

62

4
Evaluation

Existing approaches for preventing architectural degradation promotes the

exclusive detection of either erosion or drift symptoms (Section 2.5). The design

of TamDera is based on the assumption that by supporting the detection of both

erosion and drift symptoms, developers may better prevent the increasing decay of

software architectures (Chapter 3). The use of TamDera can help to avoid the

strict focus on erosion detection, which often imply that architects perceive severe

drift symptoms too late, when it is hard or costly to address them.

In this context, the usefulness of the TamDera language is largely

dependent on how frequent; in fact, the same location in the program becomes the

locus of inter-related erosion and drift symptoms. If these symptoms are somehow

related, it is likely that architects will benefit from hybrid detection rules

supported by TamDera. The relation of these symptoms can be revealed in two

ways: (i) their TamDera anti-degradation rules are logically blended, i.e.,

associated with the same architectural concept in the architecture model, or (ii) a

drift symptom encountered in a version is perceived to provoke an erosion

symptom in a later version. The usefulness of TamDera is also dependent on its

adequacy to promote reuse of anti-degradation rules.

Therefore, we defined two research questions that drove our evaluation and

are addressed in this Chapter:

(i) how significant is the number of modules in evolving systems

exhibiting inter-related erosion and drift symptoms?

(ii) to what extent can anti-erosion rules and anti-drift rules be reused

by one or more projects?

The following subsections describe the target applications (Section 4.1), the

study procedures (Section 4.2), the evaluation settings (Section 4.3), the results

(Section 4.4), and threats to validity (Section 4.5). Section 4.6 summarizes the

study results.

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

63

4.1.
Target applications

We selected applications for which either the intended architecture

specification or the original architects are available. Otherwise, we are not able to

investigate the veracity of both kinds of anti-degradation rules and the

architectural degradation symptoms being detected. We also looked for systems

adhering to architecture decompositions that shared architectural styles and design

patterns. The goal was to identify a subset of systems where opportunities of reuse

of rules could be explored. At the same time, those systems need to be from

different domains and designed by different developers. The goal was to check

whether recurring rules could be actually reused even in extreme cases, where the

dominant domains and developers’ backgrounds were different. We also selected

systems that underwent severe degradation stages and were continued and

redesigned in follow-up projects.

Based on these criteria, we first selected three systems: MobileMedia

(FIGUEIREDO et al, 2008), HealthWatcher (GREENWOOD et al, 2007), and

MIDAS (MALEK et al, 2007). However, we took into consideration five projects.

The reason is that the original Java projects of the first two systems manifested

major symptoms of architectural degradation over time (Section 1.2). Then, two

new follow-up projects (SOARES ET AL, 2007; HEATHWATCHER, 2012)

started and consisted of significant architecture re-structuring of both systems.

The systems were partially re-designed with aspectual decompositions and re-

implemented with AspectJ (ASPECTJ, 2012). We considered both groups of

projects in our evaluation to check if unchanged or refined design rules could be

reused. Despite of being projects designed by distinct architects, they share, in

many cases (e.g., Section 1.2), similar design decisions. HealthWatcher is a web

system used for registering complaints about health issues in public institutions.

MobileMedia is a product line that manages different types of media on mobile

devices. MIDAS is a lightweight middleware for distributed sensor applications

(GARCIA et al, 2009). These projects were previously used in studies of

architectural degradation and refactoring (GARCIA et al 2009; DANTAS et al

2011; MACIA et al 2012). Therefore, we were able to access their degradation

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

64

symptoms from previous reports and evaluate the adequacy of TamDera rules to

detect them.

4.2.
Study procedures

The study used TamDera’s abstractions and mechanisms, including the

notions of concepts, concept mapping, concept inheritance, constraint sets, anti-

erosion and anti-drift rules, and rule overriding (Section 3.1). The study was

conducted in three major phases:

Phase 1: Identification of architectural concepts. We accessed the

available documentation to support the identification of architecturally-relevant

concepts in each project. High-level architecture models were available for all the

five projects (TAMDERA, 2012). There were also specific models for certain

versions where the intended architecture was modified. The subject systems make

use of several architectural styles, such as MVC, Layers (Section 2.3) and

Aspectual Design (SOARES et al, 2007). They also implement several design

patterns that are often used to realize architecture decompositions, such as Chain

of Responsibility and Façade (GAMMA et al, 1995). We also referred to these

patterns to guide the specification of architectural concepts. As the pattern roles

often rely on abstract classes (GAMMA et al, 1995), we naturally mapped the

architectural concepts to these classes. Finally, we performed a peer revision with

the original architects of each system to guarantee that the concepts were good

enough to represent the key decisions of the intended architectures.

