, there is no shared interface responsible for

establishing the communication between a given component and its adjacent ones.

Therefore, any code element within the component can communicate with

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

188

external code elements. Second, this pattern suggests the presence of Redundant

Interfaces anomaly (Section 2.2.3) since different code elements within the

component access the same external data. Finally, the occurrence of this pattern

introduces the Extraneous Connector anomaly (Section 2.2.3) when these

interfaces use different mechanisms to communicate the same components (e.g.

events and procedure calls).

Figure 7.9 illustrates an abstract representation of this pattern occurrence.

This figure highlights how two (02) anomalous classes – C1 and C2 – access data

from the same external classes. In this particular example, these two classes

constitute a pattern occurrence. Note that, although we are representing a pattern

occurrence at the class level, the pattern can also manifest at the method level.

C1 C2

C5 C6

C3 C4

C7 C8

COMP1 COMP2

COMP3 COMP4

Figure 7.9: Abstract representation of Replicated External Network.

Formal Definition. Given a software system, S, the set of occurrences of

the Redundant External Network (REN) pattern in S formally defined in (5) as:

REN(S,th1,th2) = {c1∪ c2 | (c1, c3) ∈ Dc1c3 (c2, c3) ∈ Dc2c3

 a ∈ CAS co1 ∈ ACS co2 ∈ ACS c1∈ CEco1a c2∈ CEco1a c3∈ CEco2,

 |c3| > th1 | c1∪ c2 | > th2 } (5)

where, th1 and th2 are generic constants that indicate the undesirable number

of anomalous elements and percentage of accessed external code elements,

respectively, such that 0 ≤ th2 ≤ 1. In order to identify the pattern instance

illustrated in Figure 7.9 – C1 and C2 – using this formalism, we have that: th1 and

th2 have to be less than or equal to 2 and 1, respectively.

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

189

Algorithmic Solution. Listing 7.5 presents the solution for detecting

occurrences of the Replicated External Network pattern. First, the algorithm

identifies the anomalous code elements in a given architectural component, using

the AnomalousCodeElements(..) function (line 3). Then, for each pair of code

elements, the algorithm computes the external code elements they access in

common, using the CommonExternalDependencies(..) function (line 6). If the

number of external accessed code elements is higher than a given threshold (line

7), both code elements are classified as an occurrence of the pattern (line 8).

Finally, the algorithm combines the identified occurrences according to their

common external dependencies, using the CombineOccurrences(..) function (line

12). The goal of this combination is not to restrict the algorithm's output to pairs

of code elements. It is important to note that the algorithm returns only those

combinations that involve: (i) a number of anomalous elements higher than th1

constant, and (ii) a number of accessed external elements higher than th2 constant.

This algorithm is run for each component of the system under analysis.

Listing 7.5: Detection of REN occurrences.

01 Let co be the component under analysis

02 occurrences ={}

03 ACE = AnomalousCodeElements(co)

04 for each c1 in ACE do

05 for each c2 in ACE do

06 elems = CommonExternalDependencies(c1,c2)

07 if size(elems) > Th1 then

08 occurrences add {c1, c2, elems}

09 end if

10 end for

11 end for

12 return CombineOccurrences(occurrences, th1, th2)

Concrete Example. Figure 7.10 illustrates an occurrence of the External

Addictor pattern extracted from Health Watcher system. The occurrence of this

pattern comprises the Complaint, Symptom and Employee classes, which implement

part of the Observer design pattern (Gamma et al., 1994). These classes are

considered to be anomalous because they only define attributes, getters and setters

methods and, hence, are affected by the Data Class anomaly. In particular, this

occurrence is caused by copy and paste practices in the Model component. The

source code of the notifyObservers() method in the Complaint, Symptom and

Employee classes is presented in Figure 7.8. This figure shows how the

implementation of this method is duplicated in these three classes, introducing

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

190

high coupling among the Model, Persistence and Utils components. Consequently,

whenever the notifyObservers() method suffers a change (e.g. to change the

exception treatment or to include a new exception), the modification has to be

performed in these three classes. The problem is that these three classes changed

together during the system evolution due to modifications in the notifyObservers()

method, neglecting the Common Reuse Principle (Martin, 2003). In order to

remove this pattern occurrence, the notifyObservers() method should be moved to a

common parent class in order to decrease the number of dependencies between

Business and Data layers. Therefore, the parent class will be the only class

responsible for catching and treating the exceptions thrown by the Persistence and

Utils components.

...
getLogin()
setLogin(..)

getPass()
setPass(..)
notifyObservers()

Complaint

...
getCode()
setCode(..)

getDescription()
setDescription(..)
notifyObservers()

Symptom

...
getName()
setName(..)

getLogin()
setLogin(..)
notifyObservers()

Employee

MODEL

PERSISTENCE UTILS

ObjNotValidExc ObjNotFoundExc

...
RepositoryExc()

...
ObjNotFoundExc()

TransactionExc RepositoryExc

...
RepositoryExc()

...
TransactionExc()

Data Layer

Bussiness Layer

public void notifyObservers(){
for (Iterator i = sub.iterator(); i.hasNext();) {
Observer observer = (Observer) i.next();
try {

observer.notify(this);
} catch (ObjectNotValidExc e) {

...
} catch (ObjectNotFoundExc e) {

...
} catch (TransactionExc e) {

...
} catch (RepositoryExc e) {

...
}

}
}

Figure 7.10: Occurrence of the Replicated External Network pattern in HW.

7.4.
Inheritance-based Patterns

The category Inheritance-based Patterns includes two code anomaly

patterns named Hereditary Anomaly and Mutant Anomaly. These patterns consist

of anomalous code structures that manifest themselves in inheritance trees.

Although these patterns could have been included in the previous categories, we

created a new one because code elements making up a hierarchy are not uniformly

distributed across the components. In other words, certain hierarchies are fully

contained in a single component, whereas others contain code elements located in

multiple components. Therefore, instances of the same pattern would be classified

in two different categories.

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

191

Likewise the previous categories, the inheritance-based patterns have been

observed in software systems from different domains. In particular, their

occurrence is notably severe to the software architecture when they manifest in

reusable and long living systems, such as frameworks and program families.

When a system extends from an anomalous framework implementation, it can

suffer from the code anomalies introduced in the used framework. Also, once the

framework is extended, inheritance-based patterns become harder to be refactored

because their removal is likely to impact the structure of a client system.

Consequently, the best way to avoid this situation is making engineers aware of

the presence of such patterns occurrences as early as possible.

7.4.1.
Hereditary Anomaly

Description and Motivation. The Hereditary Anomaly pattern consists of

code anomalies that: (i) infect a parent code element (e.g. class, method) in an

inheritance tree and, (ii) are propagated to some descendants in this tree. A code

anomaly a ∈ CA is propagated in an inheritance tree whenever the root code

element and an inherited element are infected by a. Anomalies in the Hereditary

Anomaly pattern do not necessarily affect all the descendants elements.

Occurrences of Hereditary Anomaly are particularly harmful to the software

architecture because they are characterized by the propagation of anomalies over

the code elements. In extreme cases such propagation is beyond the boundaries of

a component or even a software system.

Furthermore, the refactoring of the anomalous code elements in this pattern

implies on a ripple refactoring effect over the inheritance tree. Therefore, this

pattern suggests that refactorings should be performed first in the parent element;

rather than refactoring each descendant individually. The reason is that the

individual refactoring of each anomalous descendant does not completely fix the

anomaly because when a new descendant is added into the hierarchy, it is likely to

inherit the anomaly.

Figure 7.11 depicts an abstract representation of a particular occurrence of

this pattern. As it can be seen some descendants - without any background color -

are not infected by the propagated anomaly. Furthermore, we decided not to

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

192

represent components in this figure as hierarchies can be (or not) fully confined in

the same component as previously discussed. In this example, the pattern

occurrence is formed by the C1, C2, C4 and C5 classes. It is important to note that,

for illustrative purposes we are showing a pattern occurrence at the class level, but

the pattern can also manifest at the method level.

C1

C2 C4C3

C5

Figure 7.11: Abstract representation of Hereditary Anomaly.

Formal Definition. Given a software system, S, in order to formally define

the set of occurrences of the Hereditary Anomaly (HA) pattern in S, an additional

Boolean function, descendant(c1,c2) is required. This function indicates whether a

code element c1 ∈ CES inherits from another code element c2 ∈ CES. The HA in S

is formally defined in (6) as:

HA(S,th) = {c1 ∪ c2 | descendant(c1, c2)

 a ∈ CAS c1 ∈ CEa c2 ∈ CEa,

 c1 ≠ c2 |c2| > th } (6)

where, th is a threshold indicating a number of anomalous descendants.

According to the abstract representation shown in Figure 7.11, we have that: the

descendant(..) function returns 3 for the C1 class. Therefore, the group

encompassed by the C1, C2, C4 and C5 classes is considered to be a pattern

occurrence using this formalization, if th is less than or equal to 2.

