

Baldoino Fonsêca dos Santos Neto

Uma Abordagem Deontica para o Desenvolvimento de Agentes Normativos Autônomos

Tese de Doutorado

Tese apresentada ao Programa de Pós–graduação em Informática do Departamento de Informática da PUC–Rio como requisito parcial para obtenção Do título de Doutor em Informática

Orientador: Prof. Carlos José Pereira de Lucena

Baldoino Fonsêca dos Santos Neto

Uma Abordagem Deontica para o Desenvolvimento de Agentes Normativos Autônomos

Tese apresentada ao Programa de Pós–graduação em Informática do Departamento de Informática do Centro Técnico Científico da PUC–Rio como requisito parcial para obtenção Do título de Doutor em Informática. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Carlos José Pereira de Lucena Orientador Departamento de Informática — PUC-Rio

Prof. Hugo Fuks Departamento de Informática - PUC-Rio

Prof. Simone Diniz Junqueira Barbosa Departamento de Informática - PUC-Rio

> Prof. Viviane Torres da Silva Universidade Federal Fluminense - UFF

Prof. Paulo Sérgio Conceição de Alencar University of Waterloo

Prof. José Eugenio Leal Coordenador Setorial do Centro Técnico Científico — PUC-Rio

Rio de Janeiro, 30 de Maio de 2012

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Baldoino Fonsêca dos Santos Neto

Obteve seu Mestrado na PUC-Rio em 2010. Atualmente atua na área de Desenvolvimento de Software Orientado a Agentes no Laboratório de Engenharia de Software (LES) da PUC-Rio.

Ficha Catalográfica

Neto, Baldoino Fonsêca dos Santos

Uma Abordagem Deontica para o Desenvolvimento de Agentes Normativos Autônomos / Baldoino Fonsêca dos Santos Neto; orientador: Carlos José Pereira de Lucena. — Rio de Janeiro : PUC-Rio, Departamento de Informática, 2012.

169 f.; 30 cm

1. Tese (doutorado) - Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2010.

Inclui referências bibliográficas.

- 1. Informática Tese. 2. Agentes Autônomos. 3. Mecanismos Normativos. 4. Arquitetura de Software. 5. Linguagem de Programação.
- I. Lucena, Carlos. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Informática. III. Título.

Agradecimentos

Primeiramente, agradeço a Deus, por minha existência, por me conceder momentos maravilhosos. A minha família querida, meu pai José Pedro (In memorian). A minha mãe Tercília, sempre preocupada com o meu bem-estar e esforçando-se ao máximo para me dar uma educação promissora. Ao meu irmão Walfran, pelo o seu apoio espiritual, companheiro da minha fortaleza em toda essa jornada de lutas árduas. As minhas imãs Walflania e Walfraneide. A minha namorada Bárbara, você é a peça chave da minha vida. Esta vitória é nossa. A Dona Auxiliadora é uma satisfação, dividir esta conquista com a senhora. Obrigado pelo carinho e atenção. Professor Carlos Lucena, meu orientador, com quem eu tive a oportunidade de aprender e interagir, tornando o trabalho mais valioso e gratificante. Professora Viviane Silva, a quem admiro, todo o seu empenho e dedicação. Aos colegas Elder e Manoel, meus parceiros de trabalho desde o início do doutorado. Aos amigos do LES, que muito contribuíram para o meu avanço profissional. Ao departamento de informática, professores e secretaria Por fim, a CNPq e PUC-Rio, pela ajuda financeira.

Resumo

Neto, Baldoino Fonsêca dos Santos; Lucena, Carlos José Pereira de (Orientador). Uma Abordagem Deontica para o Desenvolvimento de Agentes Normativos Autônomos. Rio de Janeiro, 2012. 169p. Tese de Doutorado — Departamento de Informática, Pontifícia Universidade Católica do Rio de Janeiro.