Phase 2: Iterative improvement of anti-degradation rule specifications.

We also referred to the architecture models to specify some of the interaction

constraints (i.e., anti-erosion rules). The documentation of styles and patterns

were carefully examined to specify the rules for each concept identified in Phase

1. For instance, the responsibilities and characteristics of style elements and

design pattern roles were used to specify the anti-drift rules. The system

developers also validated and provided us with a list of suggestions to enhance

rule definitions based on their architecture knowledge. All the concepts and their

corresponding rules were made available at the study website (TAMDERA,

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

65

2012). In a final step, we generalized rule specifications, so that we could reuse

them across the 5 projects.

Phase 3: Assessment. We analyzed the co-occurrences of both erosion and

drift symptoms. Then, we investigated the relation of the occurrences of these

processes throughout the later versions of each system. In addition, we assessed

the reuse of hybrid rules for preventing architectural degradation in each project

and also how these rules detect the same kind of degradation symptom across

multiple projects. The goal was to assess if the TamDera's mechanisms promote a

significant degree of rules’ reuse and if these rules are efficient to detect the

degradation symptoms.

4.3.
Evaluation settings

Our study evaluated the occurrence of inter-related erosion and drift

symptoms as well as the reuse of their corresponding rules across the 5 projects

(Section 4.1). First, in order to analyze the significance of co-occurring erosion

and drift symptoms (Section 4.4.1), we compared : (i) the percentage of code

elements containing both forms of degradation symptoms, with (ii) the number of

code elements containing at least an erosion symptom or a drift symptom. The

idea was to check the proportion of modules possibly manifesting inter-related

drift and erosion symptoms, when compared to the total number of modules

containing any kind of symptom. The procedures to assess the reuse of TamDera

rules are next described. Finally, a full description of the study settings is

available at (TAMDERA, 2012).

Reuse assessment. The reuse assessment relied on quantifying the anti-

degradation rules that were reused, and contrasting this number with those rules

defined from scratch. This reuse measure was calculated by the percentage of

rules that are reused out of the total of them (i.e., both reused and non-reused

rules). For a single project, we took into consideration the rules within the project

file and the reused rules from the abstract_rules file (Section 3.1.4.2). As an

example, consider the HealthWatcher specification in Figure 8, which reuses 2

rules from the super concept GUI (R3 and R4), overrides two rules (R1+ and

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

66

R2+) and defines a new anti-erosion rule (R5+). Hence, the total number of rules

is 5, of which 2 are reused, resulting in a reuse degree of 40% (2 out of 5 rules).

Effective reuse assessment. Then, we identified the reused rules that

actually detected architectural design problems. These rules are named effective

reused rules. We counted the number of classes containing degradation

symptom(s) to evaluate the effective reuse of rules. Then, we distinguished the

symptoms that were detected by reused rules from those defined from scratch.

Hence, the effective reuse was evaluated as the percentage of degradation

symptoms identified by the reused rules out of the total of degradation symptoms

(i.e., including those identified by non-reused rules). For illustration, consider the

numbers (highlighted values) on the right-hand side of the rules in Figure 8, which

correspond to the number of erosion and drift symptoms detected by the

corresponding rule. In the case of HealthWatcher, there are 2, 5, 6, 0, 1

degradation symptoms detected by R1, R2, R3, R4, R5, respectively. Hence, the

effective reuse is 42.8% (6 out of 14 rules), as 6 degradation symptoms were

detected by the reused rule R3. The multi-project effective reuse was evaluated in

a similar way, however, by considering only rules that detect degradation

symptoms in at least two different projects.

