
7
Bibliography

[1] BERNADON, F. F.; PAGOT, C. A.; COMBA, J. L. D. ; SILVA, C. T.

Journal of Graphics, GPU, and Game Tools. Gpu-based tiled ray

casting using depth peeling, journal, v.11, n.4, p. 1–16, 2006.

[2] CARR, H.; MOLLER, T. ; SNOEYINK, J. IEEE Transactions on

Visualization and Computer Graphics. Artifacts caused by simplicial

subdivision, journal, v.12, p. 231–242, March 2006.

[3] ESPINHA, R.; CELES, W. High-quality hardware-based ray-

casting volume rendering using partial pre-integration. In: PRO-

CEEDINGS OF THE XVIII BRAZILIAN SYMPOSIUM ON COMPUTER

GRAPHICS AND IMAGE PROCESSING, p. 273–, Washington, DC, USA,

2005. IEEE Computer Society.

[4] GARRITY, M. P. Raytracing irregular volume data. In: PROCEED-

INGS OF THE 1990 WORKSHOP ON VOLUME VISUALIZATION, VVS ’90,

p. 35–40, New York, NY, USA, 1990. ACM.

[5] HAJJAR, J. E.; MARCHESIN, S.; DISCHLER, J. ; MONGENET, C.

Second order pre-integrated volume rendering. In: IEEE PACIFIC

VISUALIZATION SYMPOSIUM, March 2008.

[6] MARCHESIN, S.; DE VERDIERE, G. Visualization and Computer

Graphics, IEEE Transactions on. High-quality, semi-analytical volume

rendering for amr data, journal, v.15, n.6, p. 1611 –1618, nov.-dec. 2009.

[7] MARMITT, G.; SLUSALLEK, P. Fast Ray Traversal of Tetrahedral

and Hexahedral Meshes for Direct Volume Rendering. In: PRO-

CEEDINGS OF EUROGRAPHICS/IEEE-VGTC SYMPOSIUM ON VISUAL-

IZATION (EUROVIS), Lisbon, Portugal, May 2006.

[8] MAX, N. L.; WILLIAMS, P. L. ; SILVA, C. T. Cell projection of

meshes with non-planar faces. In: DATA VISUALIZATION: THE

STATE OF THE ART, p. 157–168, 2003.

[9] MIRANDA, F. M.; CELES, W. Accurate volume rendering of

unstructured hexahedral meshes. In: Lewiner, T.; Torres, R., editors,

SIBGRAPI 2011 (24TH CONFERENCE ON GRAPHICS, PATTERNS AND

IMAGES), p. 93–100, Maceió, AL, august 2011. IEEE.

DBD
PUC-Rio - Certificação Digital Nº 0921332/CA



Volume rendering of unstructured hexahedral meshes 38

[10] MORELAND, K.; ANGEL, E. A fast high accuracy volume ren-

derer for unstructured data. In: PROCEEDINGS OF THE 2004 IEEE

SYMPOSIUM ON VOLUME VISUALIZATION AND GRAPHICS, VV ’04, p.

9–16, Washington, DC, USA, 2004. IEEE Computer Society.

[11] PRESS, W. H.; TEUKOLSKY, S. A.; VETTERLING, W. T. ; FLAN-

NERY, B. P. Numerical recipes in C (2nd ed.): the art of scientific

computing. New York, NY, USA: Cambridge University Press, 1992.

[12] RÖTTGER, S.; ERTL, T. A two-step approach for interactive pre-

integrated volume rendering of unstructured grids. In: PROCEED-

INGS OF THE 2002 IEEE SYMPOSIUM ON VOLUME VISUALIZATION

AND GRAPHICS, VVS ’02, p. 23–28, Piscataway, NJ, USA, 2002. IEEE Press.

[13] RÖTTGER, S.; KRAUS, M. ; ERTL, T. Hardware-accelerated

volume and isosurface rendering based on cell-projection. In:

PROCEEDINGS OF THE CONFERENCE ON VISUALIZATION ’00, VIS ’00,

p. 109–116, Los Alamitos, CA, USA, 2000. IEEE Computer Society Press.

[14] SHIRLEY, P.; TUCHMAN, A. A polygonal approximation to

direct scalar volume rendering. In: PROCEEDINGS OF THE 1990

WORKSHOP ON VOLUME VISUALIZATION, VVS ’90, p. 63–70, New York,

NY, USA, 1990. ACM.

