
4
Propositional Dynamic Logic for Stochastic Petri Nets

Probabilistic algorithms are often present and deal with important

problems in computer science (Fallis, 2000; Motwani & Raghavan, 1996). In

this chapter we present Stochastic Petri Nets (Haas, 2002; Lyon, 1995; Marsan,

1990b; Marsan & Chiola, 1987b) and propose the DS3 logic as a stochastic

approach for Petri-PDL. This model of Petri Nets is widely used for non-linear

time-modelling (Coleman et al., 1996; Henderson et al., 2009; Marin et al.,

2012).

There are some other well-known stochastic approaches to PDL, but all

of them have some disadvantages. For instance, there is the system P-Pr(DL)

(Feldman, 1983, 1984) which has no finite axiomatization, do not allow boolean

combination of propositional variables and is defined only for regular programs.

There is also Pr(DL) (Feldman & Harel, 1984) which has the same limitations

as P-Pr(DL) and is undecidable. The system PPDL (Kozen, 1983) computes

the probability of a proposition being true in some state but the program is

replaced by a measurable function. The logic PPDL> r (Tiomkin &Makowsky,

1985) can only describe situations where some probability is greater then a

constant r 2 and PPDL> 0 (Tiomkin & Makowsky, 1991) that can only

describe situations where some probability is greater then zero.

The approach proposed in here aims to provide a compositional way to

deal with Stochastic Petri Nets similarly to Petri-PDL where the user is able

to verify if the probability of a firing is greater than zero or if it is equal to one.

The user takes advantage of the intuitive graphical interpretation of Stochastic

Petri Nets that simplifies the modelling process.

4.1
A stochastic approach for Petri Nets

A Stochastic Petri Net (SPN) (Haas, 2002; Lyon, 1995; Marsan, 1990b;

Marsan & Chiola, 1987b) is a 5-tuple P = hP, T, L,M0,⇤i, where P is a

finite set of places, T is a finite set of transitions, with P \ T = ;, and

P [T 6= ; and L is a function which defines directed edges between places and

transitions and assigns a multiplicative weight w 2 to the transition, that is

DBD
PUC-Rio - Certificação Digital Nº 1012682/CA

Extending Propositional Dynamic Logic for Petri Nets 64

L : (P ⇥ T) [(T ⇥ P) ! (in this work we assume w = 1 for all edges), M0

is the initial markup and ⇤ = �1,�2, . . . ,�n the firing rates of each transition.

In an SPN the firing of a transition is determined by the markups and

by the firing rate. For each transition t
i

2 T is associated a unique random

variable with an exponential distribution with parameter �
i

2 ⇤.
In the initial markup (M0) each transition gets a firing delay through

an occurrence of the random variable associated to it. Each firing delay is

marking-dependent and the transition t
i

2 T firing rate at marking M
j

is

defined as �
i

(M
j

) and its average firing delay is [�
i

(M
j

)]�1. After a firing, each

previously non-marking-enabled transition gets a new firing delay by sampling

its associated random variable. A transition previously marking-enabled that

keeps marking-enabled has its firing delay decreased in a constant speed. When

a transition firing delay reaches zero, this transition fires.

We define the preset of t 2 T , denoted by •t, as the set of all s
k

2 S that

origins an edge to t. The postset of t, denoted by t• is defined as the set of all

s
`

2 S that t origins an edge to. We say that a transition t is enabled if, and

only if, there is at least one token in each place p 2 •t.

Given a markup M
j

of a Petri Net, a transition t
i

is enabled on M
j

if and

only if 8x 2 •t
i

,M
j

(x) � 1 and �
i

(M
j

) = min(�1(Mj

),�2(Mj

), . . . ,�
n

(M
j

)),

where •t
i

is the preset of t
i

, that is, a transition t
i

is enabled if and only if there

is at least a token in each place of its preset and its timing is the smallest of

the SPN. A new markup generated by setting a transition which is enabled is

defined in the same way as in a Marked Petri Net, i.e.

M
j+1(x) =

8
><

>:

M
j

(x)� 1 8x 2 •t \ t•

M
j

(x) + 1 8x 2 t• \ •t

M
j

(x) otherwise

. (4-1)

A new firing delay for a transition t
i

for a markup M
j

is defined as:

(i) if t
i

fires then a new occurrence of the random variable associated with

it is the new firing delay;

(ii) if t
i

was disabled and has just been enabled then a new occurrence of the

random variable associated with it is the new firing delay;

(iii) otherwise, the value of the firing delay of t
i

must be decreased.

