
6
Parallel Implementation

The main challenge for implementing a many-core parallel fragmentation

simulation, based on the extrinsic cohesive zone model, is to ensure topological

consistency on mesh adaptation (insertion of new cohesive elements). However,

even the mechanics code, at first straightforwardly parallelized, based on

explicit integration, also imposes challenges. Memory access and usage can be a

bottleneck when using the slow accessible global memory space. Concurrency is

also an issue to have in mind, since writing conflicts can eventually occur when

updating the same memory space for different threads running concurrently.

In order to maximize the performance and benefit provided by CUDA, it is

important to keep in mind the device architecture and programming paradigms

discussed in Chapter 3.2, or else the attempted GPU speedup will be negligible.

Although the parallel algorithms discussed below refer to a T3 or T6 mesh,

they can be easily extended to 3D meshes using a modified version of the

previous discussed data structure. We use constant memory for storing material

attributes that are constant during the entire simulation. Cache hits when

fetching these attributes during stress and other force computations will help

to increase performance since threads in the same warp access the same value

at the same time.

6.1
Coloring model

In this discussion, we consider the implementation of T6 meshes. The

first parallel procedure to be discussed is updating the node attributes. In our

case, we are focused on updating each nodal mass with the lumped mass matrix

from each adjacent bulk element. The lumped mass matrix is computed in a

pre-processing phase together with the stiffness matrix. We could launch one

thread per element and accumulate the element mass on its respective nodes

retrieved from the incidence table. However, threads would write on the same

memory space since different elements share the same node.

To avoid race condition, we adopt the commonly used mesh coloring

representation. The idea is that no element of the same color shares a node.

Applying this technique when accumulating the nodal masses from the bulk

elements means that we will launch a kernel for each color with a thread

per element in that color group. With this strategy, different threads will not

update the same node since there won’t be elements with shared nodes being

processed in parallel. Since bulk elements are neither removed nor inserted

DBD
PUC-Rio - Certificação Digital Nº 0921324/CA



Many-core Fragmentation Simulation 30

during the entire simulation (only cohesive elements and nodes are inserted),

mesh coloring can be pre-processed. The minimum number of color groups is

equal to the maximum node degree on the entire mesh. However, determining

the minimal color number of a graph is known as an NP-complete problem,

although there are many heuristics for finding a reasonable solution. In our

case, we will be interested in finding a reasonable and balanced solution, or else

we will be wasting additional kernel computations with few threads per color

containing few elements, while having other color with many more elements.

We use the Welsh Powell algorithm (26), a greedy algorithm to color the mesh

bulk elements. Each element represents a graph node and adjacent elements are

connected by a graph edge. We order the graph nodes (elements) in decreasing

order of degree to obtain the closest optimal solution. Table 6.1 shows the

procedure we use to perform a conceptual execution unit on the elements in

parallel: we launch the same kernel multiple times, one for each group color.

Figure 6.1 illustrates the colored mesh and its use in kernel calls and updating

the nodal masses.

for c = 1→ numColors do

numThreads← numElements(c)

KernelCall <<< numThreads >>> (c)

end for

Table 6.1: Kernel subroutine call algorithm using mesh coloring

DBD
PUC-Rio - Certificação Digital Nº 0921324/CA



Many-core Fragmentation Simulation 31

Figure 6.1: (1) Bulk elements are re-arranged in color groups (preferable

balanced) and the same kernel per color group is called to avoid writing

conflicts. (2) Example of a colored T6 structured mesh (3) and using the colored

mesh to update nodal masses of the group of elements in the current color in

parallel.

6.2
Pre-processing and update

A pseudo-code of the parallel simulation is shown on Table 6.2. In the pre-

processing phase, also executed on the GPU, we need to compute the stiffness

matrix and the lumped mass matrices associated to each element, and then

update the nodal masses. Building the stiffness matrix requires one thread

per element but with no color subdivision scheme since we write directly in

per-element memory space. The same kernel computes each element’s lumped

mass matrix. The last kernel in the pre-processing phase updates the nodal

masses with the lumped mass matrix by using the previously discussed parallel

algorithm, invoking a kernel per color group.