Normas sociais têm se tornado uma das abordagens mais promissoras para garantir uma ordem social desejável em sistemas multiagentes. Nestes sistemas, agentes autônomos trabalham a fim de atingir objetivos comuns ou diferentes. Normas regulam o comportamento de tais agentes definindo obrigações e proibições, fornecendo recompensas e estabelecendo punições a fim de incentivá-los a se comportarem de acordo com as normas. Embora o uso de normas seja um mecanismo promissor para regular o comportamento de agentes, o desenvolvimento de agentes capazes de atuar em um sistema, adotar as normas e lidar com as mesmas autonomamente tem sido mais difícil do que o desenvolvimento de agentes tradicionais. A razão para esta dificuldade é a falta de mecanismos que possibilitem o desenvolvimento de agentes autônomos capazes de lidar com questões relacionadas a normas. Nesta tese, apresenta-se uma abordagem para desenvolvimento de agentes capazes de lidar autonomamente com questões normativas. Para tanto, a abordagem fornece um modelo arquitetural para apoiar um agente no raciocínio sobre as normas. Tal modelo estende o modelo Belief-Desire-Intention adicionando um conjunto de funções que auxiliam o agente na adoção de novas normas, na verificação da ativação, desativação, cumprimento e violação das normas, na seleção de quais normas devem ser cumpridas ou violadas, na detecção e resolução de conflitos entre normas, na geração de novos objetivos e na seleção de objetivos, planos e intenções, levando em consideração as normas do sistema. Além disto, a abordagem fornece os mecanismos necessários para implementação de agentes projetados a partir do modelo arquitetural proposto. Dois cenários são utilizados para exemplificar a abordagem proposta. O primeiro está relacionado ao planejamento de missões de resgate reguladas por normas. O segundo está relacionado ao suporte ao desenvolvimento de software regulado por normas. Por fim, experimentos são apresentados que demonstram a importância de desenvolver agentes a partir da abordagem proposta seja na visão do agente ou da sociedade.

Palavras-chave

Agentes Autônomos; Mecanismos Normativos; Arquitetura de Software; Linguagem de Programação;

Abstract

Neto, Baldoino Fonsêca dos Santos; Lucena, Carlos José Pereira de (Advisor). A Deontic Approach to Develop Autonomous Normative Agents. Rio de Janeiro, 2012. 169p. Doctoral Thesis — Departamento de Informática, Pontifícia Universidade Católica do Rio de Janeiro.

Social norms have become one of the most promising approaches toward ensuring a desirable social outcome in multi-agent systems. In these systems, autonomous and heterogeneous agents work toward common or different goals. Norms regulate the behaviour of these agents by defining obligations and prohibitions, and by creating rewards and penalties to encourage the agents to behave so as to meet these norms. Although the use of norms is a promising mechanism to regulate the agents' behavior, the development of agents able to join an agents society, to adopt the norms and to work with them autonomously has shown to be significantly more challenging than traditional agents. The reason for this difficulty is the lack of agent models that allow developing of autonomous agents able to cope with issues related to norms. In this thesis, we introduce an approach to develop agents able to deal with normative questions in an autonomous way. The approach extends the Belief-Desire-Intention model including functions that assist the agent in adopting new norms, in verifying norm activation, deactivation, fulfillment and violation, in selecting the norms to be fulfilled or violated by the agent, in identifying and overcoming conflicts among norms, in generating new goals from norms and in selecting goals, plans and intentions while taking into account the system norms. In addition, the approach provides mechanisms that are necessary to implement agents designed from the proposed architectural model. Two scenarios are used in order to exemplify the proposed approach. The first is related to the planning of rescue missions regulated by norms. The second is related to the support to software development regulated by norms. Finally, experiments that demonstrate the importance of developing agent by using the proposed architectural model, both in the agent and society point of view, are presented.

