
4

Machine Learning Methods and Classification Models

The presented chunk derivation heuristic is well suited for any corpus

that already contains phrase structure annotations, requiring only adaptations

regarding the corpus format and the available phrase kinds. However, we also

want to be able to determine our proposed chunk structure for corpora with

no previous syntactic annotation, i.e., unstructured text data.

Machine Learning methods come into play in this situation. Given that

we already have a corpus with “golden” chunk annotation, that is, chunk tags

that are correct according to our predefined rules, we are able to use this

corpus as training data for a supervised learning algorithm. Such a supervised

learning method discovers patterns in data labeled with golden tags and other

features, and then can reapply the learned patterns to unseen data in order to

annotate it automatically.

We can cite two particularly interesting characteristics of this approach.

First, the use of such an automatic extraction method minimizes the need for

domain experts when solving a particular task, provided that a considerable

amount of previously annotated data is already available. Second, it is possible

to apply a myriad of supervised learning techniques to the same task and using

the same training data, and evaluate which one performs best. The many

approaches tried for text chunking at CoNLL-2000 attest this fact.

We choose to apply the Entropy Guided Transformation Learning tech-

nique, an evolution of Transformation-Based Learning, in this work. We de-

scribe both of them in the next sections. Afterwards, we give design details

about the models we propose for text chunking.

4.1
Machine Learning algorithms

TBL (9) is a rule-based error-driven learning algorithm. As will be

clarified later in this section, it depends on the previous definition of rule

templates that serve as the basis for its learned rules.

ETL (21) is an evolution of TBL which eliminates the requirement

of setting those rule templates, determining them automatically through an

DBD
PUC-Rio - Certificação Digital Nº 0921334/CA



A Machine Learning Approach for Portuguese Text Chunking 35

Figure 4.1: A schematic of the Transformation-Based Learning algorithm

pos[-1] word[0] ck[0]

Figure 4.2: A Transformation-Based Learning rule template

entropy-oriented method.

4.1.1
Transformation-Based Learning

As reported by dos Santos (21), TBL enjoyed success when applied

to a number of NLP tasks, like part-of-speech tagging (9, 25), noun phrase

extraction (51, 43), spelling correction (39), appositive extraction (26), named

entity recognition (45) and semantic role labeling (31). Since it is a supervised

learning algorithm, it naturally requires a labeled corpus as input. The input

is also composed of the aforementioned rule templates and a baseline classifier.

This classifier determines the initial classification based on which the algorithm

generates the resulting transformation rules. Figure 4.1 shows a schematic

summarizing the TBL learning phase.

A TBL rule template is simply a set of attributes from a token and the

tokens in its vicinity. One example of template is shown in figure 4.2. This

template takes into account the actual word and chunk tag of the current

token and the POS tag of the token immediately before it.

When particular values for those template attributes are set and a

transformation is specified, the result is one of TBL’s rules. Figure 4.3

demonstrates two possible rules for the given template.

The role of rule templates is to limit the space of considered rules.

Therefore, it is important to choose templates that are relevant to the task

at hand. This typically depends on having specific domain knowledge, and

limits TBL’s versatility somewhat.

DBD
PUC-Rio - Certificação Digital Nº 0921334/CA



A Machine Learning Approach for Portuguese Text Chunking 36

pos[-1]=preposition word[0]=os ck[0]=I-NP → ck[0]=B-NP
pos[-1]=article word[0]=homem ck[0]=B-NP → ck[0]=I-NP

Figure 4.3: Transformation-Based Learning rules

TBL is an iterative method, and greedily selects a new rule to be applied

after each step. Its first action is to apply the baseline classifier to the provided

training corpus. This baseline system, being a naive classifier, generates an

output which expectedly has many tagging errors to be corrected. Thus, in

every step, based on the rule templates given as input, TBL derives all possible

correction rules and uses a score function to evaluate the effectiveness of each

rule. The best scoring rule is then selected, applied to the current state of

the training corpus and saved. This rule selection process is repeated until all

possible next rules yield a score below a specified threshold, meaning that no

remaining rule is good enough to be selected.