DBD
PUC-Rio - Certificação Digital Nº 0921324/CA



Many-core Fragmentation Simulation 32

1: ComputeMassMatrix <<< numElem >>>

2: ComputeStiffnessMatrix <<< numElem >>>

3: for c = 1→ numColors do

4: numGroupElem← numElem(c)

5: UpdateNodalMass <<< numGroupElem >>>

6: end for

7: current step ← 0

8: while currentstep <= maximumstep do

9: UpdateDisplacements <<< numNodes >>>

10: if current step == check step then

11: ComputeStressesAtGaussPoints <<< numElem >>>

12: for c = 1→ numColors do

13: numGroupElem← numElem(c)

14: ComputeNodeStresses <<< 12 ∗ numGroupElem >>>

15: end for

16: CheckFracturedFacets <<< numNodes >>>

17: FilterFracturedFacetElements <<< numElem >>>

18: numFracElem← CompactFracturedFacetElements

19: if Current Fractured Facets > 0 then

20: for c = 1→ numColors do

21: numGroupElem← numFracElem(c)

22: InsertCohesiveElements <<< numGroupElem >>>

23: end for

24: for c = 1→ numColors do

25: numGroupElem← numElem(c)

26: UpdateNodalMass <<< numGroupElem >>>

27: end for

28: end if

29: end if

30: for c = 1→ numColors do

31: numGroupElem← numElem(c)

32: ComputeInternalForces <<< 12 ∗ numGroupElem >>>

33: end for

34: ComputeCohesiveSeparations <<< numCohElem >>>

35: ComputeCohesiveTractions <<< 3 ∗ numCohElem >>>

36: numElemCoh← CompactBulkElementsWithCohesiveElements

37: for c = 1→ numColors do

38: numGroupElem← numElemCoh(c)

39: ComputeCohesiveForces <<< numGroupElem >>>

40: end for

41: UpdateV elocitiesandAccelerations <<< numNodes >>>

42: UpdateBoundaryConditions <<< numNodes >>>

43: current step + = 1

44: end while

Table 6.2: Parallel Fracture Algorithm

Figure 6.2 depicts the steps in a simulation loop. The first kernel in the

simulation loop updates the nodes’ displacements, launching one thread per

node. Each thread fetches the velocity and acceleration of its corresponding

node from global memory and updates the result back in global memory

following the Equation 4-1. This is a simple kernel that uses few global memory

accesses and every thread in a warp follows the same path since there are no

conditionals or loops.

DBD
PUC-Rio - Certificação Digital Nº 0921324/CA



Many-core Fragmentation Simulation 33

Figure 6.2: Fracture and fragmentation simulation loop.

6.3
Stresses

Before checking fractured facets, the next procedure is responsible for

computing the stresses and strains on the nodes by first calculating them at

the Gauss points for each element, multiplying its respective matrix with the

element shape function as showed in Equation 4-4 at Chapter 4.6, and writing

them back on the elements’ nodes. Each node stress is then checked for cohesive

strength over a threshold value so it can later indicate if a facet is fractured. To

implement this whole procedure in a single thread, we would need to launch

one thread per element using the color model to avoid concurrency. This single

kernel would have too many loops and global memory accesses that cause a

low performance. Also, the number of registers would exceed the established

limit, forcing the compiler to put local variables on local memory residing on

global memory. Another issue worth highlighting is that this complex kernel

would be executed several times because of the color model. We have then

opted for an alternative strategy to reduce effort and increase performance,

dividing this complex kernel into three simpler ones. In the first kernel, we

compute the elements’ stresses and strains at the Gauss points by launching

one thread per element and with no color model. The second kernel calculates

the stresses and strains matrix for each node, launching one thread per element

but this time using the color model since each element accumulate results on

its nodes. Notice that this kernel’s effort is reduced since it only performs

read-write on global memory. The third kernel checks if each node’s principal

stresses exceed the cohesive strength limit by launching one thread per node.

