

23

2
Background and related work

As systems evolve, their size and complexity increasingly grow. As a result,

the preservation of their software architectures plays a crucial role in the longevity

of software systems (PERRY and WOLF, 1992; HOCHSTEIN and LINDVALL,

2005). Central to the architecture preservation is the use of effective techniques

that verify the conformance of the system implementation with respect to the

intended architecture. However, the verification of the intended architecture

design in the source code is widely recognized as a challenging task (ALDRICH,

2002; UBAYASHI et al, 2010).

This chapter presents terminologies and definitions associated with intended

architecture (Section 2.1). Section 2.2 describes concepts related to architectural

erosion and drift. The definition of intended architecture also includes the

selection of architectural (Section 2.3) and design patterns and modularity

principles (Section 2.4). This chapter also outlines existing work on supporting

the detection of architectural degradation symptoms (Section 2.5). Section 2.5.1

presents techniques that solely support the detection of erosion symptoms. Then,

Section 2.5.2 introduces techniques aimed at supporting the detection of

architectural drift symptoms. We refer to the motivating example (Section 1.2) in

order to illustrate the anti-erosion and drift techniques. Finally, we overview the

limitations of current techniques to holistically support the detection of both forms

of architectural degradation symptoms (Section 2.5.3).

2.1.
Basic terminology

Software architecture is concerned with the definition of architecture

components and their interactions as well as with the definition of constraints on

both of them (PERRY AND WOLF, 1992). Components are architectural entities

which encapsulate a subset of the system's functionalities (TAYLOR et al, 2009).

Each component interacts with other components in the system in order to access

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

24

their exposed functionalities. They restrict access to that subset via interfaces that

constrain which functionalities are exposed to the components (TAYLOR et al,

2009).

A component of the architecture description is realized by one or more

modules in the implementation. The term module is used to represent source code

elements, such as a package, an (implementation-level) interface or a class, which

contribute to the implementation of a coherent unit of functionality (CLEMENTS

et al., 2002). In certain cases, a module in the code can also partially contribute to

the implementation of a component (EICHBERG et al, 2008; TAYLOR et al,

2009). This means that inner elements of a module can eventually contribute to

the implementation of different architectural components. Inner module elements

refer to specific methods of a class and fields.

The intended architecture (or prescriptive architecture) is formed by the

explicit decisions made by the designers on the selection of components, their

interactions, and constraints related to them (TAYLOR et al, 2009). The intended

architecture decisions are mostly made prior to the system's construction

(GARLAN and SHAW, 1993). However, these decisions can be revisited and

consciously changed as the system evolves (TAYLOR et al, 2009).

On the other hand, the implemented architecture describes how the system

has been actually built (TAYLOR et al, 2009). In software projects, the

implemented architecture often does not match the intended architecture

(TAYLOR et al, 2009). Many prescribed architecture decisions can be

undesirably violated by the actual implementation of a system. These violations

might be introduced not only in the first version of the system implementation, but

also later through code changes during system evolution.

These violations represent architectural degradation symptoms (Section

2.2). In particular, the continuous adherence of constraints governing the

components and their interactions in the source code is hard to be verified. The

main reason is the frequent lack of an one-to-one relationship between

architectural components and implementation modules, as mentioned above. In

other words, in many cases a same module realizes more than one component. In

this dissertation, we are particularly concerned with these constraint violations.

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

25

2.2.
Architectural drift and architectural erosion

The preservation of the intended architecture in the implementation is also

related to ensuring that constraints governing components and their interactions

are not violated (Section 2.1). The violations of such constraints on components

and their interactions respectively characterize the process of erosion and drift

(Section 1.1). It is important to highlight that we adapted the definitions of these

processes presented in (MACIA et al, 2012; PERRY AND WOLF, 1992) to

establish a direct relationship between those definitions and component and their

interactions violations.

In the implementation, interactions between components are realized

through code dependencies between their modules, such as method invocations,

class inheritance, and object creation (EICHBERG et al, 2008). In this

dissertation, the term dependency is used to refer to each of those structural

relationships between modules in the code (TERRA et al, 2010). Each

dependency has an explicit direction, i.e., a source and a target.