[15] WEILER, M.; KRAUS, M.; MERZ, M. ; ERTL, T. Hardware-based

ray casting for tetrahedral meshes. In: PROCEEDINGS OF THE 14TH

IEEE VISUALIZATION 2003 (VIS’03), VIS ’03, p. 44–, Washington, DC,

USA, 2003. IEEE Computer Society.

[16] WEILER, M.; MALLON, P. N.; KRAUS, M. ; ERTL, T. Texture-

encoded tetrahedral strips. In: PROCEEDINGS OF THE 2004 IEEE

SYMPOSIUM ON VOLUME VISUALIZATION AND GRAPHICS, VV ’04, p.

71–78, Washington, DC, USA, 2004. IEEE Computer Society.

[17] WILLIAMS, P. L.; MAX, N. A volume density optical model. In:

PROCEEDINGS OF THE 1992 WORKSHOP ON VOLUME VISUALIZA-

TION, VVS ’92, p. 61–68, New York, NY, USA, 1992. ACM.

[18] WILLIAMS, P. L.; MAX, N. L. ; STEIN, C. M. IEEE Transactions

on Visualization and Computer Graphics. A high accuracy volume

renderer for unstructured data, journal, v.4, p. 37–54, 1998.

DBD
PUC-Rio - Certificação Digital Nº 0921332/CA



A
Control point texture

To find control points inside monotonic intervals, we use a 1D texture

first proposed by Röttger et al. (13) and built as presented in Table A.1. The al-

gorithm receives a transfer function texture (with size TFTEXTURESIZE),

and array with the control points values (cpvalues) and the number of control

points (cpnum).

The output of the algorithm is an 1D array (cptexture) that, given

an scalar s, it returns the next two greater control points (cptexture.x and

cptexture.y) and the previous two smaller control points (cptexture.z and

cptexture.w).

DBD
PUC-Rio - Certificação Digital Nº 0921332/CA



Volume rendering of unstructured hexahedral meshes 40

Table A.1: Control point texture algorithm

1: cpcounter ← 0
2: for i← 0; i < TFTEXTURESIZE do
3: iscalar ← i

TFTEXTURESIZE

4: cpscalar ← cpvalues[cpcounter]
5: if cpcounter < cpnum − 1 then
6: if iscalar <= cpscalar then
7: cptexture[i].x← cpscalar
8: cptexture[i].y ← cpvalues[cpcounter + 1]
9: i++

10: else
11: cpcounter ++
12: end if
13: else
14: if iscalar <= cpscalar then
15: cptexture[i].x← cpscalar
16: cptexture[i].y ← 3.0
17: end if i++
18: end if
19: end for
20: cpcounter ← cpnum − 1
21: for i = TFTEXTURESIZE − 1; i > 0 do
22: iscalar ← i

TFTEXTURESIZE

23: cpscalar ← cpvalues[cpcounter]
24: if cpcounter > 0 then
25: if iscalar >= cpscalar then
26: cptexture[i].z ← cpscalar
27: cptexture[i].w ← cpvalues[cpcounter − 1]
28: i−−
29: else
30: cpcounter −−
31: end if
32: else
33: if iscalar >= cpscalar then
34: cptexture[i].z ← cpscalar
35: cptexture[i].w ←∞
36: end if i−−
37: end if
38: end for

DBD
PUC-Rio - Certificação Digital Nº 0921332/CA



B
2D Pre-integration table texture

A 2D pre-integration table was first proposed by Moreland et al. (10), to

evaluate Equation (2-1). The table is the solution to the integral in Equation

(2-1) considering the transfer function as piecewise linear function, just like

(3-5) and (3-6). Substituing (3-5) and (3-6) in (2-1) we get:

I(tb) = I(tf )e
−

∫D
0 τ(t)dt

+ κ(tb)(−e
−

∫ tb
tf

τ(t)dt
+

1

D

∫ tb

tf

e
−

∫ tb
s+tf

τ(t)dt
ds)

+ κ(tf )(1−
1

(tb − tf )

∫ tb

tf

e
−

∫ tb
s+tf

τ(t)dt
ds) (B-1)

considering the following two repeting terms:

ζ(tb−tf ),τ(t) = e
−

∫ tb
tf

τ(t)dt
= (B-2)

ψ(tb−tf ),τ(t) =
1

D

∫ tb

tf

e
−

∫ tb
s+tf

τ(t)dt
ds (B-3)

considering a linear variation of the scalar field (represented by f(t) in

Equations (3-5) and (3-6)), and also a parametrization of τ(sb − sf ) by

τ(sb − sf ) = γ
1−γ

so that it can fit in a 2D texture in the [0, 1) domain, they

find the following equations:

