
3
Accurate Volume Rendering of Hexahedral Meshes

Our hexahedral ray-casting was also presented in (9) and takes into

consideration the trilinear variation of the scalar field. Traditional hexahedral

ray-casting algorithms divide an hexahedron into five or six tetrahedra, thus

increasing the memory footprint and losing rendering quality. We detail our

proposal in the next sections, focusing on how we handle the ray integration

(Sections 3.1 and 3.2), data structure (Section 3.3), ray traversal (Section 3.4)

and isosurface rendering (Section 3.5). We expose our final algorithm in Section

3.6.

3.1
Ray integration

The trilinear scalar function inside an hexahedron cell can be described

with the following equation:

f(x, y, z) = c0 + c1x+ c2y + c3z

+ c4xy + c5yz + c6xz + c7xyz (3-1)

where c0, c1, c2, c3, c4, c5, c6, c7 are the cell coeficients. They are calculated

solving the following linear system:
1 x0 y0 · · · x0y0z0

1 x1 y1 · · · x1y1z1
...

...
...

. . .
...

1 x7 y7 · · · x7y7z7



c0
...

c7

 =


s0
...

s7


where {xi, yi, zi}, with i = {0, . . . , 7}, are the hexahedron cell vertex positions,

and si are the scalar values at each one of the vertices. The system can be

solved using singular value decomposition (SVD) (11).

The position of a point inside the cell, along the ray, can be described as:

p = e+ td⃗ (3-2)

where e is the eye position, and d⃗ is the ray direction.

We then parameterize the hexahedral scalar function (Equation (3-1))

by the ray length inside the cell, denoted by t:

f(t) = w3t
3 + w2t

2 + w1t+ w0, t ∈ [tback, tfront] (3-3)

DBD
PUC-Rio - Certificação Digital Nº 0921332/CA



Volume rendering of unstructured hexahedral meshes 19

with:

w0 = c0 + c1ex + c2ey + c4exey + c3ez

+ c6exez + c5eyez + c7exeyez

+ c7dxdyez

w1 = c1dx + c2dy + c3dz + c4dyex + c6dzex

+ c4dxey + c5dzey + c7dzexey + c6dxez + c5dyez

+ c7dyexez + c7dxeyez

w2 = c4dxdy + c6dxdz + c5dydz + c7dydzex + c7dxdzey

w3 = c7dxdydz (3-4)

Considering now the ray integral from Equation (2-1) and considering

the transfer function as a piecewise linear function, we can express:

κ(t) =
(κback − κfront) ∗ (f(t)− f(tfront))

f(tback)− f(tfront)
+ κfront (3-5)

ρ(t) =
(ρback − ρfront) ∗ (f(t)− f(tfront))

f(tback)− f(tfront)
+ ρfront (3-6)

we consider tback, and tfront as the interval inside the cell with a linear variation

of the transfer function.

Getting back to Equation (2-1), we use a Gauss-Legendre Quadrature

method to integrate the color and opacity along the ray:

I(tback) = I(tfront)e
−ztfront,tback

+

∫ tback

tfront

e−zt,tbackκ(t)ρ(t)dt (3-7)

where

za,b =

∫ b

a

ρ(r)dr

za,b = ρfront(b− a) +
(ρback − ρfront)
12(sback − sfront)

∗ [12(asfront − bsfront) + 12w0(b− a) + 6w1(b
2 − a2)

+4w2(b
3 − a3) + 3w3(b

4 − a4)] (3-8)

DBD
PUC-Rio - Certificação Digital Nº 0921332/CA



Volume rendering of unstructured hexahedral meshes 20

going back to Equation 3-7, we have:

I(tb) = I(tfront)e
−ztfront,tback

+
3∑

i=0

D ∗GaussWeighti ∗ e−ztg,tbκ(tg)ρ(tg) (3-9)

where D = (tback − tfront) and tg = tfront + GaussPointi ∗ D. GaussPointi

and GaussWeighti are the pre-computed points and weights for the Gauss-

Legendre Quadrature.

