
2
Related Work

2.1
Ray integration

The emission-absorption optical model, proposed by Williams and Max

(17), computes the interaction between the light and the volume, within each

cell, using the following equation:

I(tb) = I(tf )e
−(

∫ tb
tf

ρ(f(t))dt)

+

∫ tb

tf

e−(
∫ tb
t ρ(f(u))du)κ(f(t))ρ(f(t))dt (2-1)

where tf and tb are the ray length from the eye to the entry and exit points

of a cell, respectively; f(t) is the scalar function inside the cell, along the ray;

ρ(t) is the light attenuation factor, and κ(t) is the light intensity, both given

by a transfer function.

Evaluating such integral accurately and efficiently is one of the main

difficulties faced by volume rendering algorithms. Williams et al. (18) first

proposed to simplify the transfer function as a piecewise linear function. They

introduced the concept of control points, which represent points where the

transfer function (TF) is non-linear (the TF in Figure 3.1(b) presents, for

example, 3 control points inside the interval). A later work by Röttger et

al. (13) proposed to use pre-integration for tetrahedral meshes, storing the

parameterized result in a texture, accessed by the entry scalar value, exit

scalar value, and ray length. Their proposal works for any transfer function,

but any change on the transfer function requires the pre-integration to be

recomputed. Röttger (12) later proposed to utilize the GPU to accelerate

the precomputation of the 3D table. Moreland et al. (10) re-parameterized

the pre-integration result, turning it independent of the transfer function, but

under the assumption that the transfer function was piecewise linear. The pre-

integration result was then stored in a 2D texture, accessed via the normalized

values of sf and sb (the scalar value at the entry and exit points of the cell).

However, the pre-integration results are computed by assuming a linear scalar

field variation inside the cell.

A ray-casting algorithm for unstructured meshes was first presented

by Garrity et al. (4). Weiler et al. (15) later proposed a GPU solution

using shaders. The main idea is to cast a ray for each screen pixel, and

DBD
PUC-Rio - Certificação Digital Nº 0921332/CA



Volume rendering of unstructured hexahedral meshes 16

then to traverse the intersecting cells of the mesh until the ray exits the

volume. In order to properly traverse the mesh, one has to store an adjacency

data structure in textures; the algorithm will then fetch these textures and

determine to which cell it has to step to. At each traversal step, the contribution

of the cell to the final pixel color is given by evaluating the ray integral

(Equation (2-1)).

2.2
Hexahedral meshes

Volume rendering of unstructured hexahedral meshes was explored by

Shirley et al. (14) and Max et al. (8), where they proposed to subdivide

each hexahedron into five or six tetrahedra in order to properly render the

volumetric data, approximating the trilinear scalar variation by a piecewise

linear function. This not only increases the memory consumption but also

decreases the rendering quality. Carr et al. (2) focused on regular grids and

discuss schemes for subdividing a hexahedral mesh into a tetrahedral one,

comparing rendering quality for isosurface and volume rendering.

One of the first proposals to consider something more elaborated than

a simple subdivision scheme was made by Williams et al. (18); the authors,

however, focused on cell projection of tetrahedral meshes, only making small

notes about how the algorithm could handle hexahedral cells, but did not

discuss the results. Recently, Marmitt et al. (7) proposed an hexahedral mesh

ray-casting, focusing on the traversal between the elements, but neglecting to

mention how they integrated the ray considering the trilinear scalar function

of a hexahedron.

Marchesin et al. (6) and El Hajjar et al. (5) proposed solutions to

structured hexahedral meshes, focusing on how the ray can be integrated

over the trilinear scalar function of a regular hexahedron. Marchesin et al. (6)

proposed to approximate the trilinear function by a bilinear one. They then

stored a pre-integration table in a 3D texture, where each value was accessed

by the scalar values at the ray enter, middle, and exit points. To avoid the use

of a 4D texture, they consider a constant ray step size. El Hajjar et al. (5)

approximated the trilinear scalar function by a linear one and used the same

pre-integration table proposed by (13), accessed via the scalar values at enter

and exit points, and the ray length. Differently from our proposal, they don’t

consider the minimum and maximum values of the scalar function to choose

adequate the integration intervals.

These papers made the assumption that the scalar function is either linear

or bilinear to calculate an integral that could be stored in a texture with feasible

DBD
PUC-Rio - Certificação Digital Nº 0921332/CA



Volume rendering of unstructured hexahedral meshes 17

dimensions. Also, their proposals do not support interactive modifications of

the transfer function, because the pre-integration table must be recalculated

for each TF change.

In this thesis, we avoid the use of pre-integration and propose the use of a

quadrature approach to integrate the ray, supporting interactive modifications

of the TF. We consider the actual trilinear scalar function and thus achieve

accurate results. We also propose another method that approximates the

trilinear scalar function by a series of linear ones, but considering the minimum

and maximum values of the scalar function along the ray (in a cell), sacrificing

accuracy but increasing performance.

DBD
PUC-Rio - Certificação Digital Nº 0921332/CA




