
48

6 IMPLEMENTATION FOR MOBILE SYSTEMS

The API implementation for mobile devices is based upon Windows Phone

7.5 Operating System and .NET Framework 4.0.

The Local Storage Manager component used is the Windows Phone File

System and the Client API calls it via the Windows Phone System.IO .NET

library.

The Cloud Storage Manager component is the Windows Azure Storage, and

its access/manipulation is done via a Client API in the

Microsoft.Samples.WindowsPhoneCloud.StorageClient library.

In the next sections we describe how these technologies are used to realize

the main mechanisms that are part of this proposed abstraction.

6.1. Windows Phone Execution Model and Data Persistence

A Windows Phone Application is similar to a Silverlight [26] Web

Application in the sense that it is built upon Pages. In fact, the Windows Phone

Programming model derives directly from the Silverlight Programming Model,

originally conceived to run in Web browsers.

 When a user starts an application from the installed applications list or from

a tile on the Start button, the application Main Page is displayed. From the Main

Page she can then navigate to other pages, which are other parts of the application.

From the user’s viewpoint, an application is comprised of one or more “screens”.

Each of these screens is modeled as a “page” on a Windows Phone application.

Differently, however, from the Silverlight Programming Model (which shall

not be discussed here), is the Windows Phone Execution Model, which governs

the lifecycle of applications running on a Windows Phone. In this model, an

application can be, at any time, in the following State:

• Running: The Application was started and it’s running normally.

DBD
PUC-Rio - Certificação Digital Nº 1012649/CA

49

• Deactivated: The application becomes deactivated when the user

navigates forward away from the application, by pressing the Start

button or by launching another application. Any application data

should be saved to the persistent storage so it could be restored at

later time.

• Tombstoned: Immediately after the application is deactivated, the

operating system will attempt to put the application into a

tombstoned state. In this state, all of the application’s threads are

stopped, but the application remains intact in memory. If the

application is reactivated from this state, the application does not

need to reload any data into memory, because it has been preserved.

In this state, application reactivation is faster, but tombstoning

requires that extra memory be available.

A very important characteristic that governs this execution model is that

when an application changes from Running state to a Deactivated/Tombstoned

state, a limit of 10 seconds is set for the application to complete any finalization or

data-saving task, through system-provided event handlers. If an application

exceeds this limit, it will be immediately terminated. Therefore, operations that

could last long, like reading or writing to the persistent storage, should be done

throughout the lifetime of the application; in other words, relevant data should be

persisted as soon as it changes. As a consequence, CRUD operations performed

by the CDB in this implementation avoid batch/cache strategies; i.e., any time an

Add, Update or Delete action performed by the a CDB instance needs to write to

the Main Index File or to the Metadata file, it will write the data immediately to

the Application Isolated Storage.

6.2.Windows Phone Thread Model – need for Asynchrony

6.2.1.UI Thread, Composition Thread and Thread Pool

Windows Phone 7 applications follow the Thread Model below:

• UI thread – Most important thread, it handles parsing and rendering

of UI elements from XAML [27] elements; executes the UI elements

DBD
PUC-Rio - Certificação Digital Nº 1012649/CA

50

event handlers and callbacks associated to them. It is the most

important thread in any application.

• Composition thread – Used to offload the UI thread helping with

graphics and animations, working with the GPU.

• Thread Pool - Any application can also use a Thread Pool for

multitasking or asynchronous operations, generally used to perform

long-running background operations that do not block the UI thread.

The Thread Pool consists of 2 threads per CPU on the mobile device.

The Composition thread, important on gaming applications, is not used on

the CDB implementation. What is utterly important to it is the fact that the UI

thread cannot be blocked on a long-running operation for more than 10

seconds. If it happens, the Operating System will terminate the application.

The immediate consequence of this limitation is that all CDB CRUD

operations have to be implemented based on an asynchronous pattern, as we will

see in the next section, and they rely on the Thread Pool on this implementation

model.