The Gaussian quadrature integration method gives exact solutions for

functions that are well approximated by polynomials up to degree 5, consider-

ing a 3 point quadrature. Since we split our integration into several intervals, as

we shall explain in Section 3.2, we make sure that our ray integral is accurately

evaluated.

3.2
Integration intervals

The scalar field variation along a ray in a hexahedron cell can be illus-

tratively represented by the function in Figure 3.1(a). As a cubic polynomial

function (according to Equation (3-3)), f(t) has at most two extrema, which

can be calculated from its derivative f ′(t), a quadratic polynomial. Consid-

ering tmin and tmax the values of minimum and maximum, we calculate tnear

and tfar, such that tnear = min(tmin, tmax) and tfar = max(tmin, tmax). If tfront

denotes the point the ray enters the cell and tback the point it exits the cell, the

function in the intervals [tfront, tnear], [tnear, tfar], and [tfar, tback] is monotonic,

so each one of these intervals has, at most, one root of Equation (3-3).

To find if there is an isovalue (control point) inside an interval, we use

a 2D texture first proposed by Röttger et al. (13) for his tetrahedral cell-

projection algorithm. Given s0 and s1 (scalars at the interval limit points) as

parameters, this texture returns the value of the first control point scp, if one

exists, such that s0 < scp < s1 or s1 < scp < s0. We discuss how the texture is

built in Appendix A. Instead of a 2D texture, we implement it as a 1D texture.

With scp, we can find the value of tcp, which is the ray length from the

eye to the control point that crosses the hexahedron. Considering a trilinear

variation of the scalar field, we find it by solving Equation (3-3) for f(tcp) = scp

using the Newton-Raphson method. One of the main problems with such root

finding method is its dependency of an initial guess, but we can use the average

ray length between the interval limits as our initial guess.

To exemplify this procedure, let us consider the scalar variation inside

an hexahedron given by the function in Figure 3.1(a) and the transfer function

DBD
PUC-Rio - Certificação Digital Nº 0921332/CA



Volume rendering of unstructured hexahedral meshes 21

illustrated in Figure 3.1(b). We have tmax = 0.26 and tmin = 0.73; we then

calculate tnear = min(tmin, tmax) = 0.26 and tfar = max(tmin, tmax) = 0.73. In

this case, there is no control point in [tfront, tnear], and so the first integration

interval is [0, 0.26]. In [tnear, tfar], there are three control points: 0.4, 0.5, and

0.6. These give us four integration intervals: [0.26, 0.4], [0.4, 0.5], [0.5, 0.6],

and [0.6, 0.73]. Beyond tfar, there is no other control point, giving us only

an additional interval to complete this illustrative integration: [0.73, 1].

1.00.730.26

1.0
f(t)

t

3.1(a):

1.0
s

rho(s)

0.60.4 0.5

1.0

3.1(b):

Figure 3.1: Example of scalar field variation inside a hexahedral cell: (a)
Maximum and minimum values of a trilinear function along the ray inside an
hexahedron; (b) Transfer function represented by a piecewise linear variation.

3.3
Data structure

In order to access information such as normals and adjacency, we use a

set of 1D textures, presented in Table 3.1.

Table 3.1: Data structure for one hexahedral cell.
Texture Data

Coefi, i = {0, ..., 7} c0 c1 · · · c7
Adji, i = 0, ...5 adj0 adj1 . . . adj5

p⃗i,j, i = {0, ..., 5}, j = {0, 1} vecn0,0 vecn0,1 . . . vecn5,1

As mentioned, we need to store 8 coefficients per cell. For adjacency

information, we need more 6 values, each associated to a face of the cell. The

third line in the table represents plane equations defined by the cell faces. To

compute the intersection of the ray with a hexahedron cell, we use a simple

ray-plane intersection test. We then need to split each quadrilateral face of a

DBD
PUC-Rio - Certificação Digital Nº 0921332/CA



Volume rendering of unstructured hexahedral meshes 22

cell into two triangles and store the corresponding plane equations, totaling 12

planes per cell (48 coefficient values).

We then store a total of 62 values associated to each cell. Considering 4

bytes per value, we store 248 bytes per cell. Even optimized data structures,

such as the one described by Weiler et al. (16), requires at least 380 or 456

bytes per cell (considering a hexahedron subdivided into five or six tetrahedra,

respectively). In fact, one great advantage of ray-casting hexahedron cells is

its small memory consumption when compared to the subdivision scheme.