4.4.
Study results

 Our evaluation was based on the analysis of the architectural specification

files produced for 8 versions of HealthWatcher, 7 versions for MobileMedia and 2

versions of MIDAS. We also considered the specification files of the first and

fourth AspectJ versions of MobileMedia and HealthWatcher. So, we analyzed 21

versions of TamDera specifications in total. The files for two subsequent versions

of the same system are different only when there were one or more changes to the

architectural rules.

The evolution history of all systems underwent architecturally relevant

changes. The MobileMedia evolution was guided through the addition of new

features (FIGUEIREDO et al, 2008), whereas the HealthWatcher history mostly

encompassed refactorings of specific modules in order to adopt architecturally

relevant design patterns (GREENWOOD et al, 2007). The two versions of

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

67

MIDAS are those before and after restructurings to improve the system's

modularity and adaptability (GARCIA et al, 2009). Therefore, the anti-

degradation rules of the target projects had suffered modifications over their

evolutions.

In order to present the results, we chose to focus on the data of: (i) versions

1, 4 and 8 of HealthWatcher, (ii) versions 1, 4 and 7 of MobileMedia, (iii)

versions 1 and 4 of the aspectual implementation of both systems, and (iv) the two

versions of MIDAS. These versions are those that suffered from the most widely-

scoped changes in both implementation and architecture levels along the system's

evolution. Therefore, they help us to better illustrate the study results. We name

these versions as HW1, HW4, HW8, MM1, MM4, MM7, HA1, HA4, MA1, MA2,

MIDASBEF and MIDASAFT, respectively. The analysis encompassed more than

600 anti-degradation rules and more than 300 concept definitions. Table 2

summarizes the amount of concepts, rule types, and the amount of classes in the

code that actually manifested degradation symptoms in each analyzed version.

The number of anti-degradation (ADG) rules is the tally of anti-erosion (AE) and

anti-drift (AD) rules.

Table 2. Properties of TamDera system specifications

 AE = anti-erosion; AD = anti-drift; ADG = anti-degradation; DG = degradation

4.4.1.
Co-occurring erosion and drift symptoms

Simultaneous occurrences of erosion and drift symptoms. We evaluated

the simultaneous occurrence of drift and erosion symptoms in the same modules.

This provided a first evidence on the likelihood of those symptoms being

somehow inter-related. Figure 11 shows the results. The percentage of the

symptoms was computed based on the total of degradation symptoms for each

 MM MA HW HA MIDAS

 1 4 7 1 4 1 4 8 1 4 AFT BEF
of concepts 22 24 24 28 30 24 45 76 27 49 26 28
of AE rules 22 23 32 25 33 34 50 66 36 52 20 20
of AD rules 25 25 27 29 35 33 44 51 37 52 22 26

of ADG rules 47 48 59 54 68 67 94 117 73 104 42 46
of classes where
occur DG

9 14 16 8 12 43 49 60 36 41 49 45

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

68

version described in Table 2 (last row). The histogram presents the percentage of

classes containing only erosion symptoms (ES), only drift symptoms (DS) and

both of them (DGS). On average 45% of the HealthWatcher and MobileMedia

classes, which exhibit degradation symptoms, contain both erosion and drift

symptoms. MIDAS was an exception for the reasons further discussed in this

section.

0%

20%

40%

60%

80%

100%

MMv1 MMv4 MMv7 HWv1 HWv4 HWv8 MIDASBEF MIDASAFT

Erosion Symptom

Degradation Symptom

Both Degradation Symptoms

MM = Mobile Media

HW = HealthWatcher

Figure 11. Analysis of co-occurring erosion and drift symptoms

In Figure 11, we also observe that MM1 presents a lower DGS measurement

in comparison to the other ones. Particularly, only the class BaseController
(Section 1.2) had both degradation symptoms. It implements the entire

management of all media types. Throughout the MobileMedia evolution, new

controllers were created and the management media types were shared by the

controllers. As a consequence, the number of classes containing both symptoms

increased along the system evolution as more controllers had both degradation

symptoms. On the other hand, the HealthWatcher measures were practically the

same across the versions. It encompassed several GUI classes, such as

SearchComplData (Section 1.2) and Façade classes that are used as entry-points

for different layers. They contained drift symptoms, such as large methods

associated with the accidental handling of exceptions from non-related

components (Section 1.2).