Algorithmic Solution. The algorithmic solution for detecting occurrences

of the Hereditary Anomaly pattern is presented in Listing 7.6. First, the algorithm

computes the set of anomalies infecting the parent code element under analysis,

using the CodeAnomalies(..) function (line 3). For each anomaly detected, the

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

193

algorithm computes all descendants of the parent element infected by this

anomaly, using the AnomalousDescendants(..) function (line 5). If the number of

the infected descendants is higher than the threshold (lines 6-8), they constitute a

pattern occurrence (line 7). This algorithm is run for each anomalous parent

element starting at the root of each tree of the system under analysis.

Listing 7.6: Detection of HA occurrences.

01 Let c be the anomalous parent element under analysis

02 result = {}

03 CA = CodeAnomalies(c)

04 for each a in CA do

05 AD = AnomalousDescendants(c, a)

06 if size(AD) > Th then

07 result add {AD, a, c}

08 end if

09 end for

10 return result

Concrete Example. Figure 7.12 illustrates an occurrence of the Hereditary

Anomaly pattern extracted from the PDP system. The PDPServices interface is

considered a Bloat Interface because it defines more than ten (10) methods, which

do not implement the same concern. In particular, this interface defines methods

that deal with Photo, Attachment, Map, and Area concerns. The PDPServices

interface is implemented by three classes: a client interface, PDPServiceInterface, a

Proxy interface, Proxy, and a server interface, PDPService. These three classes are

affected by the God Classes anomaly because they are large, and their methods

are complex and non-cohesive. This anomaly was inherited from the PDPServices

interface because it forces its descendants to implement may non-cohesive

methods. This inherited anomaly is harmful to the system architecture, as changes

in the PDPServices interface triggered changes in the three external descendant

classes. These classes suffered many modifications associated with each of the

implemented concerns through the system evolution, confirming their anomalous

nature. In particular, this design was considered a serious architecture degradation

symptom in this system due to all the ripple effects across the components.

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

194

WCF

PDPServiceInterface

Interfaces

SERVICES

PDPServices

Element in the pattern

Inheritance

Web

PROXIES

Proxy

Communication

SERVICES

PDPService

Bussiness

public interface PDPServices {
Mapa ObterMapaAtual();
void SalvarMapa(Mapa map);

int InserirAnexo(Anexo anexo);
void RemoverAnexo(Anexo anexo);
void UpdateAnexo(Anexo anexo);
Foto ObterFoto(string NomeArquivo, int IdArea);
int SalvarFoto(Foto foto);
bool RemoverFoto(Foto foto);
void SalvarArea(Area area);
...

}

Figure 7.12: Occurrence of the Hereditary Anomaly pattern in PDP.

7.4.2.
Mutant Anomaly

Description and Motivation. The Mutant Anomaly pattern infects

descendants in the same inheritance tree similarly to the Hereditary Anomaly

pattern. However, unlike the previous pattern, in the Mutant Anomaly pattern the

parent code element has to be free of anomalies. The characteristic of this pattern

is that several descendants of a common parent suffering from the same anomaly,

suggests that the parent element may induce its descendants to present anomalies.

Therefore, developers should analyze the possibility of performing refactorings in

the parent element.

Figure 7.13 shows an abstract representation of an occurrence of this

pattern. In this illustration, the root code element is free of code anomalies, but all

its direct descendants suffer from the same anomaly. In this example, the pattern

occurrence is formed by the C2, C3 and C4 classes. It is important to note that, we

are only showing a pattern occurrence at the class level, but the pattern can also

manifest at the method level. Similarly to the previous pattern, we did not

represent architectural components in Figure 7.13.

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

195

C1

C2 C4C3

C5

Figure 7.13: Abstract representation of Mutant Anomaly.

Formal Definition. Given a software system, S, the formal definition of the

set of occurrences of the Mutant Anomaly (MA) pattern in S relies on the function

descendant(..) previous defined. The MA in S is formally defined in (7) as:

MA(S,th) = {c1 ∪ c2 | descendant(c1, c2)

 a ∈ CAS c1 ∈ FCEa c2 ∈ CEa,

 |c2| > th } (7)

where, th is a threshold indicating a number of anomalous descendant

elements. According to the abstract representation shown in Figure 7.13, we have

that: the descendant(..) function returns 3 for the C1 class. Therefore, the group

encompassed by the C2, C3 and C4 classes is considered to be a pattern occurrence

using this formalization, if th is less than or equal to 2.

Algorithmic Solution. The algorithmic solution for detecting occurrences

of the Mutant Anomaly pattern described in Listing 7.7 is similar to the algorithm

presented in Listing 7.6. First, the algorithm computes the list of code anomalies

infecting the system under analysis (line 3), using the CodeAnomalies(..) function.

For each code anomaly detected, the algorithm identifies the descendants of the

parent element under analysis that are infected by this anomaly, using the

AnomalousDescendants(..) function (line 6). From this point, the algorithm is

similar to that presented in Listing 7.6. This algorithm is run for each anomalous

parent element starting at the root of each tree of the system under analysis.

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

196

Listing 7.7: Detection of MA occurrences.

01 Let c be the free-anomalous parent under analysis

02 Let S be the system under analysis

03 CA = CodeAnomalies(S)

04 result = {}

05 for each a in CA do

06 AD = AnomalousDescendants(c, a)

07 if size(AD) > Th then

08 result add {AD, a, c}

09 end if

10 end for

11 return result

Concrete Example. Figure 7.14 shows an occurrence of the Mutant

Anomaly pattern extracted from MIDAS system. In this occurrence the

SD_EventHandler class represents a root code element in the inheritance tree,

which defines the handleRequest(..) method. The descendants of this class are the

SD_SD, SD_ClientEventHandler and SD_PubSubEventHandler classes. These classes

are anomalous because their corresponding handleRequest(..) method is affected by

the Long Method anomaly.

In this example the SD_EventHandler.handleRequest(..) method has a single

generic parameter and implements the interface of the Engine component.

Additionally, the method is called by code elements defined in the Service

Discovery, Fault Tolerance, and Monitoring components. Therefore, this occurrence

of Mutant Anomaly is architecturally-relevant because is related to the

propagation of the Ambiguous Interface anomaly (Section 2.2.3) in the inheritance

tree. In other words, the SD_EventHandler.handleRequest(..) method and, hence, all

its descendants accept all invocation requests through a single generic parameter,

without dispatching to other methods. Overgeneralized interfaces are even more

harmful to the architecture design because they favor additional dependencies and

tight coupling among components as the system evolves (Martin et al., 2003;

Garcia et al., 2009).

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

197

...
handleRequest(Event *e)

SD_EventHandler

...
handleRequest(Event *e)

SD_ClientEventHandler

...
handleRequest(Event *e)

SD_PubSubEventHandler

...
handleRequest(Event *e)

SD_SD

void SD_ClientEventHandler :: handleRequest(Event *e){
...
switch (e - >m_name) {
case SD_Identifiers::SD_CMD_REGISTER_SERVICE: {...}
break;
case PrismConstants::SUBSCRIPTION_REQ: {...}
break;
case SD_Identifiers:: SD_CMD_NOTIFY_BACKUP_FAILURE {...}
default: {...}
break;
....
}

}

void SD_PubSubEventHandler :: handleRequest(Event *e){
switch (e -> m_name) {
case SD_Identifiers::SD_CMD_REGISTER_SERVICE: {...}
break;
case PrismConstants::SUBSCRIPTION_REQ: {...}
break;
default: {...}
break;

....
}

}

Element in the pattern

Inheritance

Photo
Video
Favorite

void SD_SD :: handleRequest(Event *e){
...
switch (e -> m_name) {

case SD_Identifiers::SD_CMD_REGISTER_SERVICE: {...}
break;
case SD_Identifiers:: SD_CMD_LOOKUP_SERVICE: {...}
break;
case SD_Identifiers:: SD_CMD_CHECK_REQUEST_TIMEOUT:{...}
break;
case SD_Identifiers:: SD_CMD_NOTIFY_BACKUP_FAILURE:{...}
break;
case SD_Identifiers:: SD_HEARTBEAT_MESSAGE:{...}
break;
case SD_Identifiers:: SD_CMD_LOCATE_GSD:{...}
break;
...
default: {...}
break;
....
}

}

class SD_EventHandler {
...
virtual void handleRequest(Event *e)=0;
...

}

SERVICE DISCOVERY

Figure 7.14: Occurrence of the Mutant Anomaly pattern in MIDAS.

7.5.
Concern-based Patterns

The Concern-based Patterns category comprises code anomaly patterns

related to not well modularized architectural concerns in the system

implementation. It complements the previous categories as the anomalous

structures in this category are not only related to the boundaries of the components

and their relationships. This category represents anomalous implementation of

architectural concerns. Specially, these patterns help engineers to identify

architecturally-relevant sources neglecting the concern separation principles

(Kickzales, 1996) in the system implementation. The early detection of such

sources is relevant because they hamper the maintenance of the affected

components. For instance, components tend to not be maintained when they are in

charge of implementing many architectural concerns.