The kernel dividing technique is useful as it distributes efforts among simpler

kernels by reducing global memory accesses and reducing loops, and it will be

adopted on other kernels too. Looking at Equation 4-4, we can observe that

the second kernel performs several global memory accesses since it accumulates

element stresses and strains on its nodes by fetching from the element stress

DBD
PUC-Rio - Certificação Digital Nº 0921324/CA



Many-core Fragmentation Simulation 34

and strain matrix at the Gauss points, computed on the previous kernel. In

a 2-dimensional T6 mesh case, this is a 3x4 matrix. An alternative strategy

is to launch one thread per element node (6 threads per element), and each

thread is responsible for multiplying the stress and strain matrices at Gauss

points with the respective nodal shape functions and writing the result in its

respective node. We opt to launch 12 threads per element where each thread

would fetch two columns from the four-column Gauss point element matrix

line and write the result on part of the 2x2 nodal stress and strain matrix.

This strategy reduces global memory access per thread, reducing the kernel

effort. Figure 6.3 illustrates the stress kernel division and Figure 6.4 illustrates

the second kernel procedure.

Figure 6.3: Splitting the kernel that computes stress and strain into simpler

kernels.

DBD
PUC-Rio - Certificação Digital Nº 0921324/CA



Many-core Fragmentation Simulation 35

Figure 6.4: To accumulate the stresses and strains on the nodes, we launch

12 threads per element, where each thread will accumulate part of the stress

and strain matrices by fetching from the element shape functions and from the

stress and strain at the Gauss points.

6.4
Insertion of cohesive elements

Once fractured facets are identified, new cohesive elements must be

inserted in the mesh. When inserting cohesive elements, launching one thread

for each element can result in idle kernels because there are few elements that

contain fractured facets. In order to solve this matter, an additional kernel is

used before inserting cohesive elements. This additional kernel filters only the

elements that contain fractured facets by launching one thread per element

and checking its 3 facets for possible fractures as discussed in Chapter 4.6.

However, a fractured facet always belongs to two elements that are adjacent

to each other, and we cannot filter both elements for the same facet otherwise

the nodes will be duplicated twice. Therefore, we chose the element that has the

smaller (or greater) identifier number. In our implementation, we also maintain

a list of bulk elements that are adjacent to existing cohesive elements. This

list is useful when later computing cohesive forces, otherwise idle kernels will

be included in this simulation step as well.

DBD
PUC-Rio - Certificação Digital Nº 0921324/CA



Many-core Fragmentation Simulation 36

Figure 6.5: Cohesive elements insertion on a T3 mesh. (1) Mesh with initial

cracks and facets that need to be fractured. Coloring is used to avoid du-

plicating nodes of elements that share nodes in parallel. (2) From each facet

node belonging to the element in the current color group, the algorithm tra-

verses through its incident elements. (3) Nodes that need duplication. (4) T3

mesh with final node duplications and new cracks and cohesive elements. The

fractured facets from the next color group are checked for cohesive elements

insertion.

