
3
CUDA and GPU Concepts

3.1
GPU Architecture

When programming in a CUDA-capable GPU, one must keep in mind

its architecture and parallelism properties for they have an important role and

impact on the performance of a GPU simulation. The architecture of a modern

GPU is organized into a set of multiprocessors (SMs), each of which contains a

number of streaming processors (SPs), as shown in Figure 3.1. CUDA arranges

a group of threads to make up a thread block in which they can cooperate and

synchronize amongst themselves. Subsequently, a grid is made up of a group

of blocks. The device memory space is organized as follows. Global memory

is an off-chip memory with slow access that can be accessed by all threads.

Texture access is cached, as well as the constant memory, which is also read-

only and can be accessed by all threads as well. Shared memory is an on-chip

memory space that can be accessed by all threads in a block. Threads within

a thread block can use shared memory to cooperate amongst themselves, and

this is a good alternative for optimizing a program. Finally, each thread has its

own memory space known as local memory which resides on global memory.

Figure 3.2 illustates the CUDA memory hierarchy. Two important terms when

programming in massively parallel processors are kernel and warp. A kernel

is a function executed in parallel on the device (GPU) called from the host

(CPU) side, while a warp is a group of threads executing synchronously within

a block.

DBD
PUC-Rio - Certificação Digital Nº 0921324/CA



Many-core Fragmentation Simulation 16

Figure 3.1: Diagram of a G80 architecture with 16 SMs and 128 SPs, based on

the figures presented in (17).

Figure 3.2: CUDA memory hierarchy, based on the figures presented in (17).

3.2
Optimization

It is important to highlight some CUDA programming issues. In a kernel

execution, each thread must write on a different memory space as they are

being executed concurrently, thus avoiding writing conflicts. All threads within

a warp execute the same instruction (SIMD architecture), so it is suggested

DBD
PUC-Rio - Certificação Digital Nº 0921324/CA



Many-core Fragmentation Simulation 17

that there are no conditinals and loops that lead to thread divergency within

the warp. When multiple global memory accesses are coalesced into a single

memory transaction by the device (i.e. proper memory access alignment and

contiguity), we achieve a coalesced reading. When seeking a performance

optimization in a kernel execution, it is best to minimize global memory

accesses, since they are slow. When access to global memory is mandatory,

coalesce reading helps increase the simulation performance. To coalesce, each

half warp must access contiguous 4, 8, or 16-byte words lying in the same 64

or 128-byte segment (for compute capabilities 1.0 or 1.1), which sometimes is

difficult to achieve in actual simulation. Also, it is important to avoid bank

conflicts when using shared memory. Shared memory is divided into banks, and

if multiple threads in the same half-warp access the same bank, access must

be serialized. To avoid bank conflicts, all threads of a half-warp must access

different banks or all of them must read the identical address. Finally, in order

to reach an optimal kernel performance, one has to maximize thread occupancy,

defined as the ratio of the number of resident warps to the maximum number of

resident warps, depending on the GPU architecture (17). The ways occupancy

can be maximized include minimizing the number of registers per thread and

shared memory.

DBD
PUC-Rio - Certificação Digital Nº 0921324/CA


	Many-core Fragmentation Simulation
	Abstract
	Contents
	Introduction
	Related Work
	CUDA and GPU Concepts
	GPU Architecture
	Optimization

	Fragmentation Simulation
	Simulation definitions
	Pre-processing and updating
	Stresses
	Insertion of cohesive elements
	Internal and cohesive forces
	Node and element update

	Data Structure
	Retrieving adjacency relationship

	Parallel Implementation
	Coloring model
	Pre-processing and update
	Stresses
	Insertion of cohesive elements
	Internal Forces
	Cohesive forces and simulation outcome
	Overview

	Experimental Results
	Insertion of cohesive elements
	Fragmentation simulation

	Conclusion
	Bibliography
	Optimized insertion of cohesive elements



