PUC-RIo - Certificacdo Digital N° 1012623/CA

1
Introduction

As systems evolve, the preservation of their safveachitectures (PERRY
and WOLF, 1992) plays a crucial role on the longewf software systems
(EICHBERG et al, 2008; HOCHSTEIN and LINDVALL, 200%BAYASHI,
2010). However, architectural degradation (HOCH3 &hd LINDVALL, 2005)
is a long-standing problem in software engineerifige architecture of software
systems is well-known for increasingly degradingotiyh the maintenance and
evolution stages (HOCHSTEIN and LINDVALL, 2005; PER and WOLF,
1992). Hochstein and Lindvall introduced the temoh#ectural degradation to
refer to the continuous quality decline of architiee designs in evolving software
systems (HOCHSTEIN and LINDVALL, 2005). More spacdlly, the actual
architecture in the system implementation startdépart from the intended
architecture as the system evolves (GARCIA et @092 WERNER et at, 2011).
Every code change may contribute to increasing rthematch between the
implemented and the architecture (Aldrich, 2010RRA and VALENTE, 2009).

The architectural degradation also manifests ihigecture-driven projects,
i.e., in projects where there is a concern in expfi prescribing upfront the
intended software architecture. In fact, even &echire-driven projects of
widely-used software systems, such as Mozilla, Bugs, ArgoUML, Enterprise
Java Beans and Jakarta have shown to be susceptitehitectural degradation
(EICHBERG et al, 2008; LI, 2010; MOHA et al, 2010tERKLE, 2010). In
particular, MacCormarck et al reported in 2006 thize exceptionally—tight
coupling of Mozilla’'s components was the main cadse its complete re-
engineering in 1998 (MACCORMACK et al, 2006). Thegess consumed five
years of rewriting two million lines of source cottenks to its full architectural
degradation.

Software architecture is concerned with the dedinitof architecture
components and their interactions as well as withstraints on both of them
(GARLAN and SHAW, 1993).Symptoms of architectural degradation arise

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

PUC-RIo - Certificacdo Digital N° 1012623/CA

13

through the processes @i chitectural erosion and drift (HOCHSTEIN and
LINDVALL, 2005; PERRY and WOLF, 1992). Erosion ocsuvhen constraints
governing the interaction of architecture composeare violated (PERRY and
WOLF, 1992). Therefore, we also refer toteraction violations as erosion
symptoms in this dissertation. A typical example esbsion symptom is an
unintended dependency established between two ameng® In contrast to
erosion, drift symptoms imply the violation of indlual component’s constraints
(PERRY and WOLF, 1992). Typical examples of dnjffinptoms are components
that violate modularity principles, such as the rfoa component interface
principle" or "single responsibility principle” (GRCIA et al, 2009; PERRY and
WOLF, 1992). The violation of such modularity priples is perceived when
components of the actual implemented architecttmeissto exhibit structural
anomalies, such as interface bloat and componeetizing multiple
responsibilities (GARCIA et al, 2009; MACIA et &012).

1.1.
Problem statement

In order to fully prevent architectural degradatitmoth erosion and drift
symptoms need to be detected and removed fromctihalamplementation of a
software system. In fact, the erosion and driftcpeses are often intertwined in
spite of their conceptual differences (MACIA et 2012; PERRY and WOLF,
1992). Violations of component constraints (i.eiftdymptoms) may foster the
later introduction of interaction violations (i.erosion symptoms) or vice-versa,
thus, the same modules in a program become the loichoth drift and erosion
symptoms.

For instance, drift symptoms are related to compt®mponents or
interfaces as they are sources of violation of narity principles (Section 1.2).
Hence, if any of these drift symptoms remains uected, it may provoke the
emergence of the erosion symptoms along the systeln@nge history (GARCIA
et al, 2009; MACIA et al, 2012). In fact, drift sptoms impair design or
implementation comprehension, thereby contributibg the unconscious
introduction of interaction violations in their g@ams (PERRY and WOLF,
1992). This possibly means that if a drift symptisndetected early in the project

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

PUC-RIo - Certificacdo Digital N° 1012623/CA

14

history, it is likely that many other inter-relatédft and erosion symptoms will
be prevented to occur later. Hence, the longevityadtware projects largely
depends on the early detection and repair of bgthpsoms of architectural
degradation.