That is:

DBD
PUC-Rio - Certificação Digital Nº 1012682/CA

Extending Propositional Dynamic Logic for Petri Nets 65

�
i

(M
j+1)

8
>>>>>>>>><

>>>>>>>>>:

= new
e

(�
i

) if

8
>>>>>><

>>>>>>:

(
8x 2 •t

i

,M
j

(x) � 1

�
i

(M
j

) min(�1(Mj

), . . . ,�
n

(M
j

))

or(
9x 2 •t

i

,M
j

(x) < 1

8x 2 •t
i

,M
j+1(x) � 1

< �
i

(M
j

) otherwise
(4-2)

where new
e

(�) denotes a new occurrence of the random variable exponentially

distributed with parameter � associated to t
i

.

The minimum of two random variables with parameters, respectively,

�1 and �2, is a random variable with exponential distribution of parameter

�1+�2. The sojourn time in a marking M
j

is a random variable exponentially

distributed with mean 2

4
X

i:8k2•
ti,Mj(k)>0

�
i

(M
j

)

3

5
�1

. (4-3)

As all random variables have an exponential distribution, then it is

possible to compute the probability of an enabled transition t
i

which has the

minimum firing delay (i.e. the probability of t
i

fires immediately) at a marking

M
j

:
Pr(t

i

| M
j

) =
�
i

(M
j

)X

k:8`2•
tk,Mj(`)>0

�
k

(M
j

)
. (4-4)

The long-run time of availability of a resource (Haas, 2002) can be

computed by the limit

r(h) = lim
t!1

1

t

Z
t

0

h(M
u

)du (4-5)

where f : M ! is a function which describes the availability of a resource

in a Stochastic Petri Net.

To illustrate the usage of Stochastic Petri Nets, we can model a two

processes system that share a resource. Process 1 is I/O bound and process

2 is CPU bound, as in Figure 4.1(a). The great di↵erence in the amount of

requests of input can be modelled by setting the ⇤ values (i.e. �1 > �3).

Figure 4.1(b) presents a simple parallel system modelled in a SPN where the

tokens denote processes. The ⇤ values determines if it would be faster in some

of the ways. The probability of a process goes from q1 to q2 instead of to q4

can be computed according to equation (4-4).

As pointed out in the work of Mazurkiewicz (1987, 1989), logics that

deal with Petri Nets use to be incomplete due to the possibility of a place

always increase its token amount (up to countable infinity). To restrict a subset

of Petri Nets where we can achieve decidability and completeness, we call

DBD
PUC-Rio - Certificação Digital Nº 1012682/CA

Extending Propositional Dynamic Logic for Petri Nets 66

p1

p2

p3

p4

p5

T1

T2

T3

T4

4.1(a): A two processes system

q1

q2 q3

q4 q5

q6

4.1(b): A simple parallel system

Figure 4.1: Stochastic Petri Net examples

normalised Stochastic Petri Net any Stochastic Petri Net that do not contain

any place which can accumulate an infinite amount of tokens. From now on,

all the proofs deal only with normalised Stochastic Petri Nets.

4.2
A stochastic approach for Petri-PDL

A stochastic approach for Petri-PDL (Section 3.1) is presented here as

the logic system DS3 (Propositional Dynamic Logic for Stochastic Petri Nets).

The language of DS3 is the same language of Petri-PDL. The di↵erence

is that the Petri Net program is replaced by a Stochastic Petri Net program

(more details on how deal with its behaviour given in the frame Definition 60,

where a program is defined as a pair of transitions and the parameters of the

exponential random variables associated with them). The language of DS3 is

the same language than Petri-PDL.

Definition 58 DS3 program

A DS3 program is a pair (⇧,⇤) where ⇧ is a composition of transitions

defined as (we use s a sequence of names – the markup of ⇧). The transitions

may be from three types, T1 : xt1y, T2 : xyt2z and T3 : xt3yz, each transition

has a unique type.

Basic programs: ⇡
b

::= at1b | at2bc | abt3c where t
i

is of type T
i

, i = 1, 2, 3

Stochastic Petri Net Programs: ⇡ ::= s, ⇡
b

| ⇡ � ⇡

⇤(⇡) = h�1,�2, . . .�ni is a function that associates a positive real value with

each basic transition ⇡ 2 ⇧ where ⇡ = ⇡1�⇡2� · · · ⇡
n

. The function ⇤ denotes

the value of the parameter of the exponential random variable associated with

each transition.

DBD
PUC-Rio - Certificação Digital Nº 1012682/CA

Extending Propositional Dynamic Logic for Petri Nets 67

Definition 59 DS3 formula

A DS3 formula is defined as

' ::= p | > | ¬' | ' ^ ' | hs, ⇡i'.