3.4
Ray traversal

To begin the ray traversal through the mesh, we follow the work by Weiler

et al. (16) and Bernardon et al. (1). They proposed a ray-casting approach

based on depth-peeling that handles models with holes and gaps. The initial

step consists in rendering to a texture the external volume boundary, storing

the corresponding cell ID for each pixel on the screen. The second step will

then fetch the texture and initiate the mesh traversal starting at the stored

cell. The algorithm then proceeds by traversing the mesh until the ray exits

the volume. In models with holes or gaps, the ray can re-enter the volume. At

each peel, the ray re-enters at the volume boundary, and we accumulate the

color and opacity from previous peels. The ray-casting algorithm is finished

when the last external boundary of the model is reached.

3.5
Isosurfaces

We can extend our volume rendering algorithm to also handle isosurface

rendering. This is, in fact, very simple, because we already compute all control

points along the ray. The surface normal is given by the gradient of the scalar

field:

n⃗ = ∇f(x, y, z) =< ∂f

∂x
,
∂f

∂y
,
∂f

∂z
>

n⃗ =

 c1 + c4y + c6z + c7yz

c2 + c4x+ c5z + c7xz

c3 + c5x+ c6y + c7xy

 (3-10)

where (x, y, z) is the intersection between the ray and the iso-surface, and is

given by Equation (3-2), considering tcp.

Figures 3.2 presents an isosurface rendering of the Atom9 Dataset, from

(2). We chose to use the same isovalue (0.12) as the one used by the authors of

DBD
PUC-Rio - Certificação Digital Nº 0921332/CA



Volume rendering of unstructured hexahedral meshes 23

the paper. As can be noted, if compared to a simple subdivision scheme, our

proposal depicts the isosurface shape with significant improved accuracy.

3.2(a): Tetrahedral approach 3.2(b): Our proposal

Figure 3.2: Isosurface rendering of the Atom9 dataset.

3.6
Algorithm Overview

The algorithm in Table 3.2 summarizes our approach. We traverse the

mesh accumulating each cell contribution to the pixel color. We first calculate

the values of minima and maxima of the ray as it goes through each cell,

clamping values outside the cell boundary. tnear and tfar represent the closest

and farthest min/max value to the eye position. We then iterate through tfront,

tnear, tfar, tb, fetching the texture described in Section 3.2 to find if there are

control points in each interval. If there is, the algorithm integrates from the

current position ti to tcp; we then update the value of ti.

In order to accurately render the volume, we used double precision. We

tried to minimize the amount of double operations, and restricted them to

the Newton Root finding method, Quadrature Integration and Hexahedron

Coeficients calculation, because of its high cost.

DBD
PUC-Rio - Certificação Digital Nº 0921332/CA



Volume rendering of unstructured hexahedral meshes 24

Table 3.2: Ray-casting Algorithm

1: color ← (0, 0, 0, 0)
2: cell.id← V olumeBoundary()
3: while color.a < 1 and ray inside volume do
4: tback, cell.nid← IntersectRayFaces(t, cell)
5: tmin, tmax = Solve(cell.f ′(t) = 0)
6: tmin = clamp(tmin, tfront, tback)
7: tmax = clamp(tmax, tfront, tback)
8: tnear = min(tmin, tmax)
9: tfar = max(tmin, tmax)
10: ti = [tfront, tnear, tfar, tback]
11: i = 0
12: while i < 3 do
13: {Find control points}
14: scp = fetch(scp, si+1)
15: if si < scp < si+1 or si > scp > si+1 then
16: tcp = Newton(cell.f(t) = scp,

ti+ti+1

2
)

17: else
18: tcp = ti+1

19: end if
20: color ← Integrate(ti, si, tcp, scp)
21: ti = tcp
22: if ti >= ti+1 then
23: i++
24: end if
25: end while
26: cell.id = cell.nid
27: t = tback
28: end while

DBD
PUC-Rio - Certificação Digital Nº 0921332/CA