ψγb,γf =

∫ 1

0

e
−

∫ 1
s (

γb
1−γb

(1−t)+
γf

1−γf
t)dt
ds (B-4)

ζ(tb−tf ),τb,τf = e−
tb−tf

2
(τb+τf ) (B-5)

DBD
PUC-Rio - Certificação Digital Nº 0921332/CA



C
Unstructured Tetrahedral Meshes

We implemented the proposal by Espinha and Celes (3) to render

unstructured tetrahedral meshes. We detail the integration scheme in Section

C.1, the data structure in Section C.2, the ray traversal in Section C.3, and,

finally, an overview of the algorithm in Section C.4.

C.1
Ray integration

To integrate the ray according to (2-1), Espinha and Celes (3) used a 2D

pre-integrated table first proposed by Moreland et al. (10). We detail the table

in Section B. It considers a linear variation of the scalar function and also a

piecewise linear transfer function, so we must stop at every TF control point.

That is done by using the 2D table explained in A.

C.2
Data structure

All relevant mesh information is stored in 1D textures, as described in

Table C.1. We must store the adjacency information of each cell, its faces

normals and also its scalar function. The scalar function inside a tetrahedron

is described by the equation presented in (C-3).

f(x, y, z) = c0 + c1x+ c2y + c3z (C-1)

Table C.1: Data structure for one tetrahedral cell.
Texture Data

Coefi, i = {0, ..., 3} c0 c1 c2 c3
Adji, i = 0, ...3 adj0 adj1 adj2 adj3
p⃗i, i = {0, ..., 3} vecn0 vecn1 vecn2 vecn3

Each tetrahedron occupies 96 bytes of data: 16 bytes for its scalar

function, 16 bytes for its adjacency information, and 64 bytes for its normals.

Considering that an hexahedron can be divided into either 5 or 6 tetrahedrons,

each hexahedron can take from 480 bytes to 576 bytes.

DBD
PUC-Rio - Certificação Digital Nº 0921332/CA



Volume rendering of unstructured hexahedral meshes 43

C.3
Traversal

In order to traverse from cell to cell, the algorithm does 4 ray/plane

collision tests. Considering the eye position e, the intersection between the ray

and the tetrahedron face i is given by the ray parameter t:

t = −(e.ni + oi)

t.ni

(C-2)

where (ni,j, oi,j) is the plane equation of face i. The exiting point is then given

by:

pb = e+ td. (C-3)

the scalar at the exit point pb is given by Equation (C-3).

C.4
Algorithm Overview

The ray-casting algorithm is summerized in Table C.2.

Table C.2: Ray-casting Algorithm

1: color ← (0, 0, 0, 0)
2: cell.id← V olumeBoundary()
3: while color.a < 1 and ray inside volume do
4: tback, cell.nid← IntersectRayFaces(t, cell)
5: {Find control points}
6: scp = texture2D(controlpoints, sfront, sback)
7: if sfront < scp < sback or sfront > scp > sback then
8: tcp =

scp−sfront

sback−sfront

9: else
10: tcp = tback
11: end if
12: color ← Integrate(tfront, sfront, tcp, scp)
13: cell.id = cell.nid
14: tfront = tback
15: end while

DBD
PUC-Rio - Certificação Digital Nº 0921332/CA



D
Regular data

Regular data can be stored in a 3D texture and sampled along the ray

using a constant size step.

The regular data ray-casting follows the simple steps: Steps 1 and 2

render an unitary cube front and back faces to a texture using a FBO (frame

buffer object). These two textures are then passed to a shader in Step 3 that

computes the ray direction and ray length, saving the result to another texture.

Finally, in Step 4 we trace a ray for each screen pixel, using the ray direction

and ray length. The kernel samples the 3D texture using a constant size step

until the current ray length reaches the total ray length, as calculated in Step

3.

D.1(a): Step 1: cube front
faces

D.1(b): Step 2: cube back
faces

D.1(c): Step 3: ray direction

D.1(d): Step 3: ray traversal

Figure D.1: Structured ray-casting steps.

Figure D.2 shows the difference using a pre-integration table and not

using one, considering the same step size and number of steps (10). We also

show an image using 100 steps(Figure D.2(c)), considered our quality reference.

