
1 
Introduction 

As systems evolve, the preservation of their software architectures (PERRY 

and WOLF, 1992) plays a crucial role on the longevity of software systems 

(EICHBERG et al, 2008; HOCHSTEIN and LINDVALL, 2005; UBAYASHI, 

2010). However, architectural degradation (HOCHSTEIN and LINDVALL, 2005) 

is a long-standing problem in software engineering. The architecture of software 

systems is well-known for increasingly degrading through the maintenance and 

evolution stages (HOCHSTEIN and LINDVALL, 2005; PERRY and WOLF, 

1992). Hochstein and Lindvall introduced the term architectural degradation to 

refer to the continuous quality decline of architecture designs in evolving software 

systems (HOCHSTEIN and LINDVALL, 2005). More specifically, the actual 

architecture in the system implementation starts to depart from the intended 

architecture as the system evolves (GARCIA et al, 2009; WERNER et at, 2011). 

Every code change may contribute to increasing the mismatch between the 

implemented and the architecture (Aldrich, 2010; TERRA and VALENTE, 2009). 

The architectural degradation also manifests in architecture-driven projects, 

i.e., in projects where there is a concern in explicitly prescribing upfront the 

intended software architecture. In fact, even architecture-driven projects of 

widely-used software systems, such as Mozilla, FindBugs, ArgoUML, Enterprise 

Java Beans and Jakarta have shown to be susceptible to architectural degradation 

(EICHBERG et al, 2008; LI, 2010; MOHA et al, 2010; MERKLE, 2010). In 

particular, MacCormarck et al reported in 2006 that the exceptionally–tight 

coupling of Mozilla’s components was the main cause for its complete re-

engineering in 1998 (MACCORMACK et al, 2006). The process consumed five 

years of rewriting two million lines of source code thanks to its full architectural 

degradation.  

Software architecture is concerned with the definition of architecture 

components and their interactions as well as with constraints on both of them 

(GARLAN and SHAW, 1993). Symptoms of architectural degradation arise 
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through the processes of architectural erosion and drift (HOCHSTEIN and 

LINDVALL, 2005; PERRY and WOLF, 1992). Erosion occurs when constraints 

governing the interaction of architecture components are violated (PERRY and 

WOLF, 1992). Therefore, we also refer to interaction violations as erosion 

symptoms in this dissertation. A typical example of erosion symptom is an 

unintended dependency established between two components. In contrast to 

erosion, drift symptoms imply the violation of individual component’s constraints 

(PERRY and WOLF, 1992). Typical examples of drift symptoms are components 

that violate modularity principles, such as the "narrow component interface 

principle" or "single responsibility principle" (GARCIA et al, 2009; PERRY and 

WOLF, 1992). The violation of such modularity principles is perceived when 

components of the actual implemented architecture starts to exhibit structural 

anomalies, such as interface bloat and components realizing multiple 

responsibilities (GARCIA et al, 2009; MACIA et al, 2012). 

  

1.1. 
Problem statement 

In order to fully prevent architectural degradation, both erosion and drift 

symptoms need to be detected and removed from the actual implementation of a 

software system. In fact, the erosion and drift processes are often intertwined in 

spite of their conceptual differences (MACIA et al, 2012; PERRY and WOLF, 

1992). Violations of component constraints (i.e., drift symptoms) may foster the 

later introduction of interaction violations (i.e., erosion symptoms) or vice-versa, 

thus, the same modules in a program become the locus of both drift and erosion 

symptoms.  

For instance, drift symptoms are related to complex components or 

interfaces as they are sources of violation of modularity principles (Section 1.2). 

Hence, if any of these drift symptoms remains undetected, it may provoke the 

emergence of the erosion symptoms along the system’s change history (GARCIA 

et al, 2009; MACIA et al, 2012). In fact, drift symptoms impair design or 

implementation comprehension, thereby contributing to the unconscious 

introduction of interaction violations in their programs (PERRY and WOLF, 

1992). This possibly means that if a drift symptom is detected early in the project 
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history, it is likely that many other inter-related drift and erosion symptoms will 

be prevented to occur later. Hence, the longevity of software projects largely 

depends on the early detection and repair of both symptoms of architectural 

degradation.  

