
1
Introduction

Dynamic Logics (Fischer & Ladner, 1979; Harel et al., 2000) are based

on the idea proposed by Pratt (1976) of a modal system where each program

composes a modality. They are often used for reasoning about programs and

Propositional Dynamic Logic (PDL – Fischer & Ladner, 1979) is one of its

most well-known variants (detailed in Chapter 2). The logic has a set of

basic programs and a set of operators (sequential composition, iteration and

nondeterministic choice) that are used to inductively build the set of non-basic

programs. PDL has been used to describe and verify properties and behaviour

of sequential programs and systems. Correctness, termination, fairness, liveness

and equivalence of programs are among the properties that one usually wants

to verify. Each program ⇡ corresponds to a modality h⇡i, where a formula h⇡i↵
means that after some running of ⇡, ↵ is true, considering that ⇡ halts. There

is also the possibility of using [⇡]↵ (as an abbreviation for ¬h⇡i¬↵) indicating
that the property denoted by ↵ holds after every possible running of ⇡. A

Kripke semantics can be provided, with a frame F = hW,R
⇡

i, where W is

a non-empty set of possible program states and, for each program ⇡, R
⇡

is a

binary relation on W such that (s, t) 2 R
⇡

if and only if there is a computation

of ⇡ starting in s and terminating in t.

There are a lot of variations of PDL for di↵erent approaches (Balbiani &

Vakarelov, 2003). Among them, Propositional Algorithmic Logic (Mirkowska,

1981) that analizes properties of programs connectives, the interpretation of

Deontic Logic as a variant of Dynamic Logic (Meyer, 1987), applications in

linguistics (Kracht, 1995), Multi-Dimensional Dynamic Logic (Petkov, 1987)

that allows multi-agent (Khosravifar, 2013) representation, Dynamic Arrow

Logic (van Benthem, 1994) to deal with transitions in programs, Data Ana-

lysis Logic (del Cerro & Orlowska, 1985), Boolean Modal Logic (Gargov &

Passy, 1990), logics for reasoning about knowledge (Fagin et al., 2004), logics

for knowledge representation (Lenzerini, 1994) and Dynamic Description Lo-

gic (Wolter & Zakharyaschev, 2000). Dynamic Logics provide a large amount

of systems and tools and has been used in Model Checking (De Giacomo &

Massacci, 1998; Göller & Lohrey, 2006; Lange, 2006).

DBD
PUC-Rio - Certificação Digital Nº 1012682/CA

Extending Propositional Dynamic Logic for Petri Nets 11

Petri Net is a widely used formalism to specify and to analyze concurrent

programs with a very intuitive graphical representation (detailed in Chapter 2).

It allows for representing true concurrency and parallelism in a natural way.

We present the logic Petri-PDL (detailed in Chapter 3 and published

by Benevides et al., 2011) that replaces the conventional PDL programs by

Marked Petri Net programs. So if ⇡ is a Petri Net program with markup s,

then the formula hs, ⇡i' means that after some running this program with the

initial markup s, ' will be true (also possible a ⇤-like modality replacing the

tags by brackets as an abbreviation for ¬hs, ⇡i¬').
As pointed out by the work of Mazurkiewicz (1987, 1989), logics that deal

with Petri Nets use to be incomplete. So we restrict this work to a subset where

we can achieve decidability and completeness. We call this subset (defined in

Chapter 3) normalised Petri Net.

This work falls in the broad category of works that attempt to generalize

PDL and build Dynamic Logics that deal with classes of non-regular programs.

As examples of other works in this area, we can mention Harel & Raz

(1993); Harel & Kaminsky (1999) and Löding et al. (2007), that develop

decidable dynamic logics for fragments of the class of context-free programs

and Abrahamson (1980); Goldblatt (1992b); Peleg (1897, 1987) and Benevides

& Schechter (2008), that develop Dynamic Logics for classes of programs

with some sort of concurrency. Petri-PDL has a close relation to two logics

in this last group: Concurrent PDL (Peleg, 1897) and Concurrent PDL with

Channels (Peleg, 1987). Both of these logics are expressive enough to represent

interesting properties of communicating concurrent systems. However, neither

of them has a simple Kripke semantics. The first has a semantics based

on super-states and super-processes and its satisfiability problem can be proved

undecidable. Also, it does not have a complete axiomatization (Peleg, 1987).

On the other hand, Petri-PDL has a simple Kripke semantics, simple and

complete axiomatization and the finite model property.

There are other approaches that use Dynamic Logic for reasoning about

specifications of concurrent systems represented as Petri Nets (Hull, 2005; Hull

& Su, 2005; Tuominen, 1990). They di↵er from this approach by the fact that

although they use Dynamic logic as a specification language for representing

Petri Nets, they do not encode Petri Nets as programs of a Dynamic Logic.