As can be noted, pre-integration produces the best rendering quality.

This is obvious if we consider how the two are obtained; in post-classification,

DBD
PUC-Rio - Certificação Digital Nº 0921332/CA



Volume rendering of unstructured hexahedral meshes 45

D.2(a): Without pre-
integration, 10 steps

D.2(b): Pre-integration, 10
steps

D.2(c): 100 steps

Figure D.2: Structured ray-casting, using the same number of steps.

we fetch an interpolated scalar value from the volume and then accumulate

its color and opacity according to a transfer function, then advance the ray

in STEPSIZE length. However, such move can miss an important feature of

the volume, like a high spike in the transfer function. Differently, a 3D pre-

integrated table can use a small step, because the integration burden is moved

to a pre-processing step. It decreases the chance to miss an important feature

of the volume.

D.1
3D Pre-integration table texture

Our structured ray-casting uses a 3D pre-integration table to evaluate

Equation (2-1), and it is calculated as a pre-processing step on the CPU. The

algorithm can be seen in Table D.1. As it is transfer function dependent, it

receives the transfer function array as an input.

D.2
Data structure

In order to render the volumetric data, we use the following textures:

– Volume: 3D texture (R) with the scalar values of the dataset.

– Pre-integration table: 3D texture (RGBA) with the pre-integrated ray

integral ((2-1)).

– Transfer function: 1D texture (RGBA) with the color scale.

The structured ray-casting fetches the scalar values from a 3D texture,

with the dimensions of the datasets. The pre-integration algorithm fetches a

3D pre-integration table, and the post-classification algorithm fetches the 1D

transfer function.

DBD
PUC-Rio - Certificação Digital Nº 0921332/CA



Volume rendering of unstructured hexahedral meshes 46

Table D.1: 3D pre-integration table algorithm

1: for tcounter ← 0; tcounter < SIZE; tcounter ++ do
2: for sfcounter ← 0; sfcounter < SIZE; sfcounter ++ do
3: for sbcounter ← 0; sbcounter < SIZE; sbcounter ++ do
4: crgb ← (0, 0, 0)
5: extinction← 1.0
6: dt← tcounter∗MAXLENGTH

SIZE
/numsteps

7: for stepcounter ← 0; stepcounter < numsteps; stepcounter ++ do
8: normt← t

numsteps

9: scalar ← sfcounter + normt ∗ (sbcounter − sfcounter)
10: rgba← transferfunc[s]
11: crgb ← crgbrgb ∗ a ∗ extinction ∗ dt
12: extinction← extinction ∗ expf(−a ∗ dt)
13: end for
14: index← SIZE ∗ SIZE ∗ tcounter + SIZE ∗ sfcounter + sbcounter
15: table[index].rgb← crgb
16: table[index].a← 1.0− extinction
17: end for
18: end for
19: end for

D.3
Algorithm Overview

Tables D.2 and D.3 reviews the regular data ray-casting algorithm, using

a post-classification and pre-integration approach.

Table D.2: Structured data post-classification ray-casting algorithm

1: colorfinal ← (0, 0, 0, 0)
2: t = 0
3: while colorfinal.a < 1 and t < raylength do
4: scalar ← texture3D(volume, raypos)
5: color ← texture1D(transferfunction, scalar)
6: color.w ← color.w ∗ STEPSIZE
7: color.rgb← color.rgb ∗ color.w
8: colorfinal ← colorfinal + ((1.0− colorfinal.a) ∗ color)
9: raylength ← raylength + STEPSIZE

10: raypos ← raypos + STEPSIZE ∗ raydir
11: end while

DBD
PUC-Rio - Certificação Digital Nº 0921332/CA



Volume rendering of unstructured hexahedral meshes 47

Table D.3: Structured data pre-integration ray-casting algorithm

1: color ← (0, 0, 0, 0)
2: t = 0
3: scalarfront ← texture3D(volume, raypos)
4: while colorfinal.a < 1 and t < raylength do
5: scalarback ← texture3D(volume, raypos + STEPSIZE ∗ raydir)
6: color ← texture3D(preinttable, scalarback, scalarfront, STEPSIZE)
7: colorfinal ← colorfinal + ((1.0− colorfinal.a) ∗ color)
8: raylength ← raylength + STEPSIZE
9: raypos ← raypos + STEPSIZE ∗ raydir

10: scalarfront ← scalarback
11: end while

DBD
PUC-Rio - Certificação Digital Nº 0921332/CA