Therefore, architects should elaborate strategieslétecting simultaneous
occurrences of both degradation symptoms. Thesgéegies are often based on
the specification of architectural rules based ¢we intended architecture
(EICHBERG et al, 2008; MOHA et al 2010; TERRA andMENTE, 2009;
MARA et al, 2011). However, the specification ofcBuarchitectural rules is
repetitive as they are often similar across difiesoftware projects. If fact, it has
been noticed that similar degradation symptomsigatt several projects. This
phenomenon occurs, for instance, when multipleegtsjin the same company
share similar architectural constraints either astipular components or to their
interactions. For example, many architectures stesy from a same company
share the adoption of the same architectural asdjualgpatterns (GAMMA et al,
1995; BUSCHMANN et al, 2007). This may also be thse when projects from
different companies are from the same domain, byep®ssibly sharing similar
architecture decisions.

The observations above call for an approach thables software
developers to: (i) detect both forms of architeatwdegradation in the evolving
implementation of their systems, and (ii) encouradgevelopers to reuse
specification of architectural rules in order toom@v recurring symptoms of
architectural degradation across different projedtse next section presents a

motivation example in order to better illustrate #forementioned problems.

1.2.
Motivating example

The processes of architectural erosion and deftfarther illustrated using a
motivating example. This section also discusses th&ationship (Section 1.2.1)
as well as the main characteristics of these psasesn projects that follow
similar design decisions (Section 1.2.2). From inerarchitectural degradation,
architectural drift and architectural erosion arsoareferred to simply as
degradation, drift and erosion.

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

PUC-RIo - Certificacdo Digital N° 1012623/CA

15

Example of architectural erosion. Figure 1 shows an example of an
architectural erosion symptom in the MobileMediateyn (FIGUEIREDO et al,
2008). This system realizes the architecture patteiodel-View-Controller
(MVC) (BUSCHMANN et al, 2007). Each component islieed as a set of
modules (classes) in the source code. For condsemaly a few classes are
shown in the figure. The erosion problem concemsagchitecture constraint
governing the intended exception handling policyceptions are incorrectly
propagated through module interfaces across sysbemponents. As an example,
the classBaseControl | er defined in the Controller component invokes the
Data services provided bgl bunDat a. BaseControl | er ends up handling
exceptions (e.g.Persi st enceException) thrown by Al bunDat a, which
should have been handled within the Model compon@st a consequence,
dependencies between code modules realizing thetrdlen and Model
components are undesirably introduced. They leadnteraction violations,
thereby contributing to the degradation of the nded software architecture of
MobileMedia.

< > -——— > - — —»
MODEL N CONTROLLER VIEW DATA P BUSINESS GUI
, - T
BaseController public boolean handleCmd (LabelCmd) { public void execute() {
AlbumData P if (1.equals("createAlbum™)) {, f Complaint g = getComplaint(); SearchComplData
elseif (l.equals("Favorite")) {...3 ONGM ry { -request
= [+handleCmd() /1 6 similar else ifs removed b o T THOp iftgq instanceof AnimalCompl)1..3 -response
+sort() else if (l.equals("Add Photo")) UPLICA N elsef (g instanceof FoodCompl) {...3
+deletelmage() try { albumData.addPhoto(); ... ED ¢, b, /! 5 Siilar else ifs removed +doPost()
catch (PersistenceExce) {..} ateli (Persistence e) {...} +doGet()
Legend /13 similar catches removed 113 similar catches removed +execute()
— —» Architectural violation 3 H

—» Expected flow
Figure 1. MobileMedia (left) and HealthWatcher (right) architectures

Example of architectural drift. Let us consider the aforementioned case of
the classBaseControl | er in Figure 1. This class plays a crucial role in the
implemented architecture as it is in charge ofizesy the Controller component
in the architecture specification. However, thisssl is the source of a code
anomaly, called.arge Class (FOWLER, 1999). The class defines many methods,
each of them realizing various non-cohesive fumetibies of the system (e.qg.,
video deletion and photo sorting). A side effectjatere consequence is that it
ends up contributing to the manifestation of arnéectural drift symptom, called
Ambiguous Interface (GARCIA, 2009). The implementation of this clagepdes

an over-generalized interfacehandl eCnmd - for handling all commands. This

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

PUC-RIo - Certificacdo Digital N° 1012623/CA

16

means that the actual interface and the implementaf theBaseControl | er
module in the source code (and, therefore, the rGlbeit component) are
aggregating several responsibilities from differsatvice requests that should be
implemented independently. This drift symptom weldrassed in a later version
by MobileMedia developers. TheBaseController class was further
decomposed into smaller classes; each of them mapigng a specific controller
responsibility. The goal was to explicitly decomgothe interface of the

Controller component into simpler ones.