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

198

7.5.1.
Concern Overload

Description and Motivation. Concern Overload pattern consists of

anomalous code elements in the same component that modularize many

independent concerns. In this context, two architectural concerns are considered to

be independent when they should be modularized by different architectural

components. This pattern differs from Similar Anomalous Neighbors pattern

(Section 7.2.2), in the sense that the former comprises different types of code

anomalies. When several anomalous code elements in the same component realize

independent concerns, it indicates that the component is not cohesive.

Consequently, the affected component might be decomposed into smaller ones

that are more cohesive than the original component structure. Furthermore, the

occurrence of this pattern suggests that the component centralizes more concerns

that it should do, affecting the component maintainability.

Figure 7.15 illustrates an abstract representation of an occurrence of the

Concern Overload pattern. In this figure, concerns are represented by using filled

circles. As it can be seen, a group of two anomalous classes – C1 and C2 –

modularize three different concerns. In particular, these classes make the

component to deal with several concerns. In this example, C1 and C2 classes

constitute a pattern occurrence. It is important to note that, we are only showing a

pattern occurrence at the class level, but the pattern can also manifest at the

method level.

Legend

Concern 1

Concern 2
Concern 3

C1 C2

C3

COMP1

C4

Figure 7.15: Abstract representation of the Concern Overload pattern.

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

199

Formal Definition. Given a software system, S, in order to formally define

the set of occurrences of the Concern Overload (CO) pattern in S, an additional

function, concerns(c1) is required. This function returns all concerns realized by a

code element c1 ∈ CES. The formal definition of CO in S is presented in (8) as:

CO(S,th1,th2) = { c1 | c1∈ ACEco

 co ∈ ACS c1 ∈ CAS,

 |concerns(c1)| > th1 |c1| > th2 } (8)

where, th1 specifies the maximum acceptable number of concerns that

should be realized by a code element and, th2 specifies the minimum number of

anomalous code elements to be considered as a pattern occurrence. According to

the abstract representation shown in Figure 7.15, we have that: the concerns(..)

function returns 3 for the C1 and C2 classes. Therefore, the group encompassed by

the C1 and C2 classes is considered to be a pattern occurrence using this

formalization, if th1 and th2 are less than or equal to 2 and 1, respectively.

Algorithmic Solution. The algorithmic solution for detecting Concern

Overload occurrences is presented in Listing 7.8. First, the algorithm detects

groups of anomalous code elements that implement the same set of concerns in a

given architectural component, using the AnomalousSameConcernImplementers(..)

function (line 2). Then, for each group identified, the algorithm verifies whether

the number of concerns modularized by this group and the number of code

elements contained in the group are higher than the corresponding thresholds

(lines 5 and 6). If so, the identified group of elements constitutes a pattern

occurrence (line 7). This algorithm is run for each architectural component of the

system under analysis.

Listing 7.8: Detection of CO occurrences.

01 Let co be the architectural component under analysis

02 ACI = AnomalousConcernImplementers(co)

03 result = {}

04 for each c in ACI do

05 if Concerns(c) > Th1 and

06 size(c) > Th2 then

07 result add c

08 end if

09 end for

10 return result

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

200

Concrete Example. Figure 7.16 shows an occurrence of the Component

Concern Overload pattern extracted from MIDAS system. This occurrence

comprises the SD_SD and SD_Engine classes in the Service Discovery component.

These classes are affected by the God Class anomaly because they are large, their

methods are complex and implement several concerns, such as Fault Tolerance,

Service Discovery and Dynamic Adaptation. Therefore, the SD_SD and SD_Engine

classes contribute to the Service Discovery component centralizes the

implementation of several concerns that should be implemented in different

components. Additionally, Service Discovery component, in particular these

anomalous classes, suffered from many unexpected changes associated with the

different concerns. The harmful nature of this incorrect modularization of

concerns was recognized by developers, who refactored these classes - moving the

Fault Tolerance and Dynamic Adaptation implementations to their own components.

SERVICE DISCOVERY

Prism-MW

Element in the pattern

Fault Tolerance
Service Discovery
Dynamic Adaptation
Engine

SD_SD

class SD_Engine {
void start();
void shutdown();

bool isRunning();
bool locateGSD(..);
void connectService(..);
void connectToBackupReplica(..);
int getXSDPortNum(..);

void connectClient(..)
int addExtensibleReplyPortOnBackup(..);
void addExtensibleReqPortOnPrimary(..);
void demoteGlobalProvider();
...

}

class SD_SD {
bool addServiceToDirectory(..);
void addPendingRequest(..);
void registerService(..);
bool addServiceToDirectory(..);
void addPendingRequest(..);
SD_PendingRequest *removePendingRequest(..);
SD_PendingRequest *getPendingRequest(..);
void handleRequest(..);
void handleReply(..);
void lookupService(..);
void selectCandidateGSD(..);
...

}

SD_Engine

Figure 7.16: Occurrence of Concern Overload pattern in the MIDAS system.

7.5.2.
Misplaced Concern

Description and Motivation. Misplaced Concern pattern refers to another

form of violation of the concerns separation principle. This pattern groups

anomalous code elements that modularize a concern, which is not the predominant

one of their enclosing component. A concern is predominant in a component if

most of the code elements in this component are dedicated to modularize the

concern. Therefore, the anomalous code elements classified in this pattern should

be defined in a different component. This problem is more remarkable when other

components also modularize the "misplaced" concern. The reason is that the

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

201

dispersed anomalous code elements favor the scattering of a concern in the

architectural design. The scattering of an architectural concern occurs, for

instance, due to copy and paste practices. This neglection of concern separation

principle often affects the architecture maintainability because changes in a

specific concern will be spread over multiple components.

Figure 7.17 depicts an abstract representation of this pattern. Two

anomalous classes stand out among the others in this figure – C3 and C4 – for

realizing a concern that is not the predominant one of the component.

Additionally, these anomalous classes realize a concern that is also modularized

by external code elements. Therefore, the anomalous C1 and C2 classes represent

an occurrence of the Misplaced Concern pattern in this example. . It is important

to highlight that, in this example we are only showing a pattern occurrence at the

class level, but the pattern can also manifest at the method level.

C1 C2

COMP1

C3 C4

COMP2

C5 C6

COMP3

C7 C8

COMP4

Figure 7.17: Abstract representation of Misplaced Concern.

Formal Definition. Given a software system, S, the set of occurrences of

the Misplaced Concern (MC) pattern in S is formally defined in (9) as:

MC(S,th1,th2) = {c1 | c1 ∈ ACEco1con

 con ∈ CS co1 ∈ ACS co2 ∈ ACS,

 co1 ≠ co2 |CEco1con| < th1 |CEco2con| > th2} (9)

where, th1 and th2 are generic constants that represent acceptable degrees of

scattering per concern, such that 0 ≤ th1 ≤ 1 and 0 ≤ th2 ≤ 1. In order to identify

the pattern instance illustrated in Figure 7.17 – C3 and C4 – using this formalism,

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

202

we have that: th1 has to be higher than or equal to 0.33 and th2 should be less than

or equal to 0.80, respectively.

Algorithmic Solution. The algorithmic solution for detecting Misplaced

Concern is presented in Listing 7.9. For a given concern (line 1), the algorithm

computes the list of components that are weak and strong dedicated to realize this

concern, using the WeakDedicatedComponents(..) and StrongDedicatedComponents(..)

functions, respectively (lines 2 and 3). Then, for each weak dedicated component,

the algorithm detects the anomalous code elements that realize the concern, using

the AnomalousCodeElementsPerConcern(..) function (lines 6 - 9). These anomalous

code elements constitute a pattern occurrence (line 8). This algorithm is run for

each architectural concern of the system under analysis.

Listing 7.9 Detection of MC occurrences.

01

02

03

04

05

06

07

08

09

10

11

 Let con be the concern under analysis

 W = WeakDedicatedComponents(con, Th1)

 S = StrongDedicatedComponents(con, Th2)

 result = {}

 if size(W) > 0 and and size(S) >0 then

 for each co in W do

 ACEC = AnomalousCodeElementsPerConcern(co, con)

 occurrence add ACEC

 end for

 end if

 return result

Concrete Example. Figure 7.18 depicts an occurrence of the Misplaced

Concern pattern extracted from MIDAS system. This example is based on that

previously shown in Figure 7.16. The occurrence of the Misplaced Concern

comprises the SD_SD and SD_Engine classes in the Engine component, as well as

the Fault Tolerance component. As shown in Figure 7.18, the SD_SD and

SD_Engine classes are also being part of a Misplaced Concern occurrence. They

modularize the Fault Tolerance concern, which should be implemented in its own

component. In fact, as aforementioned, these classes were refactored in a later

version moving the Fault Tolerance concern to its own component.