Therefore, architects should elaborate strategies for detecting simultaneous 

occurrences of both degradation symptoms. These strategies are often based on 

the specification of architectural rules based on the intended architecture 

(EICHBERG et al, 2008; MOHA et al 2010; TERRA and VALENTE, 2009; 

MARA et al, 2011). However, the specification of such architectural rules is 

repetitive as they are often similar across different software projects. If fact, it has 

been noticed that similar degradation symptoms can infect several projects. This 

phenomenon occurs, for instance, when multiple projects in the same company 

share similar architectural constraints either to particular components or to their 

interactions. For example, many architectures of system from a same company  

share the adoption of the same architectural and design patterns (GAMMA et al, 

1995; BUSCHMANN et al, 2007). This may also be the case when projects from 

different companies are from the same domain, thereby possibly sharing similar 

architecture decisions.  

The observations above call for an approach that enables software 

developers to: (i) detect both forms of architectural degradation in the evolving 

implementation of their systems, and (ii) encourage developers to reuse 

specification of architectural rules in order to avoid recurring symptoms of 

architectural degradation across different projects. The next section presents a 

motivation example in order to better illustrate the aforementioned problems. 

 

1.2. 
Motivating example 

The processes of architectural erosion and drift are further illustrated using a 

motivating example. This section also discusses their relationship (Section 1.2.1) 

as well as the main characteristics of these processes in projects that follow 

similar design decisions (Section 1.2.2). From herein, architectural degradation, 

architectural drift and architectural erosion are also referred to simply as 

degradation, drift and erosion. 
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Example of architectural erosion. Figure 1 shows an example of an 

architectural erosion symptom in the MobileMedia system (FIGUEIREDO et al, 

2008). This system realizes the architecture pattern Model-View-Controller 

(MVC) (BUSCHMANN et al, 2007). Each component is realized as a set of 

modules (classes) in the source code. For conciseness, only a few classes are 

shown in the figure. The erosion problem concerns an architecture constraint 

governing the intended exception handling policy: exceptions are incorrectly 

propagated through module interfaces across system components. As an example, 

the class BaseController defined in the Controller component invokes the 

Data services provided by AlbumData. BaseController ends up handling 

exceptions (e.g., PersistenceException) thrown by AlbumData, which 

should have been handled within the Model component. As a consequence, 

dependencies between code modules realizing the Controller and Model 

components are undesirably introduced. They lead to interaction violations, 

thereby contributing to the degradation of the intended software architecture of 

MobileMedia. 

 

Figure 1. MobileMedia (left) and HealthWatcher (right) architectures 

Example of architectural drift. Let us consider the aforementioned case of 

the class BaseController in Figure 1. This class plays a crucial role in the 

implemented architecture as it is in charge of realizing the Controller component 

in the architecture specification. However, this class is the source of a code 

anomaly, called Large Class (FOWLER, 1999). The class defines many methods, 

each of them realizing various non-cohesive functionalities of the system (e.g., 

video deletion and photo sorting). A side effect negative consequence is that it 

ends up contributing to the manifestation of an architectural drift symptom, called 

Ambiguous Interface (GARCIA, 2009). The implementation of this class provides 

an over-generalized interface - handleCmd - for handling all commands. This 
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means that the actual interface and the implementation of the BaseController 
module in the source code (and, therefore, the Controller component) are 

aggregating several responsibilities from different service requests that should be 

implemented independently. This drift symptom was addressed in a later version 

by MobileMedia developers. The BaseController class was further 

decomposed into smaller classes; each of them implementing a specific controller 

responsibility. The goal was to explicitly decompose the interface of the 

Controller component into simpler ones. 

