
1
Introduction

Fracture, branching, and fragmentation simulations of large-scale finite

element meshes have a broad range of engineering applications. To achieve

realistic and more accurate results, there is a need to employ highly discretized

models, thus requiring a large amount of computational resources. In order to

accelerate finite element analysis, current parallel environments are based on

distributed memory architectures. In this scenario, each processor (or small

group of processors) of a computing node has private access to a region of

the global system memory. Processors on different nodes communicate among

themselves by sending messages over a network. Different parallel finite element

systems with support for distributed mesh representation have been proposed

(25, 11). Parallel fracture, microbranching, and fragmentation simulation using

the extrinsic cohesive zone model (6) requires that cohesive elements are

adaptively inserted along the simulation. This increases the challenge for

parallelization, since mesh consistency must be ensured among partitions (7).

In this work, we focus on the use of many-core architectures, such as

the one provided by modern graphics processor units (GPU), for accelerating

fracture, microbranching, and fragmentation simulations based on the extrinsic

cohesive zone model (as far as we know, this is the first proposal of a

complete adaptive finite element analysis running on the GPU). During the last

years, general purpose computing on graphics processor units (GPGPU) has

proved to be an efficient and powerful mean to accelerate expensive numeric

simulations and algorithms that require large amount of input data. GPUs are

massively multithreaded many-core chips and they are suited for excessive

numeric computations with high arithmetic intensity, which is the case of

finite element analysis. However, mapping the CPU version of an extrinsic

cohesive fragmentation simulation to the GPU is not immediate or trivial.

Several challenges emerge, such as algorithm parallelization, high-performance

memory access, concurrency, and device architecture dependent factors.

We investigate and describe mapping and parallelization techniques for

two-dimensional fracture, branching, and fragmentation simulation of finite

element meshes on a GPU using NVIDIA’s CUDA (Compute Unified Device

Architecture) framework . We propose a simple but effective data structure for

performing all data-parallel computations and algorithms for 2D models using

triangle meshes (but an extension to tetrahedron elements is straightforward).

The previously established coloring method for FEM meshes is also used

to minimize concurrency. Parallel techniques are presented for the numeric

DBD
PUC-Rio - Certificação Digital Nº 0921324/CA



Many-core Fragmentation Simulation 13

analysis code and for updating the FEM mesh when cohesive elements are

inserted during the course of the simulation. As a result, we are able to speedup

the simulation by a factor close to 30, when compared to the serial code running

on a single CPU processor. In our experiments, we have employed a two-

dimensional microbraching analysis, but the created framework for parallel

simulation can support other separation phenomena simulations.

The research is organized as follows. Chapter 2 reviews related work.

Chapter 3 discusses the CUDA and GPU architecture, and how we can take

advantage of many-core devices to improve performance. Chapter 4 briefly re-

views simulations based on the extrinsic cohesive zone model, discussing the

requirements for adaptive insertion of cohesive elements. Chapter 5 presents

the proposed (simple) topological data structure to support mesh modification

on the GPU. Chapter 6, conceptually the main section of this paper, discusses

the parallelization of the fragmentation simulation itself, including the par-

allel algorithm for inserting cohesive elements. Kernel optimizations are also

presented, bearing in mind memory and flow optimizations that lead to per-

formance boosts. We also discuss the use of mesh coloring and its impact on

the simulation’s parallelization performance and concurrency issues. Chapter

7 presents the achieved results, and, finally, concluding remarks and directions

of future work are drawn in Chapter 8.

DBD
PUC-Rio - Certificação Digital Nº 0921324/CA


	Many-core Fragmentation Simulation
	Abstract
	Contents
	Introduction
	Related Work
	CUDA and GPU Concepts
	GPU Architecture
	Optimization

	Fragmentation Simulation
	Simulation definitions
	Pre-processing and updating
	Stresses
	Insertion of cohesive elements
	Internal and cohesive forces
	Node and element update

	Data Structure
	Retrieving adjacency relationship

	Parallel Implementation
	Coloring model
	Pre-processing and update
	Stresses
	Insertion of cohesive elements
	Internal Forces
	Cohesive forces and simulation outcome
	Overview

	Experimental Results
	Insertion of cohesive elements
	Fragmentation simulation

	Conclusion
	Bibliography
	Optimized insertion of cohesive elements