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

203

SERVICE DISCOVERY

Prism-MW

Element in the pattern

Fault Tolerance
Service Discovery
Dynamic Adaptation
Engine

FAULT TOLERANCE

FT_Utilities

FT_Vector_HandleFT_Constants

FT_Identifiers

SD_Engine SD_SD

Figure 7.18: Occurrence of Misplaced Concern pattern in the MIDAS system.

7.6.
Correlating Code Anomaly Patterns

We also observed that anomaly patterns are not fully independent, and the

occurrence of one can (in)directly imply another one (and vice-versa). This

section discusses the relationships among anomaly patterns that have been

observed while carrying out previous studies (Chapters 4 and 5). Note we are not

claiming these are the only types of relationships that can exist among anomaly

patterns, other relationships could be still identified. Documenting such

relationships helps architects and developers to understand and identify alternative

reasons for the emergence of a particular code anomaly pattern.

Figure 7.19 illustrates relationships among the patterns where they are

represented by "can be related", "can influence" and "cannot be" arrows

connecting two patterns. The relationship "can be related" represents the case

when a pattern can be seen under the perspective of another pattern. This occurs

mainly when two patterns correlate in the sense that the occurrence of a pattern is

also affected by another pattern. The relationship "can influence" is a step forward

because it means the existence of a pattern can affect the emergence of another

pattern. Such cause-effect relationship can be observed either in a single system

version or along the system’s evolution. Unlike the previous two relationships, the

last relationship named "cannot be" corresponds to the case where two patterns

cannot simultaneously affect the same code elements.

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

204

Multiple-Anomaly

Syndrome

Replicated External
Network

Concern OverloadMisplaced Concern

External Attractor

Similar Anomalous
Neighbors

can influence

can be related

Hereditary Anomaly
can influence

External Addictor

can
in

flu
e

n
ce

Mutant Anomaly

Figure 7.19: Relationships between code anomaly patterns.

An example of "can be related" relationship is defined between Concern

Overload and Misplaced Concern. This relationship can be observed when a

given component co ∈ ACS realizes many concerns where at least one of them is

also realized by a different component. Hence, the component co can be also seen

under the perspective of Misplaced Concern pattern. In this case both patterns

Concern Overload and Misplaced Concern simultaneously affect the component

co. Note that Misplaced Concern can occur in components that do not realize

many concerns. Analogous reasoning applies to the other "can be related"

relationships presented in Figure 7.19.

An interesting case of "can influence" relationship can be observed between

External Addictor and Replicated External Network. External Addictor can

propitiate the emergence of Replicated External Network when multiple code

elements in the same component begin to increasingly depend on the same

external elements. Thus, an occurrence of Replicated External Network is

introduced. The inverse relationship could be also seen when at least one code

element in the Replicated External Network pattern begins to depend

incrementally on a high number of external anomalous elements. The other cases

of "can influence" relationships showed in Figure 7.19 follow the same reasoning.

Finally, Hereditary Anomaly cannot be classified as a Mutant Anomaly. The

reason is that Hereditary Anomaly encompasses hierarchies where the root

element is anomalous, whereas in the Mutant Anomaly the root element must be

free of anomalies.

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

205

7.7.
SCOOP: Detecting Architecturally-Relevant Code Anomalies

As discussed in the previous sections, the main benefits on identifying code

anomaly patterns is to improve the accuracy of existing detection strategies. This

identification involves the detection of single code anomalies and the analysis of

different relationships between them (e.g. access the same external data). As a

great amount of code anomalies infect software systems, their patterns detection

can be an exhaustive and unviable task even in small systems without a proper

tool support. This section describes SCOOP, a tool that leverages: (i) code

anomaly patterns and, (ii) architecture-sensitive metrics and strategies to identify

architecturally-relevant code anomalies. SCOOP is dedicated to developers,

maintainers and code reviewers, who are interested in the continuous

improvement of source code quality. SCOOP is implemented as an Eclipse plug-

in allowing developers to use it during the implementation of Java systems.

Figure 7.20 depicts an abstract representation of the SCOOP architecture

and how its main elements are related to each other. As it can be observed,

SCOOP gets as input three different types of information, which are then

processed by the SCOOP engine. Section 7.7.1 describes each input. Section 7.7.2

presents the tool engine, detailing how each of its elements work. Finally, Section

7.7.3 shows some screenshots of the user interface.

Architecture –Sensitive

Information (optional)

Conventional

Code Metrics

Detection Strategies

Eclipse Platform

Code Anomaly

Patterns Detector

Metrics Collector

Single Code Anomalies and

Code Anomaly Patterns

Reports

Code Anomalies

Detector

SCOOP Engine

Logical Statements

Generator

Figure 7.20: Abstract representation of the SCOOP architecture.

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

206

7.7.1.
The SCOOP Inputs

Detection Strategies. SCOOP relies on detection strategies to support the

identification of code anomalies similarly to state-of-art tools. SCOOP gets an

input Rules.ds (Appendix D), an internal configuration file that contains the

definition of the detection strategies that will be used to identify code anomalies.

The strategies are defined using a Domain-Specific Language (DSL) embedded in

SCOOP (Appendix C). This DSL was implemented using XText (2010), a

framework that provides edition features in order to reduce mistakes in the

specification of detection strategies. Moreover, the language is enriched with

support for selecting both conventional source code measures (Li and Henry,

1993; Chidamber and Kemerer, 1994; Lanza and Marinescu, 2006) and

architecture-sensitive ones (Section 6.2).

By counting on the proposed DSL, developers are able to define or modify

their own detection strategies for distinct software systems. SCOOP does not

force developers to define their own detection strategies, but they can rely on a

pre-defined set of detection strategies provided by SCOOP in the Rules.ds file and

just perform changes in these strategies according to their needs.

Conventional Code Metrics. SCOOP gets as input a file called measures –

either an XML or a CSV – containing the conventional code measures collected

for each code element in a given Java system under analysis (e.g. LOC, Efferent

and Afferent coupling). We decided to get externally-collected code measures as

input, as many tools already quantify them (Section 2.3.1). In particular, the

current implementation of SCOOP is compatible with well-known code analyzer

tools, such as Together and Understand, which were used in the previous

exploratory studies (Chapters 4 and 5).

Architecture-Sensitive Information. SCOOP gets input from two kinds of

architecture-sensitive information needed to collect the proposed metrics (Section

6.2) and to detect the code anomaly patterns: (i) mappings between code elements

and architectural elements and (ii) projections of architectural concerns on the

code elements. SCOOP does not support the specification of these kinds of

information, since there are many tools documented in the literature with that

purpose (Eisenbarth et al., 2003; Maqbool et al., 2007; FEAT, 2009; Garcia et al.,

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

207

2011; Nguyen et al., 2011). The current implementation of SCOOP is compatible

with Vespucci (2010) and ConcernMapper (2010). The first is a tool that allows

developers to model the software system architecture in terms of its components

or modules. The latter is a tool that supports the specification of the system

concerns and how they are realized by the code elements. The files generated by

these tools are input to SCOOP.

7.7.2.
The SCOOP Engine

Logical Statements Generator. The Java system under analysis and the

architecture-sensitive information are processed by SCOOP in order to detect

architecturally-relevant code anomalies. SCOOP builds a DecoratedAST, a

structure designed following the Decorator pattern (Gamma et al., 1995) and that

contains the nodes on the program AST. This structure will be use later to store

other information besides that extracted from the programming language syntax.

SCOOP uses BAT (Bytecode Analysis Toolkit) (Eichberg et al., 2008) to generate

a representation of structural properties of code elements as logical facts in Prolog

(2010). Both kinds of architecture-sensitive information supported by SCOOP are

also stored in a Prolog-based representation. This particular representation allows

SCOOP to perform queries involving different sources of information.

Additionally, the use of Prolog can foster the integration with other programming

languages, as we can develop translators from these languages to Prolog. This

characteristic is particularly interesting as recent studies have shown that most

software projects are currently implemented in four different programming

languages (Ubayashi et al., 2010).

Metrics Collector. This module is in charge of collecting and processing

the conventional code and architecture-sensitive measures supported by the DSL.

To this end, the Metrics Collector module processes the measures file of the Java

system under analysis and enriches the DecoratedAST adding the measures values

to each node. The architecture-sensitive measures, which are not received as

input, are collected by performing queries over the Prolog representation

generated by the module Logical Statement Generator. Listing 7.10 illustrates a

query used to determine dependencies, in terms of field declarations, between

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

208

classes that belong to components. As shown, this query relies on the mappings

between code elements and architecture elements received as input (lines 2 and 3).

All the queries performed by the Metrics Collector module are defined in an

SCOOP internal file. Similarly to the conventional code measures, the Metric

Collector module decorates the DecoratedAST adding the collected architecture-

sensitive measures to each node. Therefore, the Metric Collector module returns

an instance of the DecoratedAST containing the metric values for each node.