The symbiosis of erosion and drift detection. It could be that an extent of

these co-occurring drift and erosion symptoms were just accidentally affecting the

same module, but has no conceptual or historical relation. However, we observed

that, on average, 85% of co-occurring symptoms were revealed by rules bound to

the same architectural concept. These symptoms are referred to as concept-

related. For instance, rules AER1 and ADR1 (Section 3.1.1) rely on the GUI

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

69

concept and detect both degradation symptoms that occur in SearchComplData

(Section 1.2). We also observed that, in many cases, a pair of drift and erosion

symptoms was concept-related, but they were not necessarily occurring in the

same modules. These are typically the case of hybrid rules for concepts related to

patterns and styles (Section 4.4.2). Therefore, it would be difficult to detect these

concept-related symptoms through the use of individual techniques (Section 2.5)

for drift and erosion.

Erosion detection alone does not prevent degradation. If we also take

MIDAS into consideration, the simultaneous occurrence of erosion and drift

symptoms decreases from 45% to 35%, which is still significant (Figure 11).

MIDAS was developed using a middleware environment in charge of strictly

enforcing the conformance of its implementation to the intended architecture

(MALEK, 2007). It means that no interaction violation (i.e., erosion symptom)

would remain in the code and, therefore, this system’s versions did not exhibit any

erosion symptom (GARCIA et al, 2009).

However, the quality of MIDAS architecture had progressively declined

until the point where a major restructuring was required (GARCIA et al, 2009).

The reason was that several components of MIDAS were progressively exhibiting

drift symptoms: they increasingly lost their original conceptual coherence (i.e.

purpose) as their implementations had evolved to provide multiple non-related

services. In other words, they were increasingly manifesting anomalies related to

the “single responsibility” principle (MARTIN, 2002). The MIDAS architecture

significantly decayed due to the continued incidence of architectural drifts

(GARCIA et al, 2009; MACIA et al, 2012). Even though the developers were

concerned with erosion prevention, the MIDAS architecture became susceptible to

degradation through an architectural drift process. Hence, this scenario reinforces

the importance of the early detection of both degradation symptoms provided by

TamDera (Section 3.1.3). More importantly, we observed in the MIDAS case that

the hybrid rules would be beneficial to diagnose the following fact: the

enforcement of anti-erosion rules might be the actual cause of drift rule violations.

This could be easily observed via TamDera specifications when both rules are

bound to the same architectural concept.

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

70

Drift and erosion symptoms throughout systems' evolution. We also

observed other interesting cases. Our analysis revealed that erosion symptoms in

early versions can favor drift problems in later versions and vice-versa (Figure

12). For instance, in HealthWatcher, several method declarations were signalizing

exceptions to other components, but those exceptions were supposed to be

internally handled. For instance, Figure 12 illustrates the AbsFacade whose

method updateEmployee has cases of erosion symptoms related to the throwing

of exceptions. Those exception declarations were placed in methods in parent

classes (e.g., AbsFacade), and those erosion problems in turn caused drift

symptoms in children classes (e.g., HealthWatcherFacade). The latter classes

were forced to log the occurrence of these exceptions and throw them as defined

in the parent class. This situation increased the internal complexity of children

classes as well as their coupling degree with neighboring components.

Figure 12. Erosion symptoms caused drift problems in HealthWatcher

There were also cases where drift symptoms in early versions were the

source of later violations in the project history. For instance, the number of

responsibilities realized by the Controller component increased through

successive versions. In later versions, this responsibility overload forced the

Controller to access information made available from different components,

thereby contributing to the establishment of unintended dependencies between

the former and the latter ones. The analysis revealed that 66% of drift symptoms

in Controller classes were sources of interaction violations emerging in later

versions.

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

71

Identifying and removing co-occurring symptoms is not trivial. When

both kinds of symptoms infect the same module, someone could expect that by

removing one symptom, the other will be easily detected and fixed as well. For

instance, when removing of unacceptable access of SearchComplData (erosion

symptom) to Data services, someone could observe that the class is inadequately

addressing other responsibilities, such as handling data-specific objects (drift

symptom). This expectation motivated us to investigate how often erosion and

drift symptoms that infected the same module could be simultaneously fixed.