We use the standard abbreviations ? ⌘ ¬>, ' _ � ⌘ ¬(¬' ^ ¬�),
' ! � ⌘ ¬(' ^ ¬�) and [s, ⇡]' ⌘ ¬hs, ⇡i¬', and ⇡ is a Stochastic Petri

Net program.

The firing of a transition in DS3 is defined according the firing function

in Definition 25.

Definition 60 DS3 frame

A frame for DS3 is a 4-tuple F3 = hW,R
⇡

,M, (⇧,⇤), �i where

– W is a non-empty set of states

– M : W ! S

– (⇧,⇤) is a Stochastic Petri Net program

– �(w, ⇡) = hd1, d2, . . . , dni is the sequence of firing delays of the program

⇡ 2 ⇧ in the world w 2 W respectively for each program ⇡1 � ⇡2 �
· · · � ⇡

n

= ⇡, satisfying the following conditions (where s = M(w) and

r = M(v))

– if wR
⇡b
v and f(r, ⇡

b

) = ✏ then �(w, ⇡
b

) = �(v, ⇡
b

)

– if f(s, ⇡
b

) = ✏, f(r, ⇡
b

) 6= ✏ and wR
⇡b
v, then �(v, ⇡

b

) is an occurrence

of a random variable of exponential distribution with parameter

⇤(⇡
b

), i.e., by the inversion theorem, �(v, ⇡
b

) = ln(1�u)
�⇤(⇡b)

where u is

an occurrence of a uniform random variable

– if f(s, ⇡
b

) 6= ✏, f(r, ⇡
b

) 6= ✏ and wR
⇡b
v, �(v, ⇡

b

) < �(w, ⇡
b

)

– R
⌘

is a binary relation over W , for each basic program ⌘ 2 ⇡
b

, satisfying

the following conditions (where s = M(w))

– if f(s, ⌘) 6= ✏ and �(w, ⌘) = min(�(w,⇧)), then wR
⌘

v i↵ f(s, ⌘) �
M(v)

– if f(s, ⌘) = ✏ or �(w, ⌘) 6= min(�(w,⇧)), then wR
⌘

v i↵ w = v

– we inductively define the binary relation R
⌘

, for each Stochastic Petri

Net program as follows

⌘ = ⌘1 � ⌘2 � · · · � ⌘
n

, as R
⌘

= {(w, v) | 9⌘
i

, 9u such that s
i

�
M(u) and wR

⌘iu and �(w, ⌘
i

) = min(�(w,⇧)) and uR
⌘

v} where s
i

=

f(s, ⌘
i

), for all 1 i n.

DBD
PUC-Rio - Certificação Digital Nº 1012682/CA

Extending Propositional Dynamic Logic for Petri Nets 68

Lemma 61 Reflexivity over empty occurrences

For any Petri Net program ⇡, f(✏, ⇡) = ✏, R
✏,⇡

is reflexive.

Proof: This proof is straightforward from the firing function definition (Defin-

ition 25) and frame Definition 60. ⌅

Definition 62 DS3 model

A model for DS3 is a pair M3 = hF3,Vi, where F3 is a DS3 frame and

V is a valuation function V : �! 2W .

Lemma 63 Truth Probability of a Modality

The probability of M3,w � hs, ⇡
b

i' is given by (where s = M(w))

Pr(M3,w � hs, ⇡
b

i' | �(w,⇧)) = �(w, ⇡
b

)X

⇡b2⇧:f(s,⇡b) 6=✏

�(w, ⇡
b

)

Proof: This proof is straightforward from relation (4-4) and Definition 60. ⌅

Definition 64 Semantic notion of DS3

Let M3 be a model for DS3. The notion of satisfaction of a formula '

in M3 at a state w, namely M3,w � ' is inductively defined as follows.

– M3,w � p i↵ w 2 V(p)

– M3,w � >

– M3,w � ¬' i↵ M3,w 1 '

– M3,w � '1 ^ '2 i↵ M3,w � '1 and M3,w � '2

– M3,w � hs, ⌘i' if there exists v 2 W , wR
⌘

v and Pr(M3,v � hs, ⌘
b

i' |
�(v,⇧)) > 0

If ' is satisfied in all states of M3 then ' is satisfied in M3, namely M3 � ';

and if ' is valid in any model then ' is valid, namely � '.