Listing 7.10. Prolog query used by SCOOP to detect dependencies.

 01
 02.
 03.
 04.

 field_dcl (pkgsrc, src, pkgdst, fld) :- field(class(pkgsrc, src), fld, dst),
 mapping(comp_dst, class(pkgdst, dst)),
 mapping(comp_src, class(pkgsrc, src),
 comp_src \== comp_dst.

Code Anomalies Detector. In order to detect the code elements suspects of

being infected by anomalies, this module interprets the specified detection

strategies in the Rules.ds file and process the DecoratedAST structure, which

contains the gathered metrics. That is, the module processes the DecoratedAST to

identify the code elements infected by each code anomaly defined in the Rules.ds

file. As result, the module decorates the DecoratedAST adding the detected list of

code anomalies to each node.

Code Anomaly Patterns Detector. Once the anomalous code elements are

identified, this module processes the DecoratedAST and runs over it the

algorithmic solutions presented in Listings 01-09. As result, a list will then be

produced containing the occurrences of the code anomaly patterns for the system

under analysis. The current version of SCOOP supports the detection of nine code

anomaly patterns, but patterns can be included using the tool extension points.

7.7.3.
The SCOOP User Interface

SCOOP extends Eclipse Platform with an additional preference page

(Figure 7.21). The SCOOP preference page supports the configuration of specific

threshold values for the program under analysis. This page also allows the

engineers to activate or deactivate the algorithm of a particular code anomaly

pattern. For instance, Figure 7.21 shows that all code anomaly patterns are active

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

209

in this specific project. In particular, according to the used preferences, a group of

anomalous code elements constitute an occurrence of the Concern Overload

pattern if they modularize more than 3 concerns as presented in Figure 7.21.

Figure 7.21: Patterns configuration in SCOOP.

The Anomaly Reports element of SCOOP presented in Figure 7.20 adds a

new view. Figure 7.22 presents the view of SCOOP that visualizes the anomalous

code elements detected. These elements are those identified using the strategies

specified in the Rules.ds file. We use one of our case studies, called Health

Watcher, in the illustrative example of Figure 7.22. As it can be noticed, the

anomalous code elements detected are grouped by their type (e.g. class and

method) and by the type of the anomaly they suffer from. In this example,

UpdateMedicalSpecialityList.execute() and UpdateSymptomSearch.execute() methods

are infected by the Divergent Change anomaly. By double-clicking on each

detected occurrence, the user navigates to the source code of the corresponding

code element.

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

210

Figure 7.22: Code anomalies view.

SCOOP provides engineers with a second Eclipse view that shows the code

anomaly patterns found in the target system. In the example depicted in Figure

7.23, also extracted from Health Watcher system, the FoodComplaint,

StateComplaint, FoodComplaintState and SpecialComplaintState classes make up an

occurrence of the Replicated External Network pattern. Similarly to the code

anomalies view, the user can navigate to the source code involved in the pattern

occurrence by double-clicking on the visualized element.

Figure 7.23: Code anomaly patterns view.

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

211

7.8.
Assessment Code Anomaly Patterns

This section presents a study that evaluates the usefulness of the code

anomaly patterns when detecting architecturally-relevant code anomalies.

Similarly to Chapter 6, the study presented in this chapter contributes to answer

the last research question of this thesis (Section 1.4): To what extent the proposed

technique improves the accuracy of the conventional detection strategies when

identifying architecturally-relevant code anomalies? In the context of this study,

this research question was decomposed into the following three research questions

(RQ):

RQ4.4: How often do the documented code anomaly patterns manifest

themselves in the system’s implementation?

RQ4.5: Whether and to what extent code anomaly patterns are better

indicators of architectural degradation symptoms than single code anomalies?

RQ4.6: What is the correlation between each type of code anomaly pattern

and architectural degradation symptoms?

Following Wohlin et al. suggestion (2000), we defined our study and its

goals using the GQM format (Basili et al., 1994) as:

Analyze: the documented code anomaly patterns

For the purpose of: assessing their accuracy

With respect to: grouping architecturally-relevant code anomalies

From the viewpoint of: systems architects, developers and researchers

In the context of: five (05) software systems from different domains and

following different architectural decompositions.

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

212

7.8.1.
Hypotheses

In order to answer the three aforementioned research questions, we have

defined the null and alternative hypotheses as shown in Table 7.1.

Table 7.1: Research questions and hypotheses of the study.

Research Questions Hypotheses

RQ4.4

Null Hypothesis, H10: A significant proportion of code anomalies do not

belong to the documented patterns.

Alternative Hypothesis, H1A: A significant proportion of code

anomalies belong to the documented patterns.

RQ4.5

Null Hypothesis, H20: Patterns are not better indicators of architectural

degradation symptoms than single code anomalies.

Alternative Hypothesis, H2A: Patterns are better indicators of

architectural degradation symptoms than single code anomalies.

RQ4.6

Null Hypothesis, H30: Code anomaly patterns are equally related to

architectural degradation symptoms.

Alternative Hypothesis, H3A: Code anomaly patterns are not equally

related to architectural degradation symptoms.

7.8.2.
Variable Selection

The following independent and dependent variables were defined in order

to test the previous hypotheses.

Independent Variables. For H10, there is an independent variable, Ci,

indicating the number of anomalous code elements in a system i. For H20 and H30

we only have one independent variable, Ai, indicating the total number of

architectural degradation symptoms related to code anomalies in a system i. All

occurrences of code anomalies used in testing these hypotheses were confirmed

by developers (Section 7.8.4).

Dependent Variables. For H10, there is a dependent variable, Ci, indicating

the total number of anomalous code elements grouped in patterns in a system i.

For H20, there are two dependent variables. Pi indicates the proportion of

architectural degradation symptoms encompassed in anomaly patterns in a system

i. Ci represents the proportion of architectural degradation symptoms that are not

involved in any anomaly pattern in a system i. For H30, there are as many

independent variables as there are types of code anomaly patterns. Each variable

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

213

Pi,j indicates the number of times a code anomaly pattern j is related to

architectural degradation symptoms in a system i.

7.8.3.
Selection Criteria and Target Systems

We relied on the target systems used in the previous study (Chapter 6) in

order to assess the documented code anomaly patterns due to two main reasons.

First, these systems meet a relevant set of criteria to the context of this study, as

they (i) are infected by various symptoms of architectural degradation, which have

been confirmed by architects and developers, (ii) suffer from a rich set of code

anomalies, (iii) were projected following different architectural decompositions,

and (iv) are implemented in Java, allowing us to use SCOOP in order to identify

code anomaly patterns. Second, in the previous study we used the proposed

architecture-sensitive strategies to identify architecturally-relevant code

anomalies. Thus, code anomaly patterns could be built over the base of previously

identified code anomalies.

7.8.4.
Procedures for Data Collection

As discussed in Section 6.4.4 several kinds of information were gathered in

the previous study. We were able to reuse that information for performing the

study described in this chapter. For example, the set of code anomalies for each

system, as well as the ground truth of architecturally-relevant code anomalies

were already available. The former is particularly useful to assess to what extent

code anomaly patterns encompass these critical code anomalies and, thus,

evaluate both hypotheses H20 and H30. The only additional information that had

to be collected for this study is the code anomaly patterns. We describe the details

of such collection in the following.

Detecting Code Anomaly Patterns. The detection of code anomaly

patterns was performed automatically, through SCOOP. To the best of our

knowledge, SCOOP is the only tool that exploits different kinds of relationships

between anomalous code elements to detect those that are likely to cause a harm

impact on software architecture.

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

214

As shown in Figure 7.21, thresholds have to be specified in order to support

the patterns identification. Although SCOOP provides a default set of thresholds,

we selected a specific set of thresholds for each target system. The goal was to get

the best possible results for each system, regarding the detected patterns. All the

selected thresholds were confirmed with, at least three, system developers and

architects, which were previously instructed about the particularities of each code

anomaly pattern. All the involved participants have more than a decade of

experience developing software systems. The list of the thresholds used in each

target system is provided in Appendix B. After running SCOOP, we were

provided with a list containing the occurrences of the anomaly patterns for each

target system.

7.8.5.
Study Results

The following subsections present and discuss the main findings associated

with the research questions of our study (Section Error! Reference source not

found.). Section 7.8.5.1 discusses the frequency of the code anomaly patterns by

analyzing their occurrences in each target system. Section 7.8.5.2 discusses to

what extent code anomaly patterns are indicators of architectural degradation

symptoms in the system implementation. Finally, Section 7.8.5.3 analyzes the

correlation degree between each kind of code anomaly pattern and architectural

degradation symptoms in the implementation of the target systems.

7.8.5.1.
Frequency of Patterns in the Target Systems

There was a significant difference on how often each anomaly pattern

manifests in the target systems considering all analyzed code anomalies. The

results summarized in Table 7.2 show the frequency of the patterns per system.

