
56

7 Conclusion

We’ve proposed the conceptual architecture followed by design of a

lightweight database manager that uses the Cloud environment to deal with

unpredictable demand or unexpected shortage of computer storage, by exploring

the concept of data Elasticity. We’ve also provided implementations (the code

base) that exhibit examples of technical solutions useful on the materialization of

such database architecture.

To conclude this work, we’ll present a brief discussion about lessons

learned during this project realization and limitations of this current

implementation. We then finish proposing a few topics as future work.

7.1.Lessons Learned

7.1.1.Desktop Implementation

This thesis deals with the issue of data bursting; however, the architecture

proposed contains basic CRUD operations, additional features of Controlled File

Migration to the Cloud, as well as File Reclaim from the Cloud, which could be

used to build a solution for local cache for Cloud data without much additional

effort.

In this scenario, data is wholly stored in the Cloud, but with small local

caches to speed up queries for most used files. It would require very few

modifications in the CDB design to allow for such use, most notably allowing a

file to physically coexist both locally and in the Cloud. This possibility will be left

for future work.

7.1.2.Windows Phone Implementation

Programming for Mobile Devices required a whole new set of skills and

knowledge, which included the Silverlight for Windows Phone framework [29]

DBD
PUC-Rio - Certificação Digital Nº 1012649/CA

57

and the Asynchronous Programming Model [28], which considerably slowed

down development. Moreover, by the time CDB for Windows Phone was being

written, Microsoft tools for Windows Phone with Windows Azure were not as

comprehensive and stable as those for Desktop computers. These facts led to a

path where additional time was spent in learning Windows Phone Programming

skills. The combination of all resulted in further delays in the work schedule,

culminating in the removal of a previously scheduled feature, the implementation

of CRUD atomicity.

7.2.Limitations

The abstraction proposed in this work is highly dependent on Internet

bandwidth, as its main goal is to achieve a balance between its two key

components: a local storage area and a Cloud storage area. Overflow files go to

the Cloud storage area via HTTP transmissions, causing the cost of storing a file

in the Cloud to be orders of magnitude higher than storing them locally.

For a brief analysis on how Internet bandwidth impacts the overall flow of

work of a CDB instance, we have created an experiment where combined

operations of insertion/delete were applied to files of different sizes – 64KB,

1MB, 4MB and 16MB. This experiment was conducted on a desktop PC on a

10Mbps network. Table 8 shows figures for local-only operations, i.e., no Cloud

operation involved. Table 9 shows figures for Cloud operations; the first two

columns shows Cloud-only operations and the last two columns are intended to

estimate a possibly common usage scenario, where most operations are done

locally, but 20% are overflown to the Cloud storage area.

Table 8: Time spent to add+delete files in the local storage

����������	
�� �������
����	
�� ��������
����	
��

���� ����
 �����
 ����

��� �����
 ����
 ���

��� �����
 ����
 ���

���� ����
� ����
 ��������

DBD
PUC-Rio - Certificação Digital Nº 1012649/CA

58

Table 9: Time spent to add+delete files to the Cloud storage area

This experiment is far from being a rigorous standardized benchmark test,

but serves as an indication to some interesting observations, summarized below:

• As of today, we cannot expect operation response times similar to

those offered to databases without built-in Internet usage. Therefore,

client applications that make use of mixed Local-Cloud storage must

be designed in a way that network latency times are expected and

can be dealt with. For instance, it took less than one second to store

and then to delete a 4MB file in the local storage area, whereas the

same operations took 19 seconds to complete in the Cloud storage

area.

• If we consider scenarios where the Cloud is used as an occasional

overflow protection scheme, then the average completion time for

operations decreases significantly and becomes much more bearable.

For instance, it took 7:04s to insert+delete 10 files of 16MB to the

Cloud storage area. However, if we consider a scenario where, on

the average, only 20% of files go to the Cloud, this figure drops to

1:39s.

7.3.Future Work

In order to turn these proof-of-concept APIs into ready-for-consume

products, the following features need to be further developed:

• For the Desktop API, Isolation/concurrency.

• For the Windows Mobile API, atomicity to CRUD operations as

well as Isolation/concurrency.

�����������	
� �������
�����	
� �������
��������	
� ��������
��������	
�

���� ��
 ��
 ��
 ���

��� ��
 ���
 ��
 ��

��� ���
 ����������
 ���
 ���������

���� ���������
 ���������
 ���������
 ����������

DBD
PUC-Rio - Certificação Digital Nº 1012649/CA

59

• For both APIs, a file versioning system.

Moreover, we can go beyond the idea of Cloud-aware Database to the full

concept of Cloud-covered Computing.

If we look at the CDB model from the perspective that we are basically

giving entity classes the ability to serialize and de-serialize themselves, no matter

if there are or if there are not local resources – in this case, storage – we can think

of extending the model to use the Cloud to also give these entity classes the ability

to execute methods no matter if there are or if there are not local resources – this

time, processing power. We should be able to create Cloud-covered entity classes

which, from the point-of-view of persistence, behave like the blob-derived classes

we have introduced on this work (see chapter 3, in particular the overflow,

migration and claim back features), and more: if one of its instance’s methods

cannot or should not run locally, it is redirected to the Cloud.

Similarly to the CDB model, we would need one coordinator running on the

local machine to redirect the requested work to the Cloud. Differently from the

CDB model, however, a coordinator on the Cloud side would be needed too, to

catch the method request from the local machine coordinator along with its

parameters and send back the results to it. See Figure 9 below for an initial sketch

of the Cloud-covered class model, where the local machine coordinator is referred

to as the CloudCoveredBroker and the Cloud Coordinator is referred to as the

CloudPowerHouse. Similarly to Migration Policies of the CDB model, we could

think of “Execution Policies” for Cloud-covered entities. For instance, we could

allow methods to run in the Cloud in multiple instances.

DBD
PUC-Rio - Certificação Digital Nº 1012649/CA

60

Figure 9: Cloud-covered Computing abstractions

DBD
PUC-Rio - Certificação Digital Nº 1012649/CA