However, this behavior was not observed in more than 61% of all the co-

occurrences detected in the target systems. For instance, in the AspectJ project of

HealthWatcher all the erosion symptoms in the GUI classes were addressed

through the modularization of Persistence and Transaction exceptions. This

refactoring reduced the number of responsibilities that GUI classes were

undesirably dealing with. However, GUI classes remained infected by drift

symptoms as they introduce a tight coupling degree between GUI and Business

layers. This co-occurring problem could be detected by TamDera as the hybrid

rules for detecting both problems would be defined in the same GUIHW concept.

There were also cases where the removal of drift problems did not imply on

the detection and removal of related erosion symptoms. For instance, around 83%

of all the drift problems in the Controller classes of MobileMedia were addressed

by decomposing them in micro controllers. Thereby, each specific controller was

responsible for dealing with a specific functionality. However, after this

architecturally-relevant refactoring, the erosion symptoms persisted in the code as

Controllers continued to deal with exceptions propagated by the Data component

(Section 1.2). These scenarios might suggest that: (i) the detection of an erosion

problem does not imply that it is easy to identify a concept-related drift problem

occurring in the same code module and vice-versa, and (ii) relying on techniques

for detecting just one kind of degradation symptom (Section 2.5) are not enough

to enable developers to prevent architectural degradation.

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

72

4.4.2.
Reuse analysis

Significant reuse of rules. The second study goal was to analyze the

potential reuse of TamDera rules in different contexts. We elaborated sources of

reusable rules specifying architectural constraints (Section 4.2). These rules were

reused in the target projects. Table 3 presents the amount of reused rules for each

system. Similarly to Table 2, we distinguish the amount of anti-erosion, anti-drift

and anti-degradation rules. An analysis of the last row of Table 3 reveals that 72%

of the specified rules were reused on average, taking into consideration the total

number of specified rules for the all systems. This finding suggests that architects

can significantly save resources on the development and maintenance of

architectural rules shared by several projects. Changes applied to shared rules are

propagated through the reuse mechanisms of TamDera (Section 3.1.4) to multiple

projects.

Table 3. Reuse of anti-degradation rules

AE = anti-erosion; AD = anti-drift; ADG = anti-degradation;

Reuse of style and pattern constraints. We observed that a large extent of

the reused rules, specified in reusable concepts, was related to architectural styles

and design patterns (Section 4.2). The definition of each single style or pattern is

often formed by a cohesion set of component (anti-drift) and interaction (anti-

erosion) constraints (Section 3.1.5). For instance, the Controller classes of

MobileMedia realize the design pattern Chain of Responsibility (CoR) (GAMMA

et al, 1995). This pattern reduces the coupling between the sender of a request to

its receiver by delegating the request handling to multiple objects.

Listing 14 presents part of a reusable hybrid rule associated with the CoR

pattern. They define drift and erosion rules for code elements realizing the

Handler concept. Those elements are architecturally relevant as they handle

requests coming from other components. The interface to clients as well other

 MM MA HW HA MIDAS

 1 4 7 1 4 1 4 8 1 4 AFT BEF
of reused AE rules 19 19 23 20 22 16 32 48 18 50 15 15

of reused AD rules 20 21 26 23 25 27 36 42 31 54 13 13

of reused ADG rules 39 40 49 43 47 43 68 90 49 73 28 28
of ADG rules 47 48 59 54 68 67 94 117 73 104 42 46
% of RADG rules 82 83 83 79 70 64 72 76 67 70 66 60

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

73

concepts and rules of the CoR were removed from Listing 14 for illustrative

purpose. First, it defines an anti-drift rule constraining the coupling strength of

each concrete class handling the request (ConcreteHandler, lines 01-04). The

coupling threshold is represented by the constant LOW_COUPLING. Second, there

is also a reusable anti-erosion rule to prohibit direct calls of clients to concrete

handlers (line 05). More specifically, those clients are realizing other architectural

concepts and should access a specific interface to send their requests. This

example shows how drift and erosion rules of a single pattern are mutually-related

(Section 1.2): while the former ones enforce structural properties of modules

realizing pattern concepts, the latter ones constrain their interaction with other

architecturally-relevant concepts of the system.