 

1.2.1. 
Erosion and drift symptoms tend to be intertwined  

Previous works have shown how, in many cases, erosion and drift 

symptoms are somehow related (PERRY AND WOLF, 1992; MACIA et al, 

2012). Architectural drift symptoms often foster the later introduction of erosion 

symptoms and vice-versa. The left-hand side of Figure 1 illustrates an example of 

the relationship between erosion and drift symptoms in the MobileMedia. The 

class BaseController implements different services through the interface 

handleCmd. The amount of services exposed by handleCmd significantly 

increased throughout the system evolution. This interface bloat in turn forced 

BaseController to handle exceptions propagated from several non-related 

components. The handling of such exceptions should not be a responsibility of the 

Controller component according to the original MVC decomposition, thereby 

characterizing the occurrence of several interaction violations. 

This example illustrates a direct relation between erosion and drift 

phenomena. Hence, in order to detect the architectural degradation, architects 

should consider blending the detection of erosion and drift symptoms into the 

same architecture specification. In this way, developers would be aware of both 

degradation processes by just considering one architecture document. Therefore, 

this simultaneous detection would prevent developers from introducing erosion 

symptoms due to reminiscent drift symptoms and vice-versa. In addition, 

intertwined occurrences of these symptoms are also a sign of severe stages of 

architectural degradation (MACIA et al, 2012). More specifically, recent studies 

have revealed that modules exhibiting both forms of degradation tend to manifest 
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more severe architecture instabilities in a project history than modules containing 

just one singular form of degradation (MACIA et al, 2012, MARA et al, 2011). 

 

1.2.2. 
Similar degradation symptoms can infect several projects  

Similar degradation symptoms can manifest in several projects (Section 

1.2.2). To illustrate this phenomenon, the right part of Figure 1 depicts the 

architecture of the HealthWatcher system (HEALTHWATCHER, 2012), which 

follows the decomposition prescribed by the Layer architectural pattern 

(BUSCHMANN et al, 2007). Certain modules of HealthWatcher suffer from 

similar erosion and drift symptoms as those occurring in MobileMedia modules. 

For instance, SearchComplData introduces interaction violations through 

exception propagation behavior, similarly to BaseController in 

MobileMedia. Also, it reifies drift symptoms related to the implementation of 

independent responsibilities, such as GUI and Persistence. In this way, 

SearchComplData has a similar code structure to BaseController (code 

containing several catch blocks). Unlike BaseController, it does 

not suffer from an interface bloat. Furthermore, these classes implement 

components with different responsibilities (i.e., Controller and GUI). 

The re-occurrence of similar degradation symptoms in both classes (Figure 

1) illustrates the need for reusing architectural constraints, instead of defining 

them from scratch. Architects would benefit from a single reusable abstraction 

that groups rules for detecting recurring symptoms of architectural erosion (via 

anti-erosion rules) and drift (via anti-drift rules). For instance, an architectural 

specification can group correlated anti-erosion and anti-drift rules that constrain 

MobileMedia component elements. More specifically, this specification 

encompasses anti-erosion constraints for the exception handling policy and tight 

coupling between non-related components. Also, the same abstraction groups 

anti-drift constraints for detecting symptoms related to interface bloat, such as 

large methods in BaseController. Therefore, this abstraction can be reused in 

HealthWatcher to constrain the dependencies between non-adjacent layers, the 

exception handling behavior and the size boundaries for GUI components such as 

SearchComplData. As we can perceive, the reuse of hybrid specification of 
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anti-erosion and anti-drift rules can help developers to reduce the effort of 

specifying such rules repeatedly in each project. These specifications are also 

referred in this dissertation as hybrid rules. Finally, companies would maintain a 

uniform and reusable base of anti-erosion and anti-drift rules in several projects to 

save resources and time in the specification of similar rules. 