6.2.2.CDB Operations Implemented Asynchronously

6.2.2.1.Asynchrony on a Nutshell

Calling an asynchronous method means that the method, no matter how

long it takes to execute, will return immediately the flow of execution to the caller

thread after its call. The execution is spawn on another thread and the flow of

execution on the caller method continues immediately on the following line. Let’s

consider, for instance, fictitious method MyMethod(), running on the UI thread,

which contains an Asynchronous method DoSecondAsync():

�

����
���"+�

�	
���F������
��� �$���&���$�"+��HH�&���$�
������������+�

��G��
����F�����"+�

In this case, DoSecondAsync() will be started on another thread and the

flow of execution will resume immediately on MyMethod() to method DoThird(),

DBD
PUC-Rio - Certificação Digital Nº 1012649/CA

51

while DoThid() and DoSecondAsync() will be running concurrently. As an

immediate consequence, the call to DoThird() using a variable computed by

DoSecondAsync() is most likely a serious error, for it is not guaranteed that

DoSecondAsync() will be even started when DoThird() is already finished – it is

up to the Thread Pool scheduler to decide when to run it.

In order to be able to utilize the results of an asynchronous method as soon

as it is finished, as well as to deal with possible exceptions thrown by

asynchronous methods (which are not thrown in the caller thread and therefore

need to be explicitly looked after), there are a few implementations for known

patterns for Asynchronous Programming publicly available. This implementation

uses the IAsyncResult [28] pattern, which shall not be discussed here, but here’s

its central idea:

• When you call a method that starts asynchronously and follows the

IAsyncResult pattern, you pass along a callback function as a

parameter;

• The method runs asynchronously on another thread and it either

completes successfully or aborts throwing an exception;

• Once the method is finished, it will call the callback function and its

state (any data relevant to the application) is made available for the

callback function to use.

6.2.2.2.Asynchronous Methods on the Windows Phone 7 CDB API

Implementing CDB operations asynchronously brings two major

consequences to the overall API development. The first one is that the

implementation of Add/Delete methods to the Cloud Storage ends up being a

daisy-chain of callback functions. To see how it works, let’s consider the CDB

method AddBlobToCloud(). A simplified pseudocode for this method, as

implemented in the desktop API, follows:

&��)��-G������������	��"�

��-������$$����
��	���+�

��;���&������G������������	��"�

��
��"���

DBD
PUC-Rio - Certificação Digital Nº 1012649/CA

52

�������;��� ���������	�	�	������	��"�

��
��"��

���������;���&������G��	��;���<������	��"�

��
��"�

������������F���
���
���

F���
����$$���+�

������������

This natural, comfortable-to-the-eye flow of code breaks down when we

implement AddFileToCloud() and SetFileMetadata() as asynchronous methods,

for the reasons already explained. The Windows Phone Implementation for

AddFileToCloud() will become more or less what’s in the following pseudocode:

&��)��-G���������
���������	����-������$$���"�

���&������G������������	����$	��-	$1I �����	�	�	����$$���"+�

And that’s it – nothing else. Then, another piece of asynchronous code,

named callback_SetMetadata, is defined somewhere else in the source code file

(simplified pseudoCode):

$	��-	$1I �����	�	�	��
�������$	��-	$1I&������G��	��;���<"�

HH�
�������	$1��	����	�	����������	���	���
���$�������

HH���&������G�������"��������$	��������������������	�	�	�

And finally another piece of code, callback_AddFileToMainIndex, will

finally update the Main Index, only after the file is safely stored in the Cloud, as

well as its metadata:

$	��-	$1I&������G��	��;���<��
�����"�

HH�
�������	$1��	����	�	����������	���	���
���$���-���

HH������
��������<�$���������$	��-	$1I �����	�	�	�"�

This daisy-chain of callback functions, while cumbersome to program and

to debug, has no impact for the Client Developer. Another consequence of this

approach, however, is very important to understand, which is the unreliable return

values for the asynchronous methods AddBlobToCloud(fileName) and

DeleteBlobFromCloud(fileName), as well as an explicit fix for it:

DBD
PUC-Rio - Certificação Digital Nº 1012649/CA

53

Even though AddBlobToCloud() and DeleteBlobFromCloud() were

originally implemented as methods which return a Boolean value to indicate

successful or failed operation, their asynchronous implementation can return any

value even before they are fully completed, for they involve not only dealing with

files but also with metadata and the CDB Main Index. To mitigate such a

situation, these method signatures were changed to accommodate a Boolean

parameter that will be set only when the last callback on the daisy-chain is

executed (see Table 5).