The last row indicates the number of code anomalies analyzed in a particular

system.

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

215

Table 7.2: Anomaly patterns per target system.

Code Anomaly Pattern HW MM S1 S2 S3

Multiple-Anomaly Syndrome 49 39 65 102 81

Similar Anomalous Neighbors 12 17 32 21 27

Replicated External Network 17 5 12 17 16

External Addictor 22 10 26 18 30

External Attractor 16 6 18 27 14

Hereditary Anomaly 1 2 6 8 8

Mutant Anomaly 4 2 9 16 13

Misplaced Concern 6 5 18 19 9

Concern Overload 10 8 24 32 19

of pattern occurrences 137 94 210 260 217

As shown in Table 7.2 code anomaly patterns consistently occurred in all

the target systems. This indicates that those patterns may not be specific to a

group of developers or particular system characteristics. Additionally, the total

number of occurrences of code anomaly patterns varied in the target systems. For

instance, S2 presented the highest number of anomaly pattern occurrences. We

suspect this happened because it is the most complex system in terms of number

of code elements and architectural components; consequently, the S2 system also

presented the highest number of code anomalies. .

Individual Analysis of Pattern Categories. An analysis of the pattern

occurrence frequency indicates that Multiple-Anomaly Syndrome was the pattern

that occurred more often. This means that different anomalies infected frequently

the same code element in the target systems. A wide diversity of Multiple-

Anomaly Syndrome instances were observed in the target systems. The most

frequent instances of this pattern observed in all target systems were: God

Class/Long Method, God Class/Feature Envy, Long Method/Intensive Coupling,

and Disperse Coupling/Feature Envy. Matching our intuition, co-occurrences of

God Class/Long Method and Long Method/Intensive Coupling were responsible

for more than 52% of all the observed simultaneous occurrences of code

anomalies. The fact that certain co-occurrences of code anomalies are likely to

appear more often than others motivates the investigation of whether the most

frequent co-occurrences are the most harmful ones (Section 7.8.5.3).

Furthermore, some findings emerged from the analysis of Replicated

External Network, External Addictor and Externals Attractor patterns. These

patterns frequently appeared in all the analyzed systems. In particular, they

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

216

concentrated around 45% of all the relationships between components in the target

systems. This high percentage shows how the tight coupling degree between

components can be related to anomalous code elements as those patterns are

related to the communication among architectural components.

Likewise, the high number of occurrences of Misplaced Concern and

Concern Overload indicates how anomalous code elements can be related to the

inadequate modularization of the architectural concerns. This observation seems

to suggest that the projection of architectural concerns on the system

implementation can be useful to identify a significant number of code anomalies.

This suspicion is further investigated in the next section.

Although Mutant Anomaly and Hereditary Anomaly patterns appeared in all

target systems, it was observed that the former occurred more frequently than the

later. In many cases it was hard to determine whether the parent element was the

source of the anomaly when descendants were classified as anomalous, due to two

main reasons. First, parent elements were usually defined in external applications

and referenced through the import mechanism. In these situations it was not

possible to access the parent code and, thus, detect its code anomalies. Second,

parent elements were usually implemented as abstract methods or interfaces. In

such cases the code information emerged from the methods signature, which often

did not specify any parameter. Thus, there was not enough information to apply

strategies and detect code anomalies in the parent element.

Significance of Anomaly Patterns. In order to measure the significance of

the pattern occurrences, we analyzed what proportion they represent in the sample

of detected code anomalies. Figure 7.24 depicts the proportion of the anomalous

code elements participating in anomaly patterns with those anomalous elements

that do not make up patterns.

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

217

0%

20%

40%

60%

80%

100%

HW MM S1 S2 S3

Target Systems

Single Code Anomalies

Inter-related Anomalies

Figure 7.24: Anomalous code elements taking part in the patterns.

In the aforementioned proportions we considered all kinds of anomalous

code elements; i.e. anomalous methods and classes. For instance, an anomalous

class was considered to be in the patterns proportion if it is involved in any pattern

related to classes. As it can be observed, more than 60% of the anomalous code

elements in the HW and MM systems are involved in patterns instances.

However, anomaly patterns encompass 57%, 45%, and 55% of the total number of

anomalous code elements in S1, S2, and S3, respectively. In other words, less than

60% of the anomalous elements contribute to the patterns in these systems.

Therefore, there is not enough information to reject H10. These low proportions

might be caused by the fact that only eight code anomalies were considered in this

study. This is a suspicion that should be tested in further studies. However, albeit

low, these numbers can be relevant depending on whether they are how good

indicators of architectural degradation symptoms in the target systems.

7.8.5.2.
Code Anomaly Patterns and Architectural Degradation

Once confirmed that code anomaly patterns occurred frequently in the target

systems, our study investigated whether and to what extent they were related to

architectural degradation symptoms. In order to attempt rejecting H20, we test

whether the proportion of architectural problems significantly varies between code

anomalies involved and not involved in the anomaly patterns. We use Fisher’s

exact test (Shesking, 2007), which checks whether the proportion vary between

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

218

those two samples. We also compute the Odds Ratio (OR) (Shesking, 2007) that

indicates the likelihood for an event to occur. The odds ratio is defined as the ratio

of the odds p of an event occurring in one sample, i.e., the odds that architectural

problems manifest in code elements with anomaly patterns (experimental group),

to the odds q of the same event occurring in the other sample, i.e., the odds that

architectural problems occur in code elements without patterns (control group):

OR = (p/(1−p)) / (q/(1−q)). An OR equals to 1 indicates that the event is equally

likely to occur in both samples. An OR greater than 1 indicates that the event is

more likely in the first sample, while an OR less than 1 that it is more likely in the

second sample.

Table 7.3 reports, for each target system, the number of anomalous classes:

(i) contributing both to anomaly patterns and architectural degradation symptoms

(P-AD), (ii) contributing to patterns but not to architectural degradation symptoms

(P-NoAD), (iii) containing single anomalies and presenting architectural

degradation symptoms (NoP-AD), (iv) containing single anomalies and not

presenting architectural degradation symptoms (NoP-NoAD). This table also

reports the result of Fisher’s exact test and ORs when testing H20. Lower p-values

indicate that classes involved in anomaly patterns adversely impact the software

architecture more than other anomalous classes. In this analysis, a class

contributes to an anomaly pattern if it is involved as a whole class in any pattern,

or if any of its methods are involved in patterns.

Table 7.3: Contingency table and Fisher's test results.

System P-AD P-NoAD NoP-AD NoP-NoAD p-values OR

HW 62 8 19 18 3.62E-05 7.3

MM 23 6 4 12 5.44E-04 11.5

S1 157 32 123 98 1.36E-09 3.9

S2 287 45 203 215 5.48E-29 6.8

S3 192 28 92 75 1.13E-12 5.6

P = Pattern of code anomalies; AD = Architectural Degradation symptom.

Architectural Significance of Anomaly Patterns. Our analysis revealed a

statistically-significant relationship between code anomaly patterns and

architectural degradation symptoms in all the analyzed software systems,

according to the level of confidence (i.e. 0.001). Also, the odds ratio revealed that

the chances for code elements affected by anomaly patterns to be related to

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

219

architecture problems were sixteen times higher or more than for other code

elements. This finding confirms that developers should be concerned with

refactoring those elements involved in code anomaly patterns. It is important to

note that the significance of this relationship was confirmed in different stages of

the software systems evolution (Section 7.8.4). That is, the relationship was

confirmed in intermediary (MM and S3) and advanced stages (HW, S1 and S2) of

the system evolution. This observation suggests that code anomaly patterns are

not only likely to adverse impact on the system architecture in latter versions of

the systems. This finding is relevant as it indicates that developers could

concentrate on refactoring specific code elements participating in anomaly

patterns, and this effort should start in the earliest system version. These pattern-

wise refactorings would likely save considerable time and effort when performing

latter maintenance tasks. Thus, based on these results, we can reject H20.

Upstream and Downstream Analyses. In order to complement the Fisher's

analysis, we analyzed the upstream and downstream relationships between

anomaly patterns and architectural problems. The upstream relationship refers to

what extent anomaly patterns in the code (low level of abstraction) were related to

architecture problems (high level of abstraction). The downstream is exactly the

opposite: it shows to what extent problems in the architectural design were related

to code anomaly patterns. These analyses are useful because they show

respectively: (i) what proportion of anomaly patterns is critical for systems'

architecture, and (ii) what proportion of architectural problems could be fixed by

refactoring anomaly patterns. The upstream analysis showed that up to 89% of all

anomaly patterns were correlated to architectural degradation symptoms in Health

Watcher, 87% in MobileMedia, 82% in S2, 80% in S1, and 75% in S2. The fact

that some pattern occurrences were not related to architectural degradation

symptoms might have happened because certain architectural problems were

neither considered in this study nor detected by architects in the target systems. A

downstream analysis revealed that up to 90% of all architectural degradation

symptoms were related to anomaly patterns in Health Watcher, 85% in

MobileMedia, 85% in S2, 78% in S1, and 73% in S3. The observed results

indicated that the vast majority of architectural degradation symptoms was related

to code anomaly patterns.