They translate Nets into PDL language while we have a new Dynamic Logic

tailored to reasoning about Petri Nets in a more natural way.

But Petri Nets have limitations in their expressability. Take a two

processor system with a shared memory where each processor has a di↵erent

clock. This scenario may be taken as a problem of real time, or as a problem of

DBD
PUC-Rio - Certificação Digital Nº 1012682/CA

Extending Propositional Dynamic Logic for Petri Nets 12

productiveness. The latter turns out to be a probabilistic problem. Thus, using

probability is a way to add expressivity power to Petri-Nets. The Dynamic

Logic derived from this extension seems to be worth of defining and studying.

Random phenomena are ubiquitous to our everyday experience. Weather

changing and equipment failures, mostly unpredictable, are familiar to any-

one. Real-time and fault-tolerant computer systems have to consider these

randomness phenomena and should be designed by taking some environmental

parameters into account. The designer of old multi-user backuping system con-

sidered the failure probability of the hard-disks logical (tracks and sectors) and

physical (wr-heads) components to build a fault-tolerant driver able to provide

a quality of service according to the requirements. Of course this can be one

of the simplest example in this field of modelling and performance evaluation

(the subarea of computer science that studies and develops tools and methods

to help modelling and evaluating computer systems subject to work taking

randomness phenomena into account).

Stochastic process is a mathematical modelling tool largely used for

describing phenomena of a probabilistic nature as a function of time as

a mandatory parameter (Marsan, 1990a). Taking for free the definition of

a probability space and random variable (Kolmogorov, 1956), a stochastic

process {Y (t) : t 2 [0,1)} is a family of random variables defined over the

same probability space and taking values in the same state space. Thus, a

stochastic process can be understood as a family of functions of time that

raise sample paths, i.e. trajectories in the state space. General stochastic

processes can be quite complex. Among them, those that have no memory

of the trajectory to reach the present state (mathematically one require that

Pr(Y (t) y | Y (t
n

) = y
n

· · ·Y (t0) = y0) = Pr(Y (t) y | Y (t
n

) = y
n

),

for t > t
n

· · · > t1 > t0), also called Markov processes, have been widely

considered for modelling computational processes. Markov processes with a

discrete state space are denominated Markov chains. If the time is continuous,

the term Continuous Time Markov Chain (CTMC) is commonly used. CTMC

are natural models of computing systems considered in environments subject to

randomness (internal or external). CMTCs compete with Queueing networks

as tools for modelling and performance evaluation. However, the later does not

provide clean mechanisms to describe synchronization, blocking and forking

(i.e. consumer splitting). On the other hand, Petri Nets are quite good

on describing these last mentioned aspects of a system. The proposal of

Stochastic Petri Nets (SPN) brought an equilibrium between the modelling

and the performance evaluation phases of systems designing. In the work of

Marsan et al. (1984) it is proposed SPNs, in order to avoid the translation

DBD
PUC-Rio - Certificação Digital Nº 1012682/CA

Extending Propositional Dynamic Logic for Petri Nets 13

of queueing networks defined in the modelling phase into complex CTMCs

for the evaluation phase. In Chapter 4 the definition of SPN requires that

transitions are enabled according to an exponential probability distribution

(in fact a negative exponential distribution). This requirement is essential in

order to ensure that the Stochastic process naturally derived from an SPN is

a CTMC (Marsan & Chiola, 1987a).

There are some other well-known stochastic approaches to PDL, but

we believe that the fact that the probabilistic feature present in each of these

formalism was added in a non-structured way. We say that a probabilistic form-

alism has more structure than other, whenever the first has cleaner Markovian

structures than the other. In this sense, the system P-Pr(DL) (Feldman, 1983,

1984), which has no finite axiomatization, does not allow boolean combina-

tion of propositional variables and is defined only for regular programs is the

less structured. Pr(DL) (Feldman & Harel, 1984) which has the same limit-

ations as P-Pr(DL) and is undecidable, compares to the former. The system

PPDL (Kozen, 1983) computes the probability of a proposition being true

in some state but the program is replaced by a measurable function, that is,

its stochastic component is not compositional. Finally, PPDL> r (Tiomkin

& Makowsky, 1985) can only describe situations where some probability is

greater then a constant r 2 and PPDL> 0 (Tiomkin & Makowsky, 1991)

that can only describe situations where some probability is greater then zero,

showing how the parameters of the modelling impose restriction in the queries,

reverting completely the role of a model in a formal verification. We present an

extension of Petri-PDL to deal with Stochastic Petri Nets in Chapter 4 (with

a variation in Chapter 5).

We present Natural Deduction with labels systems for some of the logics

and a Resolution based system for Petri-PDL. The conclusions and further

work are in Chapter 6.

DBD
PUC-Rio - Certificação Digital Nº 1012682/CA