The score function for rules can be as simple as the difference between

the number of corrections and the number of errors a given rule produces when

applied to the corpus. Indeed, this is the function used by our ETL models.

4.1.2
Entropy Guided Transformation Learning

ETL has been thrivingly used for many of the NLP tasks to which TBL

has also been applied, like POS tagging (22), noun phrase extraction (42),

named entity recognition (44, 19) and semantic role labeling (19), improving

TBL’s results consistently. It has also been utilized to tackle text chunking for

other languages (42). Many ETL-based systems can be freely used through the

F-EXT-WS service1. (24).

ETL solves what is referred to as the TBL bottleneck: the construction

of relevant rule template sets (21). That enables the effective application

of ETL without specific domain knowledge for the task considered. It does

that by applying the Information Gain concept through means of a Decision

Tree. Information Gain is based on data entropy, and several feature selection

strategies rely on it to restrict the feature set and make learning algorithms

more efficient. Our implementation of ETL employs the C4.5 Decision Tree

algorithm (50) for template selection.

ETL’s learning phase is very similar to TBL’s, except for the added

initial step for template generation. Following the application of the chosen

baseline classifier to the training corpus, the Decision Tree algorithm is invoked,

1http://www.learn.inf.puc-rio.br

DBD
PUC-Rio - Certificação Digital Nº 0921334/CA



A Machine Learning Approach for Portuguese Text Chunking 37

Figure 4.4: Template generation in Entropy Guided Transformation Learning

Figure 4.5: A schematic of Entropy Guided Transformation Learning

generating a tree targeted at the classification of the attribute wanted. The

features taken into account when instantiating the tree are the ones of the

token being classified and those of the surrounding tokens. The number of

surrounding tokens watched is set through the ETL “window” parameter.

After the creation of the tree, the paths from the root of the tree to

every leaf are set as the model’s rule templates. In other words, given one of

the paths of the tree, the nodes in this path become the attributes in a derived

template. Figure 4.4 elucidates this process, displaying a Decision Tree and its

resulting templates.

ETL then uses the generated templates in the same way TBL does, by

greedily selecting the best scoring rule at each step until no rule score reaches

a given threshold. A complete schematic of ETL is shown in figure 4.5.

This work also makes use of a technique intended to lower the training

time and memory consumption of an ETL model for some of the tackled tasks.

This technique is called template evolution, and is described by dos Santos in

DBD
PUC-Rio - Certificação Digital Nº 0921334/CA



A Machine Learning Approach for Portuguese Text Chunking 38

his work (21). It consists in processing groups of templates divided by their size

in a progressive manner. This means that, at the beginning of the rule learning

phase, only rules from templates with one attribute are generated; when no

more one-attribute rules can be created, then only two-attribute templates are

taken into account, and so on.

At the end, the application of rules during extraction follows the order in

which the rules were created, exactly like the regular TBL and ETL extraction

process. The reduced training time comes at the cost of very little performance

loss.

4.2
Chunk extraction models

We propose two models for the extraction of chunks in Portuguese

corpora. One model is a direct classifier, extracting chunk tags in the IOB2

format. The second model decomposes the chunking task into three smaller

subtasks, and thus we refer to it as the “subtasks classifier”.

In our experiments, we apply the ETL technique as the classification

algorithm for these approaches, but any of them can be replicated using

another supervised learning algorithm.

More details about these approaches are given in the next sections.

4.2.1
Direct classifier

Our direct classifier applies the ETL algorithm to determine IOB2 tags

for tokens in a corpus in a single step. The only features this corpus needs to

have beforehand are the words and POS classes for each token, which are the

fundamental attributes used by text chunking learning models in general. We

also create derived features based on these two provided features in order to

make the learning model consider certain patterns more easily. These features

are described in a following section.

The baseline system employed for this model is the same one described

in the CoNLL-2000 section in chapter 2. For each POS tag, we determine

the chunk tag most frequently associated with it among the training corpus

examples. This BLS classifies a given token precisely with the chunk tag

corresponding to its POS tag according to the above procedure.