From the list of elements containing fractured facets, we now check for

node duplication and insert the cohesive elements. We use mesh coloring

on the filtered elements’ list and launch one thread per element. Figure 6.5

illustrates the parallel cohesive element insertion process. During one element

computation, we go through its fractured facets and check its nodes for

duplication. The same traversal algorithm presented in Section 4.6 is used

to check if the node has to be duplicated. If so, we need to update the global

nodal counter and retrieve the new node index. However, because the node

counter resides in one global memory address, many threads updating the same

counter cause a writing conflict. To solve this matter, we use CUDA’s atomic

operations to perform a read-modify-write operation (in this case, a global

variable increment), without the interference of other threads. The function

atomicAdd() computes the sum on the word located in the global address and

returns the previous stored word. Therefore, it returns the new node index

DBD
PUC-Rio - Certificação Digital Nº 0921324/CA



Many-core Fragmentation Simulation 37

needed to update the elements’ incidence table. Node attributes are then copied

to the newly appended node. The traversal algorithm is used to go through the

node’s adjacent elements until it reaches the cohesive element while updating

their nodes with the new index value. We also need to update the opposite

indices in the element table. Table 6.3 presents the parallel cohesive element

insertion algorithm.

1: e← bulkelement

2: for each corner node n belonging to a fractured facet f of e do

3: for each incident element of n starting with e do

4: e← next element

5: end for

6: if element adjacent to e is reached again then

7: continue

8: end if

9: newNodeIndex← atomicAdd(globalNodeCounter, 1)

10: nodeList[newNodeIndex] = n

11: for each incident element of n starting with e do

12: Replace n index with newNodeIndex

13: e← next element

14: if cohesive element or crack is reached then

15: break

16: end if

17: end for

18: Insert cohesive element in facet f

19: end for

Table 6.3: Parallel Node Duplication Algorithm

After duplicating nodes and inserting the cohesive elements, nodal mass

is changed as the sets of adjacent elements are also changed. We update the

nodal mass using the previously discussed parallel algorithm. Cohesive and

internal forces are then initialized as they later are calculated.

6.5
Internal Forces

Computing the internal forces is perhaps one of the most expensive

kernels and occupies a large portion of the simulation as it is executed every

time step. We launch one thread per bulk element and use the color model

since the elements’ nodes are updated. The stiffness matrix is multiplied by the

DBD
PUC-Rio - Certificação Digital Nº 0921324/CA



Many-core Fragmentation Simulation 38

displacement vector, resulting in the nodal internal forces. In a 2-dimensional

case, the stiffness matrix has dimension 12×12 and the displacement vector

12×1. With a näıve multiplication code, we make 1,728 global memory

accesses. A strategy to reduce the number of global memory fetches is to load

the displacement vector into shared memory once and use it for multiplying

each line of the stiffness matrix. Thus, we need to launch one thread for

matrix line instead of launching one thread per bulk element matrix. This

greatly reduces the number of global accesses to a number of 156. The

performance, however, still does not reach optimal expectations. Each thread

is now responsible for computing the product of one line of the stiffness matrix

with the displacement vector. Consequently, the number of global memory

accesses is reduced to 24 as well as the kernel’s effort. Launching one kernel

per matrix line means we are launching 12 times the number of threads per

element. Since coloring is used, the total number of blocks hardly exceeds

the limit. Going further, since the stiffness matrix is constant during the

entire simulation, it can be stored in a texture memory to take advantage

of the texture cache and the spatial locality accessed by the warp. Even with

one thread per matrix line, we can still use the shared memory to store the

displacement vector. Different threads will then use the same vector. In order

to guarantee the right memory access in each thread, we define the thread

block dimension (1D) as the number of matrices per block times the number

of threads per matrix (in our case, 12 threads for each matrix). Each thread

loads one value from the displacement matrix and are synchronized. Notice

that each group of 12 threads will load its respective element displacement

matrix. This strategy reduces the reading number of stiffness-displacement

global memory accesses to a total of 13 for each thread (instead of 24). Figure

6.6 illustrates this strategy using two matrices per block.

DBD
PUC-Rio - Certificação Digital Nº 0921324/CA



Many-core Fragmentation Simulation 39

Figure 6.6: When computing internal forces, a thread per stiffness matrix line

is launched using the color model. In this example, two elements per block is

used.