DBD
PUC-Rio - Certificação Digital Nº 1012682/CA

Extending Propositional Dynamic Logic for Petri Nets 69

4.3
Axiomatic system

We consider the following set of axioms and rules, where p and q are

proposition symbols, ' and are formulae, ⌘ = ⌘1 � ⌘2 � · · · � ⌘
n

is a Petri

Net program and ⇡ is a Marked Petri Net program.

(PL) Enough propositional logic tautologies

(K) [s, ⇡](p ! q) ! ([s, ⇡]p ! [s, ⇡]q)

(Du) [s, ⇡]p $ ¬hs, ⇡i¬p

(PC3) hs, ⌘i'$ hs, ⌘1ihs1, ⌘i' _ hs, ⌘2ihs2, ⌘i' _ · · · _ hs, ⌘
n

ihs
n

, ⌘i',
where s

i

= f(s, ⌘
i

), for all 1 i n and ⇡ is not a basic program

(R3✏) hs, ⌘i'$ ', if f(s, ⌘) = ✏

(Sub) If � ', then � '�, where � uniformly substitutes proposition symbols

by arbitrary formulae

(MP) If � ' and � '! , then �

(Gen) If � ', then � [s, ⇡]'

4.4
Soundness and completeness

In this section we use some well-known results for Stochastic Petri

Nets (Haas, 2002) to fulfil the requirements of soundness and completeness.

The axioms (PL), (K) and (Du) and the rules (Sub), (MP) and (Gen) are

standard in the modal logic literature.

Lemma 65 Validity of DS3 axioms

1. � PC3

Proof: Supose that there is a world w from a model M3 =

hW,R
⌘

,M, (⇧,⇤), �,Vi where PC3 is false. For PC3 to be false in

w, there are two cases:

(a) Suppose M3,w � hs, ⌘i' (1) and

M3,w 6� hs, ⌘1ihs1, ⌘i' _ hs, ⌘2ihs2, ⌘i' _ · · · _ hs, ⌘
n

ihs
n

, ⌘i' (2).

By (1) i↵ there is a world v such that wR
⌘

v and Pr(M3,v �
hs, ⌘

b

i' | �(v,⇧)) > 0 (3).

By Definition 60 R
⌘

= {(w, v) | 9⌘
i

, 9u such that s
i

�

DBD
PUC-Rio - Certificação Digital Nº 1012682/CA

Extending Propositional Dynamic Logic for Petri Nets 70

M(u) and wR
⌘iu and �(w, ⌘

i

) = min(�(w,⇧)) and uR
⌘

v},
from (3) M3,u � hs

i

, ⌘i' and M3,w � hs, ⌘
i

ihs
i

, ⌘i', which implies

that Pr(M3,w � hs, ⌘1ihs1, ⌘i'_hs, ⌘2ihs2, ⌘i'_· · ·_hs, ⌘nihsn, ⌘i' |
�(w,⇧)) > 0 (4).

From (4) M3,w � hs, ⌘1ihs1, ⌘i' _ hs, ⌘2ihs2, ⌘i' _ · · · _
hs, ⌘

n

ihs
n

, ⌘i', which contradicts (2).

(b) Suppose

M3,w � hs, ⌘1ihs1, ⌘i' _ hs, ⌘2ihs2, ⌘i' _ · · · _ hs, ⌘
n

ihs
n

, ⌘i' (2),

then, by semantics of disjunction, for some i (1 i n), we have

that M,w � hs, ⌘
i

ihs
i

, ⌘i' i↵

there is a u such that wR
⌘iu, Pr(M3,w � hs, ⌘1ihs1, ⌘i' _

hs, ⌘2ihs2, ⌘i' _ · · · _ hs, ⌘
n

ihs
n

, ⌘i' | �(w,⇧)) > 0 (3)

i↵ there is a v such that uR
⌘

v and M3,v � ' (4).

By Definition 60, (3) and (4) we have wR
⌘

v, Pr(M3,w �
hs, ⌘1ihs1, ⌘i' _ hs, ⌘2ihs2, ⌘i' _ · · · _ hs, ⌘

n

ihs
n

, ⌘i' | �(w,⇧)) > 0

and M3,v � '. Thus, M3,w � hs, ⌘i'.

So, PC3 is valid. ⌅

2. � R3✏

Proof: Suppose that there is a world w from a model M3 =

hW,R
⌘

,M, (⇧,⇤), �,Vi where R
✏

is false. For R
✏

to be false in w, there

are two cases:

(a) Suppose M3,w � h✏, ⌘i' (1) and

M3,w 6� ' (2)

(1) i↵ there is a v such that wR
✏,⌘

v and Pr(M3, v � h✏, ⌘i' |
�(v,⇧)) > 0.