Table 5: Checking for successful operations in the Cloud

It is still left to the Client Application to check this variable whenever

needed. Again, this programming model will not block the UI thread in any

moment – it’s up to the Client Application to conform to the Asynchronous

programming paradigm.

6.3.Types, persistence and access methods

6.3.1. Main index and Main index file

Main Index description – Similar to the Desktop implementation, the main

index is implemented using a .NET 4.0 Dictionary provided by the .NET

Framework 4.0 System.Generics.Collections library, with the same the Main

Index definition:

������
�	����$����	
�E��
������	��;���<F�$�
�5+�

��
������
�	��$�	����	��;���<F�$�
��

��#�

��������
�	����
����
�$G���+�
��������
�	���	�	����G�1�����1��+�

��������	
���
���
����

������������	

������
���
��������������������������������

��������������������������
���
�����������������

��������������	
���
���
����

������������	

������
���
��

��������������������������
���
�������������������������������

DBD
PUC-Rio - Certificação Digital Nº 1012649/CA

54

��,�

�

����-��$�$�	����	�	����G�1���
��#�

������-��$������������+�
������-��$������������+�

��,�
�

Each Dictionary entry key is a string representing a filename (e.g.

“Readme.txt”), and for each filename it is stored, its value contains:

• its Blob’s type (e.g. “PUC_Rio.Song”);

• Its DataFileToken containing its position and length in the Metadata file.

When an application finishes the CDB operations by issuing the

CDB.Close() instance method, the Dictionary contents are persisted to a readable,

text file in the File System. When an application creates a CDB instance calling its

constructor, if an index file exists in the file system it is read into the Dictionary in

memory; otherwise an empty index file is created and the Dictionary starts empty

as well.

NOTE: This implementation differs from the Desktop implementation for

the lack of a mechanism to recover the Main Index after a crash – there is no

Operations Log. It was left as a task for a future version of the Windows Phone

CDB.

The main Index File structure (see Table 6) is the same as the Desktop one,

except that the file is persisted as clear, readable text, as opposed to a binary file

found in the Desktop implementation:

��������	��
���� �
�����������������
� �� ��

���������� ���
�����������������
��	����������� �� ��

������������� �� �� �� ��

 ������!"��#� � $��% � &'"� "#(� ��

 ������!&��#� � $��% � &'"� #"#� ��

 ������!)��#� � $��% � !� *"� 	
�����
	��	���	����
�	

 +,-!"���	 � .���� � &)(� "#(� ��

 +,-!"���	 � .���� � (!&� #(/� ��

 +,-!&���	 � .���� � !� *"�
�����
	��	���	����
�	

Table 6: Main Index File Structure

DBD
PUC-Rio - Certificação Digital Nº 1012649/CA

55

6.3.2.Metadata and Metadata File

Similar to the desktop implementation, blob metadata is stored in a metadata

file specific to its entity class; if a file was stored in the Cloud, its metadata is

stored the Cloud as well and will not show up in any metadata file. One

application that defines N blob-derived Entity classes will use N metadata files.

Different from the Desktop implementation, the metadata file is persisted as

a readable text file:

Table 7: Metadata file for the Windows Phone API

6.4.Database limitations

On a Mobile device, each application is set aside a private storage area

referred as to its Isolated Storage. One application cannot use another’s

application Storage Area, which provides a level of security for data access not

present in desktop computers. However, for Cloud Storage, a very basic

mechanism provided by the Azure CloudStorage API is provided – the same used

on the desktop implementation.

Similar to the Desktop implementation, this one does not provide any built-

in fault tolerance mechanism.

Similar to the Desktop implementation, this one currently does not provide a

versioning system.

��������	��
��� ������������	����
������� �
�

�����
���
��
������������
��	�����������

������������

����� !����
������!�����"#$��%� &'
��� (��!�����
�
��)������*��+��,�

����� !����
������!�����"#-��%� &'
��� (��!�����
�
�� ���.������

����� !����
������!�����"$/��%� &'
��� (��!�����
�
�� 0'�*������ �����-

DBD
PUC-Rio - Certificação Digital Nº 1012649/CA