6.6
Cohesive forces and simulation outcome

Unlike the internal force kernel, computing the cohesive forces is expens-

ive due to its numerous arithmetic operations, especially when calculating the

tractions at the Gauss points. It performs few global memory access (when

used registers does not exceed the limit). Launching one thread per cohes-

DBD
PUC-Rio - Certificação Digital Nº 0921324/CA



Many-core Fragmentation Simulation 40

ive element possibly generates writing conflicts when updating nodal cohesive

forces since cohesive elements may share nodes. Therefore, one thread per ele-

ment would be ideal. However, with many arithmetic operations, registers,

and color model applied to the kernel, the previous kernel splitting technique

could help increase performance. In the first kernel we calculate the cohesive

separations in the local coordinate system. One thread per cohesive element is

launched, since we write directly on the cohesive attributes memory space. The

second kernel calculates the cohesive traction by also launching one thread per

cohesive element. However, this is the most expensive kernel in terms of arith-

metic operations, especially when we need to calculate the cohesive tractions

for each of the three Gauss points. Therefore, we adopt the previous strategy

of launching more than one thread per element. In this case, we will be launch-

ing three threads per cohesive element, one for each of the three Gauss points.

Each thread is responsible for calculating the tractions for its cohesive element

in its respective Gauss point. Since the total number of cohesive elements in

the simulation is relatively small, the number of threads will not be high. This

strategy helps increase the performance of the the kernel. Finally, we need to

write the cohesive forces on the cohesive elements’ respective nodes. We then

launch one thread per bulk element that contains any cohesive element (using

the list previously mentioned). To avoid concurrency, the threads are separated

by color group. The cohesive kernel subdivision is shown in Figure 6.7

Figure 6.7: Splitting the kernel that computes cohesive forces into simpler

kernels.

The last two kernels of the simulation are launched with one thread per

node. Updating velocities and accelerations requires only a few global memory

accesses for fetching cohesive and internal forces as well as current and previous

accelerations and nodal mass. They are used to write on the acceleration and

velocity global memory space. Boundary conditions are then applied using a

second kernel to update accelerations and velocities of boundary nodes.

DBD
PUC-Rio - Certificação Digital Nº 0921324/CA



Many-core Fragmentation Simulation 41

6.7
Overview

Analyzing the parallel simulation steps, we can conclude that there are

two kernels that greatly occupy the simulation time. Computing the cohesive

forces requires many arithmetic operations, while computing the internal forces

requires numerous global memory accesses. Splitting the kernels into simpler

ones, distributing jobs among threads, and using texture memory greatly

increase the kernels’ performance, although they still occupy a large portion

of the simulation time. Non-linear simulations would need to compute the

stiffness matrix at every simulation step instead of pre-processing it. Although

it would greatly reduce the program’s performance, the GPU speedup would

also increase. Computing the stresses and strains is the most complex and

expensive kernel, with a larger processing time and more numerous arithmetic

operations than computing the internal and cohesive forces, but with the

advantage of not having to launch it at every simulation step. Kernels that

update displacements, velocities and accelerations, boundary conditions, and

nodal masses are light kernels as they perform few and simple read-and-write

operations with no warp divergence and coalesced reading for half-warps.

Shared memory rarely fits the simulation, working more as a cache to optimize

it.

DBD
PUC-Rio - Certificação Digital Nº 0921324/CA


	Many-core Fragmentation Simulation
	Abstract
	Contents
	Introduction
	Related Work
	CUDA and GPU Concepts
	GPU Architecture
	Optimization

	Fragmentation Simulation
	Simulation definitions
	Pre-processing and updating
	Stresses
	Insertion of cohesive elements
	Internal and cohesive forces
	Node and element update

	Data Structure
	Retrieving adjacency relationship

	Parallel Implementation
	Coloring model
	Pre-processing and update
	Stresses
	Insertion of cohesive elements
	Internal Forces
	Cohesive forces and simulation outcome
	Overview

	Experimental Results
	Insertion of cohesive elements
	Fragmentation simulation

	Conclusion
	Bibliography
	Optimized insertion of cohesive elements