As f(✏, ⌘) = ✏, by Definition 61, w = v, wR
⌘

w and M3, w � ',

which contradicts (2).

(b) Suppose M3,w 6� h✏, ⌘i' (1) and

M3,w � ' (2). (1) i↵ Pr(M3,w � h✏, ⌘i' | �(w,⇧)) = 0.

As f(✏, ⌘) = ✏, by Definition 61, wR
⌘

w and, by Definition 60,

M3,w 1 ', which contradicts (2).

So, R3✏ is valid. ⌅

As for Petri-PDL, the completeness proof goes as in the work of Black-

burn et al. (2001); Harel et al. (2000) and Goldblatt (1992b).

Definition 66 Canonic Model

DBD
PUC-Rio - Certificação Digital Nº 1012682/CA

Extending Propositional Dynamic Logic for Petri Nets 71

A canonic model for DS3 with language L is a 5-tuple CL
3 =

hWL
3 , R

L
3 ,M

L
3 , (⇧

L
3 ,⇤

L
3), �

L
3 ,V

L
3 i, where WL

3 is the set of all maximal consist-

ent sets; VL
3 is a valuation function where for all w 2 WL

3 , w 2 VL
3 (') i↵

' 2 w; (⇧L
3 ,⇤

L
3) is a Stochastic Petri Net program whose firing delays for each

world are defined by �L3 : W
L
3 ⇥⇧L

3 ! ~ +; ML
3 is the markup of the Petri Net

programs, defined as

ML
3 (w) = {s1, . . . , sn | hs

i

, ⇡i' 2 w, 1 i n,w 2 WL
3 };

and RL
3 is a binary relation between the elements of WL

3 defined for each

program ⇡ 2 ⇧ as

RL
3⇡ = {(n,m) | n,m 2 WL

3 , {'/[s, ⇡]' 2 n,s � ML
3 (n)} ✓ m}.

Lemma 67 CL
3 is a canonic model for DS3

Proof: By Definition 66 we have that:

– WL
3 is finite a set of states.

– ML
3 : WL

3 ! S.

– RL
3⇡ = {(w, v) | for some ⇡

i

9u such that s
i

� ML(u) and wR
⇡iu and uR

⇡

v}
for any program ⇡ = ⇡1 � · · ·� ⇡

n

, where s
i

= f(s, ⇡
i

) and 1 i n.

– (⇧L
3 ,⇤

L
3) is a Stochastic Petri Net program where ⇧ is a composition of

transitions and ⇤L
3 : ⇧

L
3 ! ~+ is a function that associates the parameter

of the exponential random variable associated with each transition of ⇧.

– �L3 : W
L
3 ⇥ ⇧L

3 ! ~ + such that (let ⇡
b

2 ⇧L
3 , w 2 WL

3 , v 2 WL
3 ,

s = ML3(w) and r = ML3(v))

– if wRL
3⇡b

v then f(r, ⇡
b

) = ✏ and �L3 (w, ⇡b) = �L3 (v, ⇡b) (once there

was no firing);

– if f(s, ⇡
b

) = ✏, f(r, ⇡
b

) 6= ✏ and wRL
3⇡b

v, �L(v, ⇡
b

) is an occurrence of

a random variable of exponential distribution with parameter ⇤L(⇡
b

)

– if f(s, ⇡
b

) 6= ✏ then f(r, ⇡
b

) 6= ✏ and wRL
3⇡b

v, �L(v, ⇡
b

) < �L(w, ⇡
b

)

So, CL
3 is a model for DS3. ⌅

Lemma 68 Let CL
3 a Canonic Model for DS3 as in Definition 66. Then, for

any w 2 WL
3 , w � ' i↵ ' 2 w.

Proof:

DBD
PUC-Rio - Certificação Digital Nº 1012682/CA

Extending Propositional Dynamic Logic for Petri Nets 72

1. If ' is an atomic formula, it holds by the definition of VL
3 .

2. If ' is ¬� then w � ' i↵ w 6� �.

3. If ' is in the form �1 ^ �2 then, as w is maximal consistent and by the

inductive hypothesis, w � ' i↵ w � �1 and w � �2, and w 2 VL
3 (�1) and

w 2 VL
3 (�2).