Keywords

Autonomous Agents; Normative Mechanisms; Software Architecture; Programming Language;

Sumário

1 Introdução	11
1.1 Problema	12
1.2 Limitações das Abordagens Atuais	13
1.3 Questões de Pesquisa	13
1.4 Solução Proposta	14
1.5 Contribuições	15
1.6 Organização da Tese	15
2 Fundamentação Teórica	17
2.1 Sistemas Multiagentes	17
2.2 Arquitetura BDI	19
2.3 AgentSpeak(L)	20
2.4 Interpretador <i>Jason</i>	23
2.5 Normas e Agentes Normativos	24
2.6 Linguagem de Especificação Formal Z	25
2.7 Considerações Finais	29
3 Trabalhos Relacionados	30
3.1 Agentes Simples	30
3.2 Agentes Interessados	32
3.3 Considerações Finais	33
4 Arquitetura	34
4.1 Tipos	34
4.1.1 Comportamentos	36
4.1.2 Normas	39
4.1.3 Planos	44
4.1.4 Intenções	46
4.2 Estrutura ANA	46
4.3 Visão Operacional de ANA	49
4.3.1 Beliefs and Norms Reviewer	50
4.3.2 Desires Normative Generator	55
4.3.3 Normative Filter	64
4.3.4 Intention Normative Executor and Selector	75
4.4 Considerações Finais	79
5 Implementando ANA	80
5.1 AgentSpeak(L) Normativo	80
5.2 Interpretador Jason Normativo	83
5.2.1 Função <i>Normative Reviewer</i>	85
5.2.2 Função <i>Events Normative Generator</i>	88
5.2.3 Selecting Event	90
5.2.4 Check Context	91
5.2.5 Selecting Plan	94

5.2.6 Review Intention	96
5.2.7 Selecting Intention	98
5.2.8 Execute Intention	98
5.2.9 Considerações Finais	100
6 Cenários	102
6.1 Cenário 1: Agentes de Suporte para Planejamento de Missões de	
Resgate Reguladas por Normas	102
6.1.1 Representação de Objetivos, Ações, Planos e Normas	106
6.1.2 Adotando Novas Normas	113
6.1.3 Revisando as Normas Ativadas e Desativadas	114
6.1.4 Verificando as Normas Cumpridas ou Violadas	114
6.1.5 Detectando e Superando Conflitos Normativos	115
6.1.6 Selecionando Normas para serem Cumpridas ou Violadas	115
6.1.7 Aplicando Decisões Normativas	116
6.1.8 Seleção de Eventos	116
6.1.9 Verificando Planos Relevantes e Aplicáveis	119
6.1.10 Seleção de Planos	119
6.1.11 Revisão de Intenções	122
6.1.12 Execução e Monitoramento de Intenções	124
6.2 Cenário 2: Desenvolvimento e Evolução de Software Suportado por	
Agentes Regulados por Normas	124
6.2.1 Representação de Objetivos, Ações, Planos e Normas	129
6.2.2 Adotando Novas Normas	134
6.2.3 Revisando as Normas Ativadas e Desativadas	135
6.2.4 Verificando as Normas Cumpridas ou Violadas	135
6.2.5 Detectando e Superando Conflitos entre Normas	135
6.2.6 Selecionando Normas para serem Cumpridas ou Violadas	136
6.2.7 Aplicando Decisões Normativas	137
6.2.8 Seleção de Eventos	138
6.2.9 Verificando Planos Relevantes e Aplicáveis	141
6.2.10 Seleção de Planos	141
6.2.11 Revisão de Intenções	143
6.2.12 Execução e Monitoramento de Intenções	144
6.3 Considerações Finais	144
7 Experimento	145
7.1 Fatores de Comparação	146
7.1.1 Estratégias de Deliberação de Normas	146
7.1.2 Efetivando as Decisões Normativas	150
7.1.3 Processo de Seleção	151
7.1.4 Análise Qualitativa	153
7.2 Configuração do Experimento	153
7.2.1 Bases	153
7.2.2 Execução de um Passo	155
7.2.3 Registrando as Informações	156
7.2.4 Parâmetros para Avaliação	156
7.3 Resultados do Experimento	156
7.4 Considerações Finais	158

8	Conclusão e trabalhos futuros	159
8.1	Limitações do Trabalho	160
8.2	Trabalhos Futuros	162

Lista de figuras

2.1	Arquitetura BDI (reproduzida de	e (Weiss 1999))		19
2.2	Sistema de Raciocínio (Bordini et al. 2007))	Procedural	(reproduzida	de	20
	Interpretador Jason				23
	Arquitetura para projetar ANA				49
	Jason Normativo				83
1.1	Resultados				-157