1.2.1.
Erosion and drift symptoms tend to be intertwined

Previous works have shown how, in many cases, @rosind drift
symptoms are somehow related (PERRY AND WOLF, 1992CIA et al,
2012). Architectural drift symptoms often fostee tlater introduction of erosion
symptoms and vice-versa. The left-hand side of féiduillustrates an example of
the relationship between erosion and drift symptamshe MobileMedia. The
class BaseControl | er implements different services through the interface
handl eCmd. The amount of services exposed bgndl eCnd significantly
increased throughout the system evolution. Thisriate bloat in turn forced
BaseControl | er to handle exceptions propagated from several niateck
components. The handling of such exceptions shoatidhe a responsibility of the
Controller component according to the original M\d@@composition, thereby
characterizing the occurrence of several interactiolations.

This example illustrates a direct relation betweerosion and drift
phenomena. Hence, in order to detect the archr@ctiegradation, architects
should consider blending the detection of erosiod drift symptoms into the
same architecture specification. In this way, depets would be aware of both
degradation processes by just considering onetaothie document. Therefore,
this simultaneous detection would prevent deve®@erm introducing erosion
symptoms due to reminiscent drift symptoms and -vexsa. In addition,
intertwined occurrences of these symptoms are alsgn of severe stages of
architectural degradation (MACIA et al, 2012). Maeecifically, recent studies

have revealed that modules exhibiting both formdegradation tend to manifest

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

PUC-RIo - Certificacdo Digital N° 1012623/CA

17

more severe architecture instabilities in a profestory than modules containing
just one singular form of degradation (MACIA et2012, MARA et al, 2011).

1.2.2.
Similar degradation symptoms can infect several projects

Similar degradation symptoms can manifest in séverajects (Section
1.2.2). To illustrate this phenomenon, the righttpaf Figure 1 depicts the
architecture of the HealthWatcher system (HEALTHWIHER, 2012), which
follows the decomposition prescribed by the Layechiéectural pattern
(BUSCHMANN et al, 2007). Certain modules of HealthMher suffer from
similar erosion and drift symptoms as those ocogrin MobileMedia modules.
For instance,Sear chConpl Dat a introduces interaction violations through
exception propagation behavior, similarly tdBaseController in
MobileMedia. Also, it reifies drift symptoms relatdo the implementation of
independent responsibilities, such as GUI and $&tersie. In this way,
Sear chConpl Dat a has a similar code structure BaseControl | er (code
contai ning several catch blocks). Unlike BaseController, it does
not suffer from an interface bloat-urthermore, these classes implement
components with different responsibilities (i.eqr@oller and GUI).

The re-occurrence of similar degradation symptambath classes (Figure
1) illustrates the need for reusimgchitectural constraints, instead of defining
them from scratch. Architects would benefit fronsiagle reusable abstraction
that groups rules for detecting recurring symptarhsrchitectural erosion (via
anti-erosion rules) and drift (via anti-drift rujed=or instance, an architectural
specification can group correlated anti-erosion ant-drift rules that constrain
MobileMedia component elements. More specificallthis specification
encompasses anti-erosion constraints for the ecepaindling policy and tight
coupling between non-related components. Also, dame abstraction groups
anti-drift constraints for detecting symptoms rethto interface bloat, such as
large methods iBaseCont r ol | er. Therefore, this abstraction can be reused in
HealthWatcher to constrain the dependencies betweeradjacent layers, the
exception handling behavior and the size boundéoie&Ul components such as

Sear chConpl Dat a. As we can perceive, the reuse of hybrid spediboaof

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

PUC-RIo - Certificacdo Digital N° 1012623/CA

18

anti-erosion and anti-drift rules can help devetepto reduce the effort of
specifying such rules repeatedly in each projettes€é specifications are also
referred in this dissertation &gbrid rules. Finally, companies would maintain a
uniform and reusable base of anti-erosion anddxiftirules in several projects to
save resources and time in the specification ofl@imules.