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

220

The results of these complementary analyses seem to confirm that code

anomaly patterns are useful to locate potential sources of architectural degradation

symptoms in the system implementation. In particular, we observed that around

80% of code anomaly patterns were indicators of architectural degradation

symptoms. This suggests in turn that, by refactoring anomaly patterns developers

might avoid spending their time on removing anomalies that do not represent

threats to the architectural design. This observation is even more relevant for

projects where there is no detailed documented architecture. The reason is that

existing tools for architectural problem detection in the source code cannot be

used in these situations, as they rely on detailed architectural information. We also

found that a proportion of all architectural degradation symptoms, about 15%,

were not associated with code anomaly patterns. In other words, there is a sample

of architectural degradation symptoms that is not covered or explained by the

code anomaly patterns. This means that certain architectural degradation

symptoms may affect the system implementation even when code anomaly

patterns are not detected.

Neglected Architectural Problems. The previous observations motivated

us to analyze which architectural degradation symptoms were not related to code

anomaly patterns in the target systems. An analysis of those architectural

degradation symptoms indicated that some of them were only related to isolated

code anomalies. For instance, about 12% occurrences of the Overused Interfaces

were used by many anomalous-free code elements. These interfaces were

classified as anomalous because changes performed on them caused ripple effects

over architectural components. Therefore, these Overused Interfaces only

involved single anomalous elements. Around 10% of Unwanted Dependencies

were accidentally introduced by unrelated anomalous code elements. Finally, 7%

of Connector Envies were only related to single Long Method occurrences. In

these cases, connector interaction services (e.g. conversion of data formats)

demanded high complexity, leading the method to be classified as a Long Method.

Moreover, other architectural anomalies were not related neither to code

anomaly patterns nor any type of code anomaly. For instance, about 25% of

Extraneous Connector were related to anomalous-free code elements that were

using different connectors type (e.g. procedure call and event-based) to connect

the same two components. Around 8% of Cyclic Dependencies were related to

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

221

well-modularized and non-complex methods. We believe that neglecting these

architectural degradation symptoms does not constitute a big problem because (i)

they represent a small proportion of the whole sample and (ii) some of them (e.g.

Cyclic Dependencies) can be easily detected by existing code analyzers (e.g.

Understand, 2011; Sonar, 2009).

Patterns vs. Single Code Anomalies. The fact that certain architectural

degradation symptoms were related to anomalous elements, but not to anomaly

patterns, lead us to analyze to what extent code anomaly patterns were better

indicators of architectural problems than single code anomalies. Therefore, we

compared the proportion of anomaly patterns related to architectural problems

with the proportion of single code anomalies related to architectural problems.

Figure 7.25 depicts the precision rates of code anomaly patterns, architecture-

sensitive strategies and conventional ones when identifying architecturally-

relevant code anomalies. This figure shows how code anomaly patterns were

better related to architectural degradation symptoms than single code anomalies.

In particular, patterns seem to help developers to concentrate their efforts on

removing an expressive number of the most critical code anomalies. For instance,

in system S1, the proportions of anomaly patterns and single anomalies related to

architectural problems differs in 30%.

0%

20%

40%

60%

80%

100%

HW MM S1 S2 S3

P
re

ci
si

o
n

 R
a

te
s

(%
)

Target Systems

Code Anomaly Patterns
Architecture-Sensitive Detection Strategies
Conventional Detection Strategies

Figure 7.25: Precision of patterns vs. detection strategies in the identification of

architecturally-relevant code anomalies.

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

222

Likewise, Figure 7.26 shows recall rates of code anomaly patterns,

architecture-sensitive strategies and conventional ones when identifying

architecturally-relevant code anomalies. This figure shows how architecture-

sensitive strategies detected the highest number of architecturally-relevant code

anomalies. However, the number of architecturally-relevant code anomalies

grouped by the documented code anomaly patterns only differs in around 10%.

Therefore, code anomaly patterns seem to be the most accurate mechanism to

guide engineers in the removal of architecturally-relevant code anomalies.

0%

20%

40%

60%

80%

100%

HW MM S1 S2 S3

R
e

ca
ll

R
at

e
s

(%
)

Target Systems

Code Anomaly Patterns
Architecture-Sensitive Detection Strategies
Conventional Detection Strategies

Figure 7.26: Recall of patterns vs. detection strategies in the identification of

architecturally-relevant code anomalies.

However, it is still unknown whether such differences are significant. In

order to perform this investigation, we use the (non-parametric) Mann-Whitney

test (Shesking, 2007). This test compares two sets of variables and assesses

whether their difference is statistically significant. Non-parametric tests do not

require any assumption on the underlying distributions. We also computed the

Cohen's d effect size (Shesking, 2007) to indicate the magnitude of the effect of a

treatment on the dependent variables. A lower Cohen's d indicates a necessity for

larger sample sizes. The effect size is considered small for 0.2 ≤ d < 0.5, medium

for 0.5 ≤ d < 0.8 and large for d ≥ 0.8.

Table 7.4 reports the results of Mann-Whitney’s test and Cohen’s d effect

size. As it can be noticed Mann-Whitney test shows statistically significant

differences between architectural degradation symptoms concentrated in code

anomaly patterns and single code anomalies. Moreover, Cohen’s d effect size

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

223

value is large: 0.84. Therefore, code anomaly patterns have stronger impact on the

system architecture decomposition than single code anomalies. We thus can state

that code anomaly patterns are significant better indicators of architectural

problems than single code anomalies.

Table 7.4: Mann-Whitney’s test results and Cohen’s d effort.

 Mann-Whitney p Cohen d

Patterns vs. Single Anomalies < 0.01 0.84

7.8.5.3.
Specific Code Anomaly Patterns and Architectural Degradation

In order to attempt rejecting H30, we performed a correlation test between

the code elements involved in each anomaly pattern and those elements with

architectural problems. As we cannot assume a normal distribution in any of the

code elements with anomaly patterns, the specific correlation test used here is the

Spearman's rank correlation (Myers and Well, 2003) at the class-level.

Furthermore, because the hypotheses are directional, a one-tailed test is

performed. When the correlation test shows a moderate to strong correlation, the

null hypothesis can be rejected, meaning that a specific code anomaly pattern is

correlated with architectural degradation symptoms. Using the thresholds defined

by Hopkins (2002) we consider the correlation value lower than 0.1 as trivial, 0.1-

0.3 as minor, 0.3-0.5 as moderate, 0.5-0.7 as large, 0.7-0.9 as very large; and 0.9-1.0

as almost perfect.

Table 7.5: Spearman's rank correlation results.

 MAS SAN EAD EAT REN HA MA CO MC

HW 0.67 0.75 1.00 1.00 1.00 1.00 1.00 0.90 0.83

MM 0.66 0.65 0.82 0.83 0.80 1.00 1.00 0.87 0.80

S1 0.46 0.47 1.00 0.88 1.00 0.50 0.44 0.79 0.83

S2 0.49 0.48 1.00 0.96 1.00 0.50 0.43 0.87 0.84

S3 0.49 0.44 0.88 0.85 0.87 0.38 0.46 0.84 0.77

Strong Correlation with Architecture-Relevant Anomalies. Interestingly,

our analysis indicates that all three Inter-Component Patterns (Section 7.3)

present moderate to large correlation with architecturally-relevant code anomalies

in the target systems (Table 7.5). This finding may explain why components with

tight coupling degree were found to be the main sources of degradation in several

studies (Godfrey and Lee, 2000; MacCormack et al., 2006; Knodel et al., 2008).

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

224

As we can observe, the best indicator of architectural problems was Replicated

External Network. More than 73% of Disperse Coupling and 80% Divergent

Change occurrences making up that pattern were classified as architecturally-

relevant. An interesting finding emerges from analyzing occurrences of the

External Attractor pattern. Many of its occurrences involved Data classes being

accessed by external anomalous elements. In particular, these occurrences of the

External Attractor pattern were harmful to the architecture design when they were

often under maintenance and, therefore, suffered from many changes. This finding

suggests that other kinds of information, such as change-proneness could be taken

into consideration when detecting architecturally-relevant code anomalies.

The group of Concern-based Patterns also presents very large correlation

with architectural degradation (Table 7.5). As we can observe, these correlation

values vary from 0.7 to 0.9 in the target systems. It is important to mention that

we could not identify code anomaly types that stand among the others as the most

related to these patterns. Occurrences of all code anomaly types were related to

the inappropriate modularization of architectural concerns.

