
61

8. Related Work

Central to this work was the idea of showing a means of exploiting the

Cloud to provide data elasticity to data-driven applications. The Container

Database API is meant to be a building block of data-driven applications,

providing a very simple database manager as well as a programming model where

a client application has to create Entity Classes (classes that mapped to the

problem domain vocabulary), associate them to local and remote storage, and

finally set some rules of usage for the allocated storage.

If we were to consider other frameworks for creation of data-driven

software, there are a several examples of commercial ones that provide ways to

create data models and associate them to physical storage; for instance, Microsoft

Entity Framework and Microsoft LightSwitch [30] both allow for defining

problem domain objects, their relations, links to physical storage (including the

Cloud) and views for the defined data model. However, both approaches are based

on ORM, as opposed to the {Blob+Metadata} semi-structured approach proposed

in this work. Most important, they are not database management systems – they

are RAD (Rapid Application Development) tools that facilitate the use of specific

third-party databases, like SQL Server.

In relation to the available database management systems on the market,

there are hundreds of commercial options to choose, from relational DBMSs like

SQL Server or MySQL to newer, no-SQL DBMSs, like the semi-structured

MongoDB [31] or the graph database NEO4j [32]. As far as this work is being

written, none of these systems deal with the concept of storage overflow as it is

dealt in the Container Database; i.e., a system where local storage is treated as

primary storage and Cloud storage is seen as overflow storage that provides data

elasticity.

DBD
PUC-Rio - Certificação Digital Nº 1012649/CA