In addition to the reuse "as is", architects woualdo benefit from
specification mechanisms to specialize previougfyreed anti-erosion and anti-
drift constraints and associate them with the saeusable abstraction. These
mechanisms would allow architects to subtly adgmtcific constraints to each
system context. As an example, anti-drift ruleg Hre based on size boundaries
(i.e., thresholds), such as those applicableBéaseControl |l er, should be
adjusted to other systems (eS$gar chConpl Dat a in HealthWatcher).

In summary, the motivating example illustrated tieed for supporting: (i)
the hybrid specification of anti-erosion and antftdules; and (ii) reuse of hybrid
rules from a base of uniform anti-degradation ruies, the set of anti-erosion

and anti-drift rules) in multiple projects.

1.3.
Limitations of related work

Several techniques have been devoted to suppdniteitiral degradation
detection (EICHBERG et al, 2008; MOHA et al 2010ARA et al, 2011;
MARWAN and ALDRICH, 2009; MERKLE, 2010; OLIVEIRA,@11; SANGAL
et al, 2005; TERRA and VALENTE, 2009; UBAYASHI e, 2010). However,
there are two main problems with the current st#téhe art. First, existing
approaches usually promote the exclusive detedfi@ither erosion (EICHBERG
et al, 2008; MARWAN and ALDRICH, 2009; TERRA and VENTE, 2009;
UBAYASHI et al, 2010; OLIVEIRA, 2011) or drift syntpms (MARINESCU,
2004; MOHA et al 2010; MARA et al, 2011). Even tgbuthese symptoms are
often inter-related, these approaches are limitedsdlely focus on just one
particular degradation symptom. The detection thfegierosion or drift symptoms
may not prevent the increasing decay of the soéveachitecture (PERRY and
WOLF, 1992; HOCHSTEIN and LINDVALL, 2005). For irsstce, the removal
of the former symptoms may not imply the amelianatof the latter symptoms.

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

PUC-RIo - Certificacdo Digital N° 1012623/CA

19

On the contrary, the strict focus on erosion deiacimay imply that
architects perceive severe drift symptoms too lateen it is hard or costly to
address them. The inverse is also true. Given iim@lsneous occurrence of
erosion and drift symptoms (HOCHSTEIN and LINDVAL2005; MACIA et al,
2012), architects should be able to elaborate Oystriategies for detecting both
forms of degradation symptoms. These strategieshtoug rely on the
specification of architectural rules for drift aatbsion prevention.

Second, to the best of our knowledge, existing @ggres only support the
specification and checking of rules for particidgstems and do not provide any
mechanism to reuse them. As a consequence, theficgen of such
architectural rules becomes a repetitive task,udssrare often similar across
multiple projects from the same domain or the saompany (GAMMA et al,
1995). Ideally, architects should be able to reurs®edrift and anti-erosion rules
across projects adhering to similar architectureodgositions. Nowadays,
languages for describing architectural rules (EIGR& et al, 2008; TERRA and
VALENTE, 2009; UBAYASHI et al, 2010) do not providbkis support. All these
limitations of related work are discussed in moetad in Chapter 2.

1.4.
Proposed solution and contributions

This dissertation addresses the limitations ofteelavork by proposing a
new Domain-Specific Language (DSL) for specifyindes to detect architectural
degradation (Chapter 3). The proposed languagkedcBimDera® is the main
contribution of this work and has two distinguighifeatures: (i) support for
specifying and blending rules for erosion and didtection in a unified way, and
(ii) support for hierarchical and compositional sewf anti-drift and anti-erosion
rules.

More specifically, the language provides a singlestaction, called
architectural concept, which allows architects to impose anti-drift il@n
components and map them to implementation elem8itslarly, architects can

also impose anti-erosion rules on component intenas. These rules can be

TamDera stands for “Taming Drift and Erosion in Architery

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

PUC-RIo - Certificacdo Digital N° 1012623/CA

20

reused through compositional and hierarchical reaeehanisms. For instance,
anti-erosion and anti-drift rules can be reuseduyh the specialization of rules
associated with abstract architectural concepts.