Interaction constraints impose how the different components interact and

how they are organized with respect to each other implementation (PERRY AND

WOLF, 1992). As an example, the GUI component from the HealthWatcher

architecture (Figure 1) is not allowed to interact with the Data component. On the

other hand, component constraints impose expected structural properties on

modules realizing a component to the degree desired by the architect (PERRY

AND WOLF, 1992). For instance, the GUI component presented in the

motivating example has constraints establishing size boundaries to GUI modules.

The verification of interaction and component constraints is the source code

are challenging tasks (SANGAL et al, 2005; UBAYASHI et al, 2010). The reason

for this difficulty is manifold. First, the architecture design is comprised of a wide

range of design decisions, such as the adopted set of architectural patterns and

design patterns. Each single pattern establishes several constraints that are

relevant to the intended architecture (Section 2.3). Second, the architecture design

also involves the selection of modularity principles (Section 2.4) to be realized by

specific (if not all) components of a software architecture. Each principle can also

entail more than one constraint. Third, the violation of each single constraint

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

26

represents a symptom of the architectural degradation process. Even the

identification of a single component constraint violation is not trivial as the

implementation of a single component is often scattered through multiple modules

(Section 2.1). Fourth and more importantly, these several constraints are likely to

be repetitive and inter-related (Section 1.2.2). Then, the approach to specify these

constraints should be targeted at reducing architects’ effort.

There are many complementary factors in mainstream software projects that

contribute to the implemented architecture to depart from the intended

architecture, thereby leading to drift and erosion symptoms. They range from: (i)

deadline pressure and programmers that are unaware about intended architecture

decisions (TERRA and VALENTE, 2009), to (ii) out-of-date architectural

documentation (HOCHSTEIN and LINDVALL, 2005; MOHA et al, 2010) and

lack of proper tool support for verifying the adherence of the source code to the

intended architecture (MACIA et al, 2012).

2.3.
Architectural and design patterns

When defining the prescribed software architecture, many decisions need to

be made. The selection of architectural patterns (BUSCHMANN et al, 2007) and

design patterns (GAMMA et al, 1995) are basic steps in this process as they

provide complementary reusable solutions to architecturally relevant problems. A

pattern is a general reusable solution to a recurring problem when structuring a

software system (GAMMA et al, 1995).

Architectural patterns. Software architects often use architectural patterns

to guide the architecture building and understanding. Architectural patterns2

(BUSCHMANN et al, 2007) are specifically targeted at addressing architectural

level problems. Each architectural pattern solves a problem by prescribing a

specific architecture solution in terms of a set of components and interactions as

well as a set of constraints on how they can be used (CLEMENTS et al., 2010).

Therefore, each pattern entails various architectural constraints to be enforced in

2 In this dissertation, for simplification purpose, we use the terms architectural patterns

(BUSCHMANN et al, 2007) and architectural styles (CLEMENTS et al., 2010)

interchangeably.

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

27

the source code. More than one architectural pattern can be used in the prescribed

architecture of a software system.

Model-View-Controller and Layers are well-known examples of

architectural patterns (BUSCHMANN et al, 2007). The Layer pattern structures

applications into a group of components, where each of them is realized as a layer

that provides a cohesive set of services (BUSCHMANN et al, 2007). Layers

interact with each other according to a strict ordering relation (CLEMENTS et al.,

2010). More specifically, the modules realizing a layer at a specific level J, are

allowed to interact with the layer at the level J - 1 by the use its public services.

Hence, interfaces from the layer at the level J - 1 provide services used by the

layer at the level J (BUSCHMANN et al, 2007). On the other hand, the Model-

View-Controller pattern decomposes an interactive application into three types of

components. The Model component contains the core functionality and

application data. The View component displays information and realizes the

graphical user interface, while the Controller component is in charge of handling

user inputs.Data changes are consistently propagated from model to user interface

via the controller. As a consequence, implementation modules realizing the view

component cannot directly access services provided by the modules implementing

the model component.

Design patterns. Design patterns refer to problems at the detailed design

level and provide reusable common design structure which involves participating

modules and their interactions. Each design pattern is also formed by a set of

constraints governing these modules and interactions. Even though design patterns

are intended to address problems emerging at the detailed design stage, software

architects might want to explicitly select them. Their goal is to structure certain

architectural components in their intended architecture description. In this

dissertation, we refer to these cases as architecturally-relevant design patterns. In

fact, it is often the case that architects realize upfront that they should enforce, for

instance, that modules of certain components realize certain design pattern

constraints.