In addition to the reuse "as is", architects would also benefit from 

specification mechanisms to specialize previously-defined anti-erosion and anti-

drift constraints and associate them with the same reusable abstraction. These 

mechanisms would allow architects to subtly adjust specific constraints to each 

system context. As an example, anti-drift rules that are based on size boundaries 

(i.e., thresholds), such as those applicable to BaseController, should be 

adjusted to other systems (e.g., SearchComplData in HealthWatcher). 

In summary, the motivating example illustrated the need for supporting: (i) 

the hybrid specification of anti-erosion and anti-drift rules; and (ii) reuse of hybrid 

rules from a base of uniform anti-degradation rules (i.e., the set of anti-erosion 

and anti-drift rules) in multiple projects. 

 

1.3. 
Limitations of related work 

Several techniques have been devoted to support architectural degradation 

detection (EICHBERG et al, 2008; MOHA et al 2010; MARA et al, 2011; 

MARWAN and ALDRICH, 2009; MERKLE, 2010; OLIVEIRA, 2011; SANGAL 

et al, 2005; TERRA and VALENTE, 2009; UBAYASHI et al, 2010). However, 

there are two main problems with the current state of the art. First, existing 

approaches usually promote the exclusive detection of either erosion (EICHBERG 

et al, 2008; MARWAN and ALDRICH, 2009; TERRA and VALENTE, 2009; 

UBAYASHI et al, 2010; OLIVEIRA, 2011) or drift symptoms (MARINESCU, 

2004; MOHA et al 2010; MARA et al, 2011). Even though these symptoms are 

often inter-related, these approaches are limited to solely focus on just one 

particular degradation symptom. The detection of either erosion or drift symptoms 

may not prevent the increasing decay of the software architecture (PERRY and 

WOLF, 1992; HOCHSTEIN and LINDVALL, 2005). For instance, the removal 

of the former symptoms may not imply the amelioration of the latter symptoms.  
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On the contrary, the strict focus on erosion detection may imply that 

architects perceive severe drift symptoms too late, when it is hard or costly to 

address them. The inverse is also true. Given the simultaneous occurrence of 

erosion and drift symptoms (HOCHSTEIN and LINDVALL, 2005; MACIA et al, 

2012), architects should be able to elaborate hybrid strategies for detecting both 

forms of degradation symptoms. These strategies ought to rely on the 

specification of architectural rules for drift and erosion prevention. 

Second, to the best of our knowledge, existing approaches only support the 

specification and checking of rules for particular systems and do not provide any 

mechanism to reuse them. As a consequence, the specification of such 

architectural rules becomes a repetitive task, as rules are often similar across 

multiple projects from the same domain or the same company (GAMMA et al, 

1995). Ideally, architects should be able to reuse anti-drift and anti-erosion rules 

across projects adhering to similar architecture decompositions. Nowadays, 

languages for describing architectural rules (EICHBERG et al, 2008; TERRA and 

VALENTE, 2009; UBAYASHI et al, 2010) do not provide this support. All these 

limitations of related work are discussed in more detail in Chapter 2. 

 

1.4. 
Proposed solution and contributions 

This dissertation addresses the limitations of related work by proposing a 

new Domain-Specific Language (DSL) for specifying rules to detect architectural 

degradation (Chapter 3). The proposed language, called TamDera
1 is the main 

contribution of this work and has two distinguishing features: (i) support for 

specifying and blending rules for erosion and drift detection in a unified way, and 

(ii) support for hierarchical and compositional reuse of anti-drift and anti-erosion 

rules. 

More specifically, the language provides a single abstraction, called 

architectural concept, which allows architects to impose anti-drift rules on 

components and map them to implementation elements. Similarly, architects can 

also impose anti-erosion rules on component interactions. These rules can be 

                                                 

1
TamDera stands for “Taming Drift and Erosion in Architecture”. 
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reused through compositional and hierarchical reuse mechanisms. For instance, 

anti-erosion and anti-drift rules can be reused through the specialization of rules 

associated with abstract architectural concepts.  