4. If ' is a modal formula with a Stochastic Petri Net program such as

hs, ⇡i�, then, w � ' i↵:

(R3✏): f(s, ⇡) = ✏, wRL
3 ⇡

w, w � � and w 2 VL
3 (�) by the inductive

hypothesis;

(PC3): 9u9v, wRL
3⇡i

u, uRL
3⇡v, 1 i n, v � � and v 2 VL

3 (�) by the

inductive hypothesis and by Lemma 69, where ⇡ = ⇡1 � · · ·� ⇡
n

;

So, this lemma is valid. ⌅

Lemma 69 [s, ⇡]' 2 u i↵ in all v such that uRL
3 v, ' 2 v.

Proof:

Supose [s, ⇡]' 2 u and there is no v 2 WL
3 such that uRL

3 v and ' 2 v

(1).

As ⇡ = ⇡1 � · · ·� ⇡
n

, by RL
3 we have that all [s, ⇡

i

][s
i

, ⇡]', 1 i n 2 v

for all 1 i n if uRL
3 v (2).

By (PC), all [s, ⇡
i

][s
i

, ⇡]', 1 i n 2 u for all 1 i n (3).

But if (3) then ' is in some v such that uRL
3 v by RL

3 definition, which

contradicts (1).

So, in all v such that uRL
3 v, ' 2 v.

Supose that exists some u 2 WL
3 where [s, ⇡]' 62 u and such that in all v

that uRL
3 v, ' 2 v (4).

By RL
3 definition, if in all v that uRL

3 v, ' 2 v, then [s, ⇡]' 2 u (5).

Then, there is a contradiction.

So, this lemma is valid. ⌅

Lemma 70 If ' 2 w for all w maximal consistent set of formulae, then � '.

Proof: Suppose 6� '; then, by Lemma 68, ¬' 2 w. But if ' 2 w and ¬' 2 w

then there is a contradiction. ⌅

Theorem 71 Completeness

If � ' then ` '.
Proof: If ' is valid then it is valid in all models, including the canonic model.

So it is valid in all worlds of CL
3 (all maximal consistent sets). So by Lemma 70,

' is derivable. Therefore if � ', then ` '. ⌅

DBD
PUC-Rio - Certificação Digital Nº 1012682/CA

Extending Propositional Dynamic Logic for Petri Nets 73

Definition 72 The Fischer-Ladner closure

It is inductively defined as follows, where FL(') denotes the smallest set

containing ' which is closed under sub formulae.

FL : ⌥! 2⌥, where ⌥ is the set of all formulae

1. FL(') is closed under subformulae;

2. if hs, ⌘i 2 FL('), then Pr(M3,v � hs, ⌘
b

i | �(v,⇧)) > 0, where ⌘
b

is

a basic program of ⌘, so hs, ⌘
i

ihs
i

, ⌘i 2 FL('),

where ⌘ = ⌘1 � ⌘2 � · · ·� ⌘
n

and s
i

= f(s, ⌘
i

), for all 1 i n;

Lemma 73 FL(') is finite.

Proof: The only possibility of construct ' � � (i.e. � is a derivative of the

formula ') is i↵ ' is in the form hs, ⇡i and � is in the form hs, ⇡
i

ihs
i

, ⇡i
for some 1 i n where n is the size of the Stochastic Petri Net program ⇡

(i.e. the number of basic programs of ⇡) and ⇡
i

is an atomic program. Then the

smallest closed set � containing a formula ⇢ is obtained by closing FL(⇢) under

�; hence � 2 � i↵ there is a finite sequence of the form ' = '1 � · · · � '
j

= �,

where 8
m 6=n

'
m

6= '
n

and ' 2 FL(⇢). So, if hs,i � hp, ⌧i� for a

normalised Stochastic Petri Net program, then ⌧ is an atomic Stochastic Petri

Net program or is equal to . Therefore there can be no infinitely-long �-

sequences.

So, FL(') is finite. ⌅

Lemma 74

(i) If � 2 FL('), then FL(�) ✓ FL(')

(ii) If � 2 FL(hs, ⇡i'), then FL(�) ✓ FL(hs, ⇡i') [FL(')

Proof: This proof is the same than for Petri-PDL, regarding DS3 FL Defin-

ition 73. ⌅

Definition 75 Filtration

Given a DS3 formula ', a DS3 model K = hW,R
⌘

,M, (⇧,⇤), �,Vi, we
define a new model

K3 = hW', R'

⌘

,M', (⇧',⇤'), �',V'i,

the filtration of K3 by FL(') for a normalised Stochastic Petri Net program

⇧, as follows.