Façade and Chain of Responsibility are popular examples of design patterns

(GAMMA et al., 1995) that are employed to structure the intended software

architecture (EICHBERG et al, 2008; UBAYASHI et al, 2010). The pattern

Façade is often used in system architectures that are decomposed in subsystems

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

28

(GAMMA et al., 1995), where all the interfaces of a subsystem should be unified

in a singular interface, the so-called façade. The goal is to provide a higher-level

interface for the subsystem to make it easier to use. It also intends to decouple the

subsystem from clients and other subsystems. This pattern is also usually referred

in intended architecture descriptions following the layers pattern in order to define

that each layer should have only a single entry point. As a consequence, the access

to any service provided by the layer is made through the façade. In addition, only

the façade is allowed to access the internal services realized by the

implementation modules of a layer.

On the other hand, the pattern Chain of Responsibility (GAMMA et al,

1995) aims to avoid coupling between a sender of a request (i.e., client) and its

receivers by allowing more than one module to handle the request. Thus, the

receivers compose a chain where the request passes until an appropriate receiver

handles it. Thus, the pattern constrains how the implementation of services is

distributed in a chain of modules named handlers. The pattern also establishes an

interface which must be implemented by all handlers (i.e., concrete handlers).

This interface provides services which are exposed to component clients. Hence,

clients must access the interface to send their requests. In other words, they are

not allowed to directly access services provided by concrete handlers.

2.4.
Modularity principles

Modularity is concerned with the logical decomposition of a software

system into components (BUSCHMANN et al, 2007). In other words, modularity

in architecture design refers to a logical partitioning of the software architecture

that allows it to become manageable for the purpose of implementation,

maintenance and evolution (BUSCHMANN et al, 2007). Central to

modularization is deciding how to decompose the components that form the

logical structure of an application.

In order to achieve a modular architecture, a number of modularity

principles are selected and realized by the prescribed architecture. For instance, a

basic modularity principle is to minimize the strength of the coupling of each

system component (GARCIA et al, 2009; MARTIN, 2002). In addition, different

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

29

or unrelated responsibilities should be separated from each other in a software

architecture decomposition. These responsibilities should be attached to different

components (PERRY AND WOLF, 1992; GARLAN AND SHAW, 1993).

A complementary principle is the single responsibility principle (MARTIN,

2002), which determines that each component should be cohesive, i.e., being in

charge of addressing a single responsibility. The term cohesive refers to

components that have a well-defined purpose. The notion of component cohesion

is closely related to the narrow interface principle. The latter states that architects

should hide the complexity of each component behind an abstraction that has a

simple interface; the interface indicates how the elements interact with the entire

system (PERRY AND WOLF, 1992; BUSCHMANN et al, 2007).

The solutions documented by many architectural and design patterns are

also driven by the application of one or more modularity principles. For instance,

the layers pattern is intended to reduce the coupling of the layer components by

ensuring that each of them only interacts with the adjacent layers. Therefore, by

reusing existing patterns in the appropriate contexts, the architect is likely to

promote the application of the modularity principles. However, the mere choice of

architectural pattern does not prevent possible symptoms of architectural drifts

(Section 3.1.5). For example, two specific layers might become strongly coupled.

The strong coupling of modules realizing two layers might represent, for instance,

that either: (i) one of the layers is realizing a responsibility that should be

implemented by the other layer, or (ii) these two layers should be merged in a

single component.

2.5.
Related work

The prescribed architecture consists of a set of component and interaction

constraints (Section 2.1). Some of these constraints are defined in the architectural

and design patterns (Section 2.3) being adopted. Other constraints in the

prescribed architecture are also derived from the conscious selection and

application of modularity principles by software architects (Section 2.4). The

adherence of constraints governing the components and their interactions in the

source code are hard to be verified and enforced (Section 2.2). The violation of

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

30

component and interaction constraints represents symptoms of architectural drift

and erosion, respectively (Section 2.2).

Over the last decades, several anti-degradation techniques have been

proposed to support the detection of architectural degradation symptoms. Each of

these techniques usually relies on the specification of anti-degradation rules to

constraining either properties of individual components or constraining their

interactions. However, to the best of our knowledge, there is no technique whose

main purpose is to simultaneously support the detection of both erosion and drift

symptoms. Each technique is limited to only directly support the detection of

either erosion symptoms (Section 2.5.1) or drift symptoms (Section 2.5.2).