The second contribution is a tool to supports #egliage usage and rule
enforcement in the source code (Chapter 3). Theisoanique as it integrates
facilities for detecting both erosion and drift gyioms. Its implementation
provides features to: (i) easily extend the settrdtegies available for specifying
anti-degradation rules, and (ii) check if the sesecified anti-degradation rules
IS inconsistent.

As a final contribution, we evaluate the usefulnessupporting blend and
reuse of architectural rules. The study encompagteeleases of 5 projects, and
more than 600 anti-degradation rules (Chapter A& findings provide evidence
for the usefulness of detecting the co-occurrerie@asion and drift symptoms in
multiple projects and the value of supporting reofsgingle and hybrid rules. Our
analysis pointed out several cases where the exeldstection and removal of a
particular symptom was not sufficient to preverghétectural degradation. Even
worse, by exclusively detecting erosion symptonesjetbpers neglected severe
drift symptoms in later versions, or vice-versaatidition, we observed that most
rules defined in a particular project could be sgluom rules previously defined
for architectural and design patterns . They wesponsible for detecting the
majority of the degradation symptoms in each ptojec

The contributions of this work were reported in @&y which have been
published or are under submission. Some of therpaj® particular, papers #3
and #4) represent preliminary results of our regeamrk and only have marginal
relation to this dissertation. However, those stsdiere instrumental to reveal
the research problem being addressed in this thsieer. These papers are listed

as follows:

1. GURGEL, A., MACIA, I., GARCIA, A., MEZINI, M., EICHBERG, M.,
VON STAA, A., MITSCHKE, R.TambDera: Blending and Reusing
Rules for Architectural Degradation Prevention;Aroceedings of 20th
Symposium on the Foundations of Software EnginggfisE'12). 2012;

(in submission).

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

PUC-RIo - Certificacdo Digital N° 1012623/CA

21

2. GURGEL, A., DANTAS, F., GARCIA, A. Um Estudo de Cpuosi¢cbes
de Padrbes de Projeto em CaesarJ. In ProceedingiseofV Latin
American Workshop on Aspect-Oriented Software Depedent - LA-
WASP 2010. pags. 30-36. 2010

3. GURGEL, A., DANTAS, F., GARCIA, A. On-Demand Integion of
Product Lines: A Study of Reuse and Stability. fndeedings of the 2nd
International Workshop on Product Line Approaches Software
Engineering - PLEASE '11 at ICSE'11, 2011; pag8252011

4. DANTAS, F., GURGEL, A., GARCIA, A. Towards a Suitd Metrics
for Advanced Composition Mechanisms. In Proceedionfisthe 2nd
International Workshop on Empirical Evaluation ofoft%are
Composition Techniques -ESCOT 2011 at ECOOP'11caster, United
Kingdom. 2011

The first paper reports the key results of thiseligtion encompassing the
design and evaluation of tfemDera language. The paper also provides a brief
description of the tool. Many of our insights o fanguage design were gathered
during the study reported in the second paper. Thely involved the
implementation of a code library of several despmatterns. This experience
enabled us to understand the importance of enfprooth anti-erosion and anti-
drift rules in implementation of these patternseThird and the fourth papers
focused on studies related to the integration araugon of multiple software
product lines. They also enabled us to grasp tp@itance of a unified approach

for describing and enforcing anti-erosion and anifi- rules.

1.5.
Dissertation structure

The next chapters have the following purposes:

Chapter 2Background and Related Work: presents general background, basic
terminology, and outlines related work on architegkt degradation

prevention.

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

PUC-RIo - Certificacdo Digital N° 1012623/CA

22

Chapter 3The TamDera Language: presents thdamDera language which
allows the blend and reuse of anti-erosion anddaftirules. The chapter

also depicts a tool implementation and designgbhpportsTamDera.

Chapter 4Evaluation: presents and discusses results of a study tdilae
evaluating the co-occurrence of erosion and dyiftoms and reuse of
hybrid rules in multiple contexts.

Chapter 5Conclusion: discusses the conclusions and the contributionthfs

dissertation, and describes planned future work.

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