Listing 14

 01: constraintset ConcreteHandler {
02: thresholds: LOW_COUPLING
03: CBO < LOW_COUPLING
04: }
05: Client cannot-invoke ConcreteHandler

Significant detection of degradation symptoms by reused rules. As

previously mentioned, 72% of the rules were reused. The remaining 28% were

particularly defined for specific project concepts. More importantly, we observed

that a significant number of erosion and drift symptoms were detected by reused

rules. They were responsible for detecting on average 75% of the existing

symptoms. Table 4 illustrates the effective reuse (Section 4.3) for each system

version. These measures represented a balance between the reused rule percentage

and the symptoms detected by them. In other words, 72% of the rules were

reused, and they were responsible for detecting, approximately, 75% of all

degradation symptoms. The 28% of the remaining (non-reused) rules detected

25% of the degradation symptoms. Therefore, the reused rules had similar

efficiency to detect architectural deviations in comparison to the non-reused rules

unique to each project.

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

74

Overriding and anti-drift rules. There was a need to subtly override

reused rules in 11% of the cases (TAMDERA, 2012). For instance, as we

mentioned, the concept GUIHW overrides anti-drift rules from GUI to impose

more restrictive constraint boundaries (Section 3.1.4.2). These boundaries are

used to capture particular symptoms in HealthWatcher GUI elements. In such

scenarios, we decided not to modify these rules in the GUI super-concept.

Otherwise, it would potentially generate false positives in the MobileMedia

analysis as ViewMM is also a sub-concept of GUI. In fact, these restrictive

boundaries are not applicable for the ViewMM code elements (Figure 8). Rule

overriding (Section 3.1.4.2) was often useful to avoid false positives and false

negatives, in addition to capture particular symptom intricacies of a project. It was

also particularly interesting for addressing adjustments required in the aspect-

oriented refactorings of the MM and HW architectures (Section 4.1). For instance,

concept mappings need to be often overridden to consider: (i) the inclusion of new

code elements in the AspectJ implementation, and (ii) the rename or removal of

certain classes. Thresholds of drift rules also needed to be replaced in

specializations of architectural concepts.

Table 4. Detection of degradation symptoms by reused rules

 MM MA HW HA MIDAS
 1 4 7 1 4 1 4 8 1 4 BEF AFT

of DG 24 41 55 20 33 116 140 159 85 105 50 46
of DGRR 21 37 46 16 27 85 108 113 58 81 28 25
ERR 87 90 83 80 81 73 77 71 68 77 56 54
DG = degradation symptoms; DGRR = degradation symptoms detected by reused rules;

ERR = effective reuse of rules

Detection of the same degradation symptom in multiple projects. The

reused rules were also effective in the detection of the same degradation symptom

manifesting across different projects. In order to perform this analysis, we

selected a representative set of pairs of system versions, which were sharing

reusable rules. Figure 13 presents the results for each of those selected pairs

(represented in the x-axis). For instance, the first pair is formed by the first

versions of the HW and MM systems. The rules that detect degradation symptoms

in both systems are called common reused rules in Figure 13. Their percentage

(dark grey bar) is computed from the total number of rules defined for the pair of

versions (Section 4.3). We assessed the percentage of degradation symptoms

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

75

detected by them, the so-called similar symptoms. The analysis reveals that 34%

on average of the rules were effectively reused to detect degradation symptoms

that occur in both HealthWatcher and MobileMedia applications. Examples of

these rules are: (i) anti-erosion rules constraining component interactions imposed

by architectural styles (e.g., R4 - Figure 8), (ii) anti-erosion rules that restrict the

access of specific-component exceptions, (iii) anti-drift rules to constrain size,

complexity and coupling of particular components, such as View, Model, GUI

and Data (e.g., R3 - Figure 8), and (iv) both erosion and drift rules associated with

architecturally-relevant design patterns used in both systems, such as the

Command (GAMMA et al, 1995).

0%

10%

20%

30%

40%

50%

MM1/HW1 MA1/HA1 MM4/HW4 MA4HA4 MM7/HW8

Common reused rules

Similar symptoms

MM = Mobile Media

HW = HealthWatcher

Figure 13: Effective reuse of common rules in multiple projects

4.4.3.
Discussion

Our results (Section 4.4) confirmed the expectation about the frequency of

co-occurring erosion and drift symptoms in the same (or inter-related) modules.