The second contribution is a tool to supports the language usage and rule 

enforcement in the source code (Chapter 3). The tool is unique as it integrates 

facilities for detecting both erosion and drift symptoms. Its implementation 

provides features to: (i) easily extend the set of strategies available for specifying 

anti-degradation rules, and (ii) check if the set of specified anti-degradation rules 

is inconsistent.  

As a final contribution, we evaluate the usefulness of supporting blend and 

reuse of architectural rules. The study encompassed 21 releases of 5 projects, and 

more than 600 anti-degradation rules (Chapter 4). The findings provide evidence 

for the usefulness of detecting the co-occurrence of erosion and drift symptoms in 

multiple projects and the value of supporting reuse of single and hybrid rules. Our 

analysis pointed out several cases where the exclusive detection and removal of a 

particular symptom was not sufficient to prevent architectural degradation. Even 

worse, by exclusively detecting erosion symptoms, developers neglected severe 

drift symptoms in later versions, or vice-versa. In addition, we observed that most 

rules defined in a particular project could be reused from rules previously defined 

for architectural and design patterns . They were responsible for detecting the 

majority of the degradation symptoms in each project. 

The contributions of this work were reported in papers, which have been 

published or are under submission. Some of the papers (in particular, papers #3 

and #4) represent preliminary results of our research work and only have marginal 

relation to this dissertation. However, those studies were instrumental to reveal 

the research problem being addressed in this dissertation. These papers are listed 

as follows:  

1. GURGEL, A., MACIA, I., GARCIA, A., MEZINI, M., EICHBERG, M., 

VON STAA, A., MITSCHKE, R. TamDera: Blending and Reusing 

Rules for Architectural Degradation Prevention; In Proceedings of 20th 

Symposium on the Foundations of Software Engineering (FSE'12). 2012; 

(in submission). 
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2. GURGEL, A., DANTAS, F., GARCIA, A. Um Estudo de Composições 

de Padrões de Projeto em CaesarJ. In Proceedings of the IV Latin 

American Workshop on Aspect-Oriented Software Development - LA-

WASP 2010. pags. 30-36. 2010. 

3. GURGEL, A., DANTAS, F., GARCIA, A. On-Demand Integration of 

Product Lines: A Study of Reuse and Stability. In Proceedings of the 2nd 

International Workshop on Product Line Approaches in Software 

Engineering - PLEASE '11 at ICSE'11, 2011; pags 35-39. 2011.  

4. DANTAS, F., GURGEL, A., GARCIA, A. Towards a Suite of Metrics 

for Advanced Composition Mechanisms. In Proceedings of the 2nd 

International Workshop on Empirical Evaluation of Software 

Composition Techniques -ESCOT 2011 at ECOOP'11. Lancaster, United 

Kingdom. 2011. 

The first paper reports the key results of this dissertation encompassing the 

design and evaluation of the TamDera language. The paper also provides a brief 

description of the tool. Many of our insights on the language design were gathered 

during the study reported in the second paper. The study involved the 

implementation of a code library of several design patterns. This experience 

enabled us to understand the importance of enforcing both anti-erosion and anti-

drift rules in implementation of these patterns. The third and the fourth papers 

focused on studies related to the integration and evolution of multiple software 

product lines. They also enabled us to grasp the importance of a unified approach 

for describing and enforcing anti-erosion and anti-drift rules. 

 

1.5. 
Dissertation structure 

The next chapters have the following purposes: 

Chapter 2- Background and Related Work: presents general background, basic 

terminology, and outlines related work on architectural degradation 

prevention. 
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Chapter 3- The TamDera Language: presents the TamDera language which 

allows the blend and reuse of anti-erosion and anti-drift rules. The chapter 

also depicts a tool implementation and design that supports TamDera.  

Chapter 4- Evaluation: presents and discusses results of a study tailored for 

evaluating the co-occurrence of erosion and drift symptoms and  reuse of 

hybrid rules in multiple contexts. 

Chapter 5- Conclusion: discusses the conclusions and the contributions for this 

dissertation, and describes planned future work. 
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