However, some techniques can be adapted in order to partially support the

detection of both symptoms (Section 2.5.3).

2.5.1.
Anti-erosion techniques

Techniques for detecting erosion symptoms provide mechanisms to

explicitly define the intended architecture of a system through the description of

adopted rules. These rules are limited to specifying the interaction constraints

(Section 2.1) and are called anti-erosion rules in this dissertation. These

techniques often provide automated support to check if the system's

implementation is in conformance to the intended architecture.

They often rely on static analysis of the implemented architecture to detect

erosion symptoms (TERRA and VALENTE, 2009; UBAYASHI et al, 2010).

These symptoms are distinguished in divergence and absence violations

(KNODEL and POPESCU, 2007). A divergence violation takes place when the

dependency constraints specified in the intended architecture are not respected in

the system implementation. On the other hand, an absence occurs when the

implemented architecture does not establish an expected dependency prescribed in

the intended architecture. In the following, we present the representative anti-

erosion techniques: Lattix's Dependency Manager Tool (SANGAL et al, 2005),

the Vespucci (EICHBERG et al, 2008) and Dependency Constraint Language

(TERRA and VALENTE, 2009). Our criterion was to select techniques which are

instrumentally supported by industry tools and techniques that encompass a wide

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

31

scope of different abstractions. In particular, the techniques involve abstractions

range from pseudo-natural languages to architecture models. Section 2.5.1.4 also

describes other anti-erosion techniques.

2.5.1.1.
Lattix's Dependency Manager tool

Lattix’s dependency manager tool (LDM) automatically extracts a

dependency structure matrix (DSM) (SULLIVAN et al, 2001) from source code to

represent module dependencies for a single project (SANGAL et al, 2005). The

goal is to enable architects to detect unexpected dependencies between modules

that violate constraints on component interactions.

A DSM is a square matrix where rows and columns represent modules. A

cell is marked when there is a dependency between the respective modules of the

selected row and column (SULLIVAN et al, 2001). For instance, module A (#1)

has dependencies with module B (third column) and module D (forth column).

The number in the cell indicates the strength (e.g., number of method invocations)

of the dependency.

Figure 2. Dependency structure matrix

LDM also provides graphic diagrams to exhibit components and their

modules (SANGAL et al, 2005). Users are able to establish architectural

components by grouping modules presented in the DSM. LDM allows architects

to visualize the DSM and establish rules for detecting only divergence violations

(SANGAL et al, 2005). In particular, it provides only two different dependency

relationships: can-use and cannot-use and, hence, architects can indicate whether

a component can or cannot interact on another one. Therefore, architects can use

LDM for checking whether GUI components accidently access Data components

in HealthWatcher architecture (Section 1.2). However, LDM does not enable

architects to detect absence violations.

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

32

2.5.1.2.
Vespucci

Vespucci enables reasoning about anti-erosion rules at the levels of

architecture design and implementation (EICHBERG et al, 2008). Vespucci uses

declarative queries to group source code elements named ensembles. Architects

can define an ensemble to represent each architectural component. An ensemble

groups modules and inner module elements that structurally belong together (e.g.,

same role defined by an architecturally-relevant design pattern) and share similar

anti-erosion rules. For instance, architects may define an ensemble to encompass

façades that provide model services to controller elements.

In addition, Vespucci also introduces a graphical notation based on arrows

and boxes for specifying expected and non-expected dependencies between

ensembles (EICHBERG et al, 2008). As an example, we create three ensembles

GUI, Business and Data to group code elements from each component of the

HealthWatcher architecture (Figure 3). Figure 3 depicts anti-erosion rules

governing the three ensembles. The architecture specification establishes that all

direct access from GUI to Data components and vice-versa are interaction

violations. In Vespucci, interaction violations are represented by the notation "!"

(Figure 3).

Figure 3. Modeling anti-erosion rules in Vespucci

Vespucci uses the Bytecode Analysis Toolkit (BAT) (EICHBERG et al,

2008) and Prolog (CERI et al, 1989) for supporting the static conformance

checking of anti-erosion rules in the system implementation. It uses BAT to

generate the system prolog-based representation from its Java bytecode. The anti-

erosion rules defined in the graphical specification are translated to prolog queries

to support the checking of architectural violations.