DBD
PUC-Rio - Certificação Digital Nº 0921334/CA



A Machine Learning Approach for Portuguese Text Chunking 39

4.2.2
Subtasks classifier

The subtasks classifier relies on two minor classification tasks and a

subsequent matching task. The classification subtasks are responsible for the

detection of chunk boundaries. The first subtask finds tokens that start a

chunk, tagging these tokens according to the type of chunks they start. The

second subtask is similar to the first, doing the same procedure for tokens that

end chunks. Finally, the last subtask takes the results of the previous ones

and matches start tokens and end tokens appropriately. Table 4.1 shows the

tokens of a sentence, their tags corresponding to the mentioned classification

subtasks, and the expected final result after the matching task in IOB2 format.

Chunks
Word POS Start End IOB2
A art NP X B-NP
Juve prop X NP I-NP
vive v-fin VP VP B-VP
a art NP X B-NP
transição n X NP I-NP
para prp PP PP B-PP
uma art NP X B-NP
nova adj X X I-NP
temporada n X NP I-NP
. . X X O

Table 4.1: Example of output for the intermediate steps of the subtask classifier

Once more, our approach to the classification subtasks is based on the

ETL technique. As denoted by table 4.1, the tag set for these tasks consists

simply in the group of chunk types considered, and an additional X tag for

tokens that do not begin or end a chunk. A pertinent detail is that the chunk

end classifier uses the results from the chunk start extractor as a feature, after

it is trained and reapplied on the training corpus. This provides the former

with extra information while also taking the patterns learned by the latter

into consideration.

The matching task is not solved through a tagging approach. Rather, a

straightforward heuristic is applied. It iterates through every pair (TS, TE) of

tokens, where TS is a start token and TE is an end token of the same type

and appearing later in the sentence. Such a pair is considered valid if there is

no other start or end token between TS and TE. The heuristic then generates

the chunks corresponding to every valid pair found. This procedure guarantees

that the resulting chunks are non-recursive and non-overlapping.

DBD
PUC-Rio - Certificação Digital Nº 0921334/CA



A Machine Learning Approach for Portuguese Text Chunking 40

Since the chunk end subtask depends on the chunk start one and the

matching task depends on the previous two, they are executed in sequence.

We also use the derived features mentioned in the direct classifier section

for the two classification subtasks to improve their results. Additionally, the

baseline systems used for the two first subtasks follow the same principle as

the one employed by the direct classifier: they detect the class most frequently

associated with a POS tag and attribute that class to all tokens that have the

given POS tag.

4.2.3
Derived features

When designing a Machine Learning system, one of the most important

actions is to provide the model with a set of features that exposes useful

patterns in the dataset. Although text chunking systems are typically given

only two fundamental features, the word value of each token and their POS

tags, there are ways to manipulate this basic data and create more features

that directly improve the effectiveness of the learning algorithm. Examples of

feature manipulation have been shown in chapter 2, when we describe state-

of-the-art approaches for English text chunking.

Along the development of this work, a number of those derived features

have been created and applied to the described models. Two of the tested

features resulted in substantial performance gains and were kept in our final

settings.

One of the improving attributes is called predecessor verb. For every

token, it holds the word value of the closest verb to the left.

The other derived feature is capitalization. It is generated from the word

feature and may assume one of the following classes:

1. first letter is uppercase;

2. all letters are uppercase;

3. all letters are lowercase;

4. plain number;

5. number with embedded “-” or “/” characters;

6. punctuation;

7. other, i.e., none of the above.

DBD
PUC-Rio - Certificação Digital Nº 0921334/CA



A Machine Learning Approach for Portuguese Text Chunking 41

It is possible to verify that, because ETL rules depend on the matching

of discrete class values and only consider a fixed number of surrounding tokens,

some of the details captured by these derived features would be ignored by the

model if they were not explicitly extracted. For example, the capitalization

feature allows the model to create rules that involve all words that have a

starting capital letter. This kind of generalization would not be possible if

only the word attribute were available.

DBD
PUC-Rio - Certificação Digital Nº 0921334/CA




