6. 
Referências bibliográficas


[60] Fortini, J. et al. “Caracterização mecânica e microestrutural da região curvada por indução de tubo de aço API 5L X65” 63º Congresso Anual da ABM, julho de 2008, Santos, SP, Brasil


[64] Lu, J. “Quantitative Microstructural Characterization of Microalloyed Steels”, A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Materials Engineering Department of Chemical and Materials Engineering, University of Alberta, 2009


[97] Xiujun, Li “Quantitative characterization of microstructure in high strength microalloyed steel" A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Master of Science in Materials Engineering, Department of Chemical and Materials Engineering, University of Alberta, 2009


Ungár, T. et al. “Grain size, size-distribution and dislocation structure from diffraction peak profile analysis”, Department of General Physics, Eötvös University Budapest, H-1518, P.O.B 32, Budapest, Hungary

Ungár, T. et al. “Correlation between the microstructure studied by X-ray line profile analysis and the strength of high-pressure-torsin processed Nb and Ta”, Acta Materialia 61 (2013) 632 - 642

Ungár, T. “Dislocation Model of strain anisotropy” JCPDS – International Centre for Diffraction Data, 2008, ISSN 1097 - 0002

Cernatescu, J. D. “Microstructural parameters from Multiple Whole Profile (MWP) or Convolutional Multiple Whole Profile (CMWP) computer programs”, 54th Annual Denver X-Ray Conference, Line Profile Analysis Workshop, 2005


[148] De Souza, A. R. B. M., “Efeito de microadições de Zr em um aço C-Mn-Si no crescimento de grão austenítico e na temperatura de não recristalização da austenita” 2005, Tese (Doutorado), Universidade Federal Fluminense


[154] Deutsches Institut für Normung, DIN 50150 German standard, 1982


[156] Thewlis, G. “Classification and quantification of microstructure in steel” IIW (International Institute of Welding), Materials Science and Technology February 2004 Vol. 20, Pages 143 – 160