DBD
PUC-Rio - Certificação Digital Nº 1012682/CA

Extending Propositional Dynamic Logic for Petri Nets 74

The relation ⌘ over the worlds of K3 is defined as

u ⌘ v $ 8� 2 FL('),Pr(K3,u � � | �(u,⇧)) = Pr(K3,v � � | �(v,⇧))

and the relation R'

⌘

is defined as

[u]R'

⌘

[v] $ (9u0 2 [u] ^ 9v0 2 [v] ^ u0R
⌘

v0).

where

(a) [u] = {v | v ⌘ u}

(b) W' = {[u] | u 2 W}

(c) [u] 2 V'(p) i↵ u 2 V (p)

(d) M'([u]) = hs1, s2, . . . i where for all j � 1, v
j

2 [u] i↵ M(v
j

) = s
j

(e) (⇧',⇤') = (⇧,⇤)

(f) �'([u], ⇡) = hd1, d2, . . . , dni where ⇡ = ⇡1 � ⇡2 � · · · � ⇡
n

and d
i

=
R

i

0 h(�(u,⇧))du, according to equation (4-5) and the stability process (Haas,

2002), where h is the function that decreases the firing delays.

The process to compute �' is defined only for normalised Stochastic

Petri Net programs; it is derived from the equation (4-5) and the stability

process for Stochastic Petri Nets by the functional version of the Central Limit

Theorem (Haas, 2002; James, 2006).

All rules may be composed inductively to extend in order to compound all

programs and propositions due to compositions as in definition 59.

Lemma 76 Filtration Lemma

8u, v 2 W, uR
⌘

v i↵ [u]R'

⌘

[v]

Proof: From Definition 75 w 2 [w] i↵ 8w0 2 [w], w0 ⌘ w (1)

and [u]R'

⌘

[v] for some u 2 [u] and v 2 [v] we have that u0R'

⌘

v0 (2).

So if uR'

⌘

v and we do not have that [u]R'

⌘

[v] then it will contradicts (1). If

[u]R'

⌘

[v] but we do not have that uR'

⌘

v then it will contradicts (2). ⌅

Lemma 77 K'

3 is a finite DS3 model.

Proof:

– W' is a finite set of states by Definition 75 and Lemma 73.

– M' : W' ! S by Definition 75.

DBD
PUC-Rio - Certificação Digital Nº 1012682/CA

Extending Propositional Dynamic Logic for Petri Nets 75

– R'

⌘

= {([w], [v]) | for some ⌘
i

9[u] such that s
i

� M'([u]) and [w]R
⌘i [u] and [u]R

⌘

[v]}
for any program ⌘ = ⌘1 � · · ·� ⌘

n

, where s
i

= f(s, ⌘
i

) and 1 i n.

– V' : �! 2W
'
by Definition 75.

– (⇧',⇤') is a Stochastic Petri Net program by Definition 75.

– �' : W' ⇥ ⇧! 2 by Definition 75.

Then K'

3 is a finite DS3 model. ⌅

Corollary 78 Decidability

Proof: By Lemma 77 the number of states is finite, then there is an algorithm

to check whether a formula ' of DS3 is satisfiable. ⌅

4.5
Computational complexity

Petri-PDL language is the same then the DS3 and its expressive power

is also subsumed by DS3. So DS3 satisfiability computational complexity is

stated bellow.

Lemma 79 The satisfiability of DS3 is EXPTime-hard.

Proof: Taking Lemma 45, we use the Petri Net which models the game stating

the same firing rate to each transition. As the Petri-PDL language is the same

then DS3 then the reduction procedure presented in Lemma 45 and Theorem ??

is also valid for DS3. So DS3 SAT is EXPTime-hard. ⌅

4.6
A Natural Deduction system for DS3

The syntax of the Natural Deduction system for Petri-PDL (Section 3.5)

is same than for DS3. The di↵erence is that now, regarding a model M3 =

hW,R
⇡

,M, (⇧,⇤), �,Vi, rule (3-10) has also the restriction that Pr(M3,w �
hs, ⇡i' | �(w,⇧)) > 0, where w 2 W and rule (3-12) has also the restriction

that Pr(M3,w � hs, ⇡i' | �(w,⇧)) = 1. The proofs of soundness and

completeness of the system are also valid for DS3 regarding its semantical

notion.

DBD
PUC-Rio - Certificação Digital Nº 1012682/CA

Extending Propositional Dynamic Logic for Petri Nets 76

4.7
Usage examples

This section presents some usage examples for DS3.