Regarding the research question Q1, the results suggest that the number of

modules containing both forms of degradation is significant. On average 45% of

the HealthWatcher and MobileMedia classes which suffered from at least one

symptom, have occurrences of both erosion and drift symptoms (Section 4.4.1).

These results are particularly interesting as the same concept definition can

group hybrid rules for detecting erosion and drift symptoms and, thereby,

promoting a full prevention of architectural degradation. Then, if an erosion

symptom is detected, for example, the developer can reactively check whether

drift symptoms (defined together with the anti-erosion rule) are possibly affecting

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

76

the same module. It might be that the anti-drift rules are not accurate enough to

detect the drift symptom given imperfections the metrics and thresholds adopted

in such rules (MACIA et al, 2012).

In addition, many inter-related drift and erosion symptoms do not

necessarily affect the same modules in the code (e.g., Chain of responsibility case

– Section 4.4.2), which make them difficult to detect together using existing anti-

drift and anti-erosion techniques (Section 2.5). The analysis of the MIDAS project

also confirmed that automated detection of erosion rules was not enough to

prevent architectural degradation (Section 4.4.1). Developers did not observe the

progressive manifestation of drift symptoms in modules where erosion-related

constraints were being enforced.

The study also evaluated the amount of anti-erosion and anti-drift rules that

were reused in each project version. Taking into consideration the research

question Q2, our analysis revealed that on average 75% of the rules to a particular

project were reused from a source of general rules. These reused rules are often

the cases of constraints to architectural styles, design pattern as well as strategies

for detecting recurring drift-related anomalies (Section 4.4.2). Therefore, this may

better foster the specification of rules governing architectural concepts as

architects do not need to define them from scratch.

4.5.
Threats to validity

This section presents threats that might hinder the validity of the

conclusions made in our study (Section 4.4). They are presented below.

Choice of the target applications. In empirical studies, the results are

always limited to the scope of the selected applications. We tried to mitigate this

threat by selecting applications from different domains and developed by different

programmers. We and other researchers should replicate the study presented here

to embrace the analysis of other target applications, following different

architecture decompositions. Then, we could reach a better generalization of the

results. However, we should highlight that these applications should be in

conformance to the requirements described in Section 4.1. For instance, it would

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

77

not be worth to evaluate the reuse of anti-degradation rules in systems that follow

completely different design decisions.

Validity of the architecture models. Another issue possibility threatening

the conclusion validity is how the architectural concepts and their anti-degradation

rules were defined. They directly impact the measurement of reused and non-

reused rules as well as the degradation symptoms detected by them. Some could

claim that our previous knowledge of all the concepts and rules for all the systems

artificially facilitated the reuse achievement with TamDera rules. To reduce the

influence of this treat, we specified the concepts referring to architectural

components presented in high-level component diagrams for all projects (Section

4.3). We also performed a detailed revision with the architects of each system to

guarantee that the defined concepts capture the constraints associated with the

intended architecture. However, we should recall that reuse obviously does not

occur for free anyway; no reuse can be promoted if there is no effort upfront to

anticipate general rules applicable to an organization or to a particular domain.

Validity of architectural degradation symptoms. We evaluated the

efficiency of reused rules in terms of the amount of degradation symptoms they

are able to detect. The study used previous reports about architectural degradation

and refactorings in each application as an “oracle” (i.e., a reference model) to

retrieve the degradation symptoms. This may externally impact the conclusion

results. However, we also consulted the architects to confirm several reported

symptoms of architectural degradation.

Validity of the detection strategies. A threat to construct validity includes

the suite of metrics (and thresholds) used for detecting drift symptoms in each

system. They are directly related to the amount of drift symptoms that are detected

in the evaluation of effective reused rules. We focus on a classical suite of metrics

for quantifying size, complexity, cohesion and coupling to evaluate modularity

properties of system modules. We adopted these metrics because they are often

used and supported by commercial tools (TOGETHER, 2012). They have also

been used in previous studies to detect architectural degradation symptoms

(MARA et al, 2011; MACIA et al, 2012).

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