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

33

2.5.1.3.
Dependence Constraint Language

Dependence constraint language (DCL) is a domain-specific language that

allows architects to constrain component dependencies in object-oriented systems

(TERRA AND VALENTE, 2009). It supports the detection of divergence and

absence violations. DCL uses imperative pseudo-natural statements to establish

anti-erosion rules. It composes components by the grouping modules. In

particular, architects are able to select a set of packages or classes filtered by

common name expressions such as default suffixes and prefixes.

Listing 1 depicts the specification of three anti-erosion rules in DCL. At

first, we define components that enclose the respective GUI and Data code

elements. As we can notice, DCL follows a different terminology from ours

(Section 2.1). DCL uses the keyword module to refer to architectural components.

As an example of anti-erosion rule, the statement 'GUI cannot-invoke Data '

establishes that any GUI element is not allowed to invoke any service provided by

any Data element.

Listing 1

 module GUI: healthwatcher.view.*

 module Data: healthwatcher.data.*

 GUI cannot-invoke Data

2.5.1.4.
Other anti-erosion techniques

Marwan and Aldrich developed SCHOLIA, an embedded language for

documenting the system's architecture in the source code and checking its

conformance with a prescribed architecture (MARWAN and ALDRICH, 2009).

Morgan defined a domain-specific language to specify and check anti-erosion

rules in the system implementation (MORGAN, 2007). Ubayashi et al. presented

Archface, a programming-level interface to represent the intended architectural

design and detect erosion symptoms in the system's implementation (UBAYASHI

et al, 2010). Oliveira presented the PREViA approach which provides features for

defining components and expected interactions in the intended architecture using

UML class and component diagrams (OLIVEIRA, 2011). It prevents architectural

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

34

erosion by evaluating the conformance between the system implementation with

respect to the intended architecture.

2.5.2.
Anti-drift techniques

Anti-drift techniques are aimed at supporting the detection of component

constraint violations in order to reveal symptoms of architectural drift (MARA et

al, 2011; MOHA et al, 2010; MARINESCU et al, 2005). In this case, developers

specify the intended architecture of a system through anti-drift rules. These rules

are often metrics-based strategies that quantify structural properties of modules

realizing software components (MARINESCU et al, 2005; LANZA and

MARINESCU, 2006). To be more exact, anti-drift techniques usually rely on

detection strategies (MARINESCU, 2004) which are based on expressions that

combine logic operators and static code metrics. The goal is detecting

architecturally-relevant anomalous modules in the implementation (MACIA et al,

2012). In fact, anomalous modules in the implementation are often the source of

relevant architectural drift symptoms (GARCIA et al, 2009; MACIA et al, 2012).

Hence, the identification of such anomalous modules may reveal violations of

certain modularity principles (Section 2.4) in the source code (MACIA et al,

2012). They represent the violation of intended constraints for one or more

individual components.

Marinescu et al. presented iPlasma, a tool that relies on strategies

(MARINESCU, 2004) to detect anomalous code elements (MARINESCU et al,

2005). Moha et al. presented a methodology to detect anomalous code structures

by combining metric-based evaluations to structural properties of modules

(MOHA et al, 2010). Mara et al. proposed Hist-Inspect which enables the

definition and application of conventional detection strategies (MARA et al,

2011). In particular, we selected Hist-Inspect as representative tool to illustrate the

anti-drift techniques.

Hist-Inspect. It declares each anti-drift rule as a detection strategy to

identify occurrences of an implementation module anomaly. The tool supports

conventional metrics, such as coupling (CBO) and lines of code (LOC). The anti-

drift rules are defined in XML format as illustrated in Listing 2. This listing

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

35

contains a strategy for detecting the GUI classes that may implement more

responsibilities than desired (Section 1.2). It defines an anomaly named

unexpectedComplexGUI that may be manifesting in classes (lines 07-09). It

also instantiates a strategy to detect this anomaly (lines 03-05). This strategy (line

05) checks all system classes (i.e., including those classes that do not realize the

GUI component) and retrieves the ones who have 100 or more lines of code or

whose cyclomatic complexity is greater or equals to 5. These metrics were

selected for illustrative purpose, and other metrics could be used for detecting

similar or different drift symptoms.

The strategy may retrieve classes neglecting this rule but that are not part of

the GUI component. This negative aspect of Hist-Inspect is also applicable to

other existing anti-drift techniques. As a consequence, architects have to spend

resources in the manual identification of anomalous GUI classes from those which

are retrieved by the tool. This situation occurs given the inability of many anti-

drift techniques for exploiting component properties in the source code (MACIA

et al, 2012).