Like Inter-Component Patterns, the correlation of Concern-Based Patterns

and architecturally-relevant code anomalies is high since early versions of the

systems, such as in S1 system (Section 6.4.3). Therefore, engineers may not have

to wait until later system versions to identify these critical code anomalies.

However, it is important to note that a higher amount of architecturally-relevant

code anomalies were encompassed in patterns in later versions (e.g. Health

Watcher and S2 systems). This suggests that patterns might be ‘shaped’ during the

system evolution. However, this is suspicion that must be investigated in further

studies.

Moderate Correlation with Architecturally-Relevant Anomalies. The

correlation between code anomaly patterns and architecturally-relevant code

anomalies was not so strong for the other two groups. In fact, we only found high

correlation for Inheritance-based Patterns (Section 7.4) in MobileMedia and

Health Watcher systems; moderate correlation was found in the remainder

systems. The analysis of such patterns evidenced that their correlation with

architecturally-relevant code anomalies was often observed when the parent

element was defined in a different component from those where their descendants

were defined. In such cases, descendants were favoring the occurrence of the

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

225

External Attractor pattern and increasing the coupling between architectural

components. This finding raises the assumption that the harmful impact of certain

patterns on the architecture could be better observed by analyzing their correlation

with other patterns.

On the other hand, Intra-Component Patterns were those that presented

lower correlation values with architecturally-relevant anomalies (Table 7.5). In

few target systems they present moderate correlation values. However, the

analyses of these patterns indicated that particular occurrences were good

indicators of architectural degradation symptoms. For instance 75% (48 out of 64)

of Shotgun Surgery/Divergent Change co-occurrences, 66% (76 out of 114) of

Long Method/Intensive Coupling co-occurrences, and 53% (41 out of 78)

Disperse Coupling/Feature Envy co-occurrences were classified as harmful to the

architecture design. These occurrences were responsible for introducing a tight

coupling among code elements. Likewise, particular occurrences of the Similar

Anomalous Network pattern were good indicators of architectural degradation

symptoms, such as groups of God Classes and Feature Envies.

7.9.
Threats to Validity

This section discusses the threats to validity of our study following the

guidelines of Wohlin et al. (2000). These threats are categorized in four categories

addressing construct, conclusion, internal, and external validity.

Construct Validity. Threats to construct validity are mainly related to

possible errors introduced in the identification of code anomalies and their

patterns. We are aware that code anomalies might be accidentally related to

architectural problems. A first threat concerns the way the ground truth of code

anomalies was identified. However, we limited such threat by considering only

code anomalies whose impact on the architecture was confirmed by developers

and architects involved in the evolution of the target systems. These developers

and architects have experience on detecting code anomalies and architectural

degradation symptoms in the systems implementation and architectural

decompositions. Another threat concerns the detection of single code anomalies

and, as a consequence, code anomaly patterns. We tried to mitigate this threat by

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

226

involving several architects and developers in the selection of the thresholds for

detecting code anomalies and their patterns (Section 7.8.4). We considered the

thresholds that were confirmed by all the architects and developers involved in

that process. Lastly, construct validity refers to how the architecture design was

documented and projected on the system implementation. We intentionally relied

on an imperfect concern mapping sample, which presented 8% of mapping

mistakes - similarly found in samples provided as output of existing tools for

automatic mapping recovery (Nunes et al., 2012).

Conclusion Validity. The number of evaluated systems and target

anomalies threats the conclusion validity. Five systems with different architecture

decompositions and implemented by different teams were analyzed. Of course, a

higher number of systems is always desired. However, the analysis of a bigger

sample in this study would be impracticable since we relied on different sorts of

information provided by architects and developers, such as the list of architectural

concerns, their projection on the system implementation at different granularity

levels and, the list of architecturally-relevant anomalies. Thus, our sample can be

seen as appropriate for this kind of study. The second issue is the completeness of

the list of code anomalies and architectural degradation symptoms. We analyzed a

significant number of code anomaly types, similarly to well-known studies in the

field. Additionally, we relied on anomalies that affect code elements in

significantly different forms. For instance, the selected code anomalies manifest in

different code element types (i.e. method and class), range from anomalies that

infect a single code element to anomalies that involve collaboration among code

elements, and, are related to the inappropriate modularization of different

properties (e.g. cohesion and coupling). Likewise, we tried to select

heterogeneous forms of architectural degradation symptoms. Thus, we relied on

degradation symptoms that: manifest in different architecture views (e.g.

component-and-connector, module), range from a single component to

relationships among several components, and represent different kinds of

problems (syntactic and semantic-based). Additionally, all our conclusions were

confirmed by using several statistic tests with a high significance degree. In

particular, we paid attention not to violate assumptions of the performed statistical

tests. Finally, we mainly used non-parametric tests that do not require making

assumptions about the data set distribution.

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

227

Internal Validity. The main threats to internal validity of our study are the

knowledge and experience of all the developers and architects involved in the data

validation process. However, we tried to mitigate these threats by: (i) counting on

the help of several architects and developers, having more than one decade of

experience on code anomaly detection and removal, (ii) all the architects have a

similar experience on detection and removal of architectural degradation

symptoms in architectural components and system implementation, and (iii) we

only considered information that was confirmed by all the developers and

architects involved.

External Validity. The main threat to external validity is related to the

nature of the evaluated systems. In order to reduce this threat we tried to use

systems with different sizes, that suffer from a different set of code anomalies and

that were implemented using different architectural styles and for different

contexts (i.e. industry and academy labs). In addition, many systems in industry

software projects follow the MVC and layered decompositions observed in the

target systems of our study. However, we are aware that more studies involving a

higher number of systems should be performed in the future.

7.10.
Summary

In this chapter, we have presented a preliminary catalogue of nine patterns

of code anomalies identified by performing code anomaly analysis of several

heterogeneous systems (Section 6.4.3). The anomaly patterns were classified in

four categories (Sections 7.2 to 7.5) according to their common characteristics.

We have certainly not claimed that this set of code anomaly patterns is complete;

in fact other patterns can be identified in further studies. This chapter also

presented orthogonal and overlapping relationships observed in the given

definitions of the code anomaly patterns (Section 7.6).

For each code anomaly pattern this chapter described an algorithmic

solution for detecting its occurrences (Listings 7.1 - 7.9). These algorithms

combine different kinds of information including source code, architecture-

sensitive and concern properties. Similarly to the code anomaly patterns, new

detecting algorithms can be further defined. In particular, more optimized

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

228

algorithms can also be proposed. This chapter also presented SCOOP (Section

7.7), a tool that, relying on the architecture-sensitive metrics (Chapter 6) and the

algorithms aforementioned, automates the identification of single code anomalies

and the documented code anomaly patterns. This tool was implemented as an

Eclipse plug-in and offers several extension points. For instance, new detection

strategies and algorithmic solutions can be easily incorporated to SCOOP.

Finally, the chapter described the study carried out in order to investigate:

(i) the incidence of code anomaly patterns in the architecture of software systems,

(ii) the accuracy of code anomaly patterns when grouping architecturally-relevant

code anomalies and (ii) the correlation between certain types of code anomaly

patterns and architecturally-relevant code anomalies. In order to perform these

investigations, a sample of nearly 1100 architecturally-relevant code anomalies,

distributed in five (05) software systems was considered.

The key findings of our investigation are summarized below.

 All patterns manifested in the target systems. Some patterns (e.g.

Multiple-Anomaly Syndrome) manifested more often than others (e.g.

Hereditary Anomaly) in these systems. This finding suggests that code

anomaly patterns are not specific for developer teams or software

systems characteristics.

 Around 60% of the anomalous code structures are involved in

documented code anomaly patterns. This means that a significant

amount of code anomaly occurrences can be removed by applying

common refactorings. In other words, a small number of refactorings

could be used to remove a significant amount of code anomalies.

 The documented patterns enhanced the precision of architecture-

sensitive and conventional strategies in around 30% and 55%

respectively. This means that code anomaly patterns are likely to be a

better way of reasoning about architecturally-relevant code anomalies.

Therefore, our results indicate that developers should invest their effort on

detecting and removing anomaly patterns, rather than single code

anomalies, when addressing architectural problems.

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

229

 A vast majority of code anomaly patterns (7 out of 9) presented strong

correlation with architecturally-relevant code anomalies. For those

patterns which only presented a moderate correlation, we observed that

their simultaneous occurrences with other patterns are likely to present

(very) strong correlation. Since our results are restricted to the analysis

of single code anomaly patterns, further analyses may be required to

confirm or refute this finding.

Our empirical study only assessed the impact of code anomaly patterns on

the architectural design. However, the patterns harmfulness should be also

investigated under different perspectives, such as: code comprehension,

maintenance effort, and testing. These studies could provide software engineers

with evidence that allow them to determine how to conduct and prioritize their

refactorings in order to save maintenance time and effort. Therefore, this research

work also contributes to the code anomaly analysis field, encouraging further

researches on inter-related code anomalies. The next chapter summarizes this

thesis and points out directions for future work.

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

