
5
Data Structure

In order to implement efficient operations on mesh entities used in the

simulation, a simple topological data structure is employed to represent the

mesh. Since the GPU memory is limited, the data structure must not be

complex so as to provide space for other simulation attributes that indeed

require much global memory space. The proposed data structure is used for

T3 or T6 meshes, and can be easily extended to support tetrahedral elements.

We maintain two tables that describe the mesh. A table of nodes stores the

node world-space position (x and y coordinates). A second table is used to

represent the elements and adjacency relationships. The elements can by of two

types: bulk elements or cohesive elements. Since the number of bulk elements

remains unchanged during the entire simulation, we store the cohesive elements

immediately after the bulk elements. For each bulk element, we store its nodal

incidence; three node indices are used in a T3 mesh and six are used in a T6

mesh. For T6 meshes, the corner node indices are first followed by the mid-side

indices. The right hand rule (counter clockwise) is used to define the order of

nodal incidence. Another three values represent adjacent element indices that

are opposite to each of the corner nodes. For cohesive elements, we store six

node indices for a T6 mesh. The first three indices represent the three nodes

of the corresponding facet of its adjacent bulk element with the smaller id,

following the right hand rule. The next three indices belong to the adjacent

facet of the second adjacent bulk element (with the greater id). Another two

value are used to represent indices of both bulk elements that are opposite to

each cohesive element’s facets. Following the pattern, the first bulk element is

opposite to the the first facet (and to the first three node indices) of the cohesive

element. If a cohesive element is attached to a bulk element’s facet, we update

the opposite element of that facet to the cohesive element id on the element

table. Nodes or elements are represented by their indices in the corresponding

table. The last index in the table is not used for cohesive elements. Both node

and element tables are stored in the global memory and are updated along the

adaptive numerical simulation. Figure 5.1 shows an example of tables used in

the data structure.

DBD
PUC-Rio - Certificação Digital Nº 0921324/CA



Many-core Fragmentation Simulation 26

Figure 5.1: Mesh parameters data structure of a T6 mesh.

A finite element analysis maintains a set of simulation attributes attached

to nodes and elements. We maintain such attributes in global, constant, or

texture memory depending on their memory size and dynamics during the

simulation. In global memory, we store the attributes that change through-

out the entire simulation. The nodes have associated displacements, velocities,

accelerations, and forces (internal and cohesive), which are updated at every

timestep. Stresses and strains evaluated at the nodes are updated only in a

number of timesteps. When facets are checked for possible fractures, the frac-

tured facets in the element attributes store which facets have been fractured.

Nodal mass and number of adjacent bulk elements are updated whenever the

topology of the mesh changes. Finally, cohesive attributes such as tractions

and separations are updated every step for each cohesive element. We store

other node and element attributes that remain unchanged during the entire

simulation, but require too much memory space, in textures. We cannot store

these attributes in constant memory due to its limited memory space. Each

element’s stiffness and lumped mass matrix and each node’s boundary con-

ditions are stored in texture memory. Other attributes that are common to

all nodes and elements, such as elastic and fracture material properties, are

stored in constant memory. These attributes are stored in one table common

to all elements and nodes and occupy little memory space. Since all threads

in a warp access the same memory space in constant memory, there will be no

bank conflicts.

DBD
PUC-Rio - Certificação Digital Nº 0921324/CA



Many-core Fragmentation Simulation 27

Figure 5.2: Simulation parameters data structure diagram of FEM model.

Global memory is used for attributes that change throghout the simulation.

Texture memory is used for attributes that are constant during the entire

simulation, but occupy too much memory space. Constant memory is used for

attributes that are constant during the entire simulation, but are common to

all elements and node, therefore requiring few memory space.

5.1
Retrieving adjacency relationship

The node and element tables are enough to perform the previously stated

algorithms and do not require too much memory usage. One key adjacency

relationship for the insertion of cohesive elements is the set of adjacent element

to a given node. With the described data structure, from an element, for each of

its incident node, we can easily traverse the set of adjacent elements. Given the

first node, we search the other node that precedes it in the order of incidence,

and then access the corresponding opposite element and find the order of

incidence of the node that had the previous element as its opposite. From both

the element and node order, we obtain the next node in the incidence of the

element and access its opposite element. From there, we repeat the procedure

until we reach the element adjacent to the first one. Figure 5.3 illustrates the

traversal algorithm from a given node. Cohesive elements can also be obtained

by traversing around a node, since they are also stored in the element table

and can be accessed by obtaining the opposite element for a given node.

DBD
PUC-Rio - Certificação Digital Nº 0921324/CA



Many-core Fragmentation Simulation 28

Figure 5.3: Traversal algorithm from a given element node using the proposed

data structure.

DBD
PUC-Rio - Certificação Digital Nº 0921324/CA


	Many-core Fragmentation Simulation
	Abstract
	Contents
	Introduction
	Related Work
	CUDA and GPU Concepts
	GPU Architecture
	Optimization

	Fragmentation Simulation
	Simulation definitions
	Pre-processing and updating
	Stresses
	Insertion of cohesive elements
	Internal and cohesive forces
	Node and element update

	Data Structure
	Retrieving adjacency relationship

	Parallel Implementation
	Coloring model
	Pre-processing and update
	Stresses
	Insertion of cohesive elements
	Internal Forces
	Cohesive forces and simulation outcome
	Overview

	Experimental Results
	Insertion of cohesive elements
	Fragmentation simulation

	Conclusion
	Bibliography
	Optimized insertion of cohesive elements