Listing 2

 01: <?xml version="1.0" enconding="UTF-8"?>
02: <rule-catalog>

03: <rule id="sampleRule"
04: anomaly="unexpectedComplexGUI"

05: expression="LOC >= 100 || CC >= 5"/>
06: </rule-catalog>

07: <anonaly-catalog>
08: <anomaly id="unexpectedComplexGUI">
09: applyTo="class"/>
10: </anomaly-catalog>

To the best of our knowledge, state-of-art techniques for preventing

architectural drift are limited to only identifying symptoms of architectural drift in

system's implemented architecture. Consequently, developers can introduce

unacceptable interactions (i.e., erosion symptoms) between components (Section

1.2). Moreover, these techniques usually only support the definition of anti-drift

rules to all modules of a program as a whole. In other words, they often do not

support the specification of rules to particular components, taking into

consideration their properties and responsibilities. According to (MACIA et al,

2012), this inability impact the use of such techniques to detect relevant

anomalous modules which are impairing the architecture modularity. Finally,

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

36

these techniques support anti-drift rules specified for a particular system.

Therefore, they cannot be reused in other systems even though few adjustments

are usually required to detect similar architectural anomalies in different contexts

(MOHA et al, 2010) (Section 1.2).

2.5.3.
Techniques for detecting both degradation symptoms

As far as we know, a few techniques can be adapted in order to partially

support the simultaneous detection of erosion and drift symptoms (PMD, 2012;

SEMMLE CODE, 2012). One of them is a recently-developed tool, called

Semmle Code (SEMMLE CODE, 2012), which is based on a source code query

language (VERBAERE et al, 2008). This tool allows architects to elaborate code

queries taking into consideration several properties of source code elements such

as method invocations, lines of codes and depth of inheritance tree. Hence,

architects can define queries to check whether modules that are relevant to

architecture (i.e., those which realize a component) violate any component or

interaction constraints.

Listing 3 illustrates code queries that check the conformance of an anti-

erosion rule (lines 01-11) and anti-drift one (lines 13-20) in the HealthWatcher

architecture (Section 1.2). The former checks if there is a class that realizes the

Data component and has any method invoked by a GUI module. The latter aims

to detect anomalous GUI modules. Such modules may manifest drift symptoms.

More specifically, it checks if a class from the package GUI has 100 or more lines

of code and whose cyclomatic complexity value is greater or equals to 5. In

particular, GUI modules should just delegate request to the Controller and,

thereby, they use to have few lines of code.

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

37

Listing 3

 01: //R1: gui classes cannot directly access data c lasses
02: from Class guiClass , Class dataClass, Method c lassMethod
03: where (
04: guiClass.getPackage ().getName ().
05: matches("%healthwatcher.gui%") and
06: dataClass.getPackage ().getName ().
07: matches("%healthwatcher.data%")
08:)
09: and guiClass.getACallable().calls(classMethod)
10: and dataClass = classMethod. getDeclaringType ()
11: select guiClass, dataClass, classMethod
12:
13: //R2: GUI classes are expected to have low comp lexity
14: from Package p, Class c , MetricCallable m
15: where p.getName().matches("%healthwatcher.gui%")
16: and c.getPackage() = p
17: and m. getDeclaringType () = c
18: and c.getLocation().getNumberOfLinesOfCode() >= 100
19: and c.getCyclomaticComplexity()>= 5
20: select c, c.getLocation().getNumberOfLinesOfCod e()

We highlight two issues in Listing 3 regarding the detection of architectural

erosion and drift symptoms. First, each query explicitly specifies the source code

elements whose properties are being checked instead of specifying architectural

components. For instance, the second rule (lines 13-20) checks the size and

complexity of classes from the package healthwatcher.gui (line 15). All

queries that refer to the GUI component (e.g., R1 - lines 01-11) replicate the same

expression (line 15) to select the modules realizing the component. Hence,

whenever the architectural component changes, all related queries require

modifications. As an example, rename operations into the package

healthwatcher.gui require modifications on all rules referring to the GUI

component (e.g., R1 and R2 from Listing 3). The second issue is that code query

languages often relies on syntaxes similar to SQL (TROPASHKO and

BURLESON, 2007). This situation can restrict the use of these techniques to

architects who have limited familiarity with query languages.

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