4.7.1
A multi-agent system

The Petri Net in Figure 4.2 presents a scenario where four agents (A1,

A2, A3 and A4) must collect and process some data from the resource centre

(r), but agents A1 and A2 cannot make the full process and needs that A3 or

A4 completes the computation. Another characteristic of this system is that

A3 and A4 have a faster processor than A1 and A2 and that A1 and A2 are in

a shared memory system, but the clock of the processor of A1 is faster than

A2. As the clock of the processor of A1 is faster than the one of A2, the firing

rates (i.e. the � parameter of the random variable which is associated with the

transitions whose preset or postset depends on A1) is greater than the ones of

A2.

r

A1A2

A3

A4

m

Figure 4.2: Petri Net of a four agents system

Taking a propositional formula p that means that all data was processed,

the formula h{rrrrrm}, rmt2A1 � rmt2A2 � rt1A3 � rt1A4 � A1t3A3m �
A2t3A3m � A1t3A4m � A4t3A4mip says that after some running of the Petri

Net of Figure 4.2, p holds, that is, all the data are processed. Verifying if this

formula holds in a state w of a model M (i.e. verifing if it is possible that

some transition fires) is equivalent to compute that the probability of some

basic program fire is greater than zero, which is reduced to the equation in

lemma 63. In order to verify if it is possible that A1 and A2 compute some

data in parallel, we verify that after some of them begin to process something

(i.e. rmt2A1 or rmt2A2 fires), m will not be anymore in the sequence of names,

DBD
PUC-Rio - Certificação Digital Nº 1012682/CA

Extending Propositional Dynamic Logic for Petri Nets 77

so it is not possible that the other agent starts to compute something unless a

transition that restates a token to m fires.

If it is desirable to know if, from a state w, it is possible that some

agent (e.g. agent A1) collect some data to process, then we need to compute

Pr(M,w � hs, rmt2A1i> | �(w, rmt2A1�rmt2A2�rt1A3�rt1A4�A1t3A3m�
A2t3A3m�A1t3A4m�A4t3A4m)), where s = M(w), and verify if it is greater

than zero. By lemma 63 it is equivalent to verify if

�(w, rmt2A1)X

⇡b2⇧:f(s,⇡b) 6=✏

�(w, ⇡
b

)

is greater than zero, where ⇧ = rmt2A1�rmt2A2�rt1A3�rt1A4�A1t3A3m�
A2t3A3m� A1t3A4m� A4t3A4m.

A more sophisticated example concerns in verifying if the transmission

ratings from agents A1 and A2 to the agents A3 and A4 are overheading agents

A3 and A4. That is verify if the programs A1t1A3, A1t1A4, A2t1A3 and A2t1A4

are firing more times than rt1A3 and rt1A4. This is equivalent to verify if the

probabilities of firing that first basic programs are greater than these last ones.

So it is equivalent to verify if for a sequence ⇤(A1t1A3 � A1t1A4 � A2t1A3 �
A2t1A4) from an initial state v1 such that v1R⇧vn = v1Rv2 � · · · � v

n�1Rv
n

,

where ⇧ stops in state v
n

,

X

�(vi,A1t1A3�A1t1A4�A2t1A3�A2t1A4)

1 >
X

�(vi,rt1A3�rt1A4)

1

for 1 i n where all the involved basic problems are enabled. Determine

a good firing rate for A1t1A3, A1t1A4, A2t1A3 and A2t1A4 is an optimisation

problem for ⇤(A1t1A3 � A1t1A4 � A2t1A3 � A2t1A4).

4.7.2
A Kanban system

As another usage example take a Kanban system (Marsan et al., 1995),

a Just-In-Time based flow control method. The SPN designed in Figure 4.3

represents a “cards” (the K tokens of place BB) flow of resources control

with failure for a Kanban cell (a processing unit that may communicate with

others). The place IB denotes the Input Bu↵er where the resources are stored

(already with a card) before processed. If everything is OK (i.e. the place OK

has a token) and the processing system is not busy (i.e. there is a token in place

Id) then the resource is processed (the token goes to place B) and thereafter

the resource goes to the Output Bu↵er (the place OB).

DBD
PUC-Rio - Certificação Digital Nº 1012682/CA

Extending Propositional Dynamic Logic for Petri Nets 78

IB B l x OB

Id
K

BB

OKError
F

R

Figure 4.3: A Kanban cell with failure

When the transition F fires it denotes that some failure occurred.

Similarly, when the transition R fires it denotes that the system was repaired.

The failure rate and the time needed to process the resource are controlled

by the parameters of the random variables associated with the respective

transitions.

Modelling this scenario in a DS3 model M = hW,R
⇡

,M, (⇧,⇤), �i, we
have the formula h(s), Kt1IB� IB,Idt2B�B,OKt2l� lt3OK,x�xt3Id,OB�
OBt1BB�OKt1Error�Errort1Oki' where s is a sequence of names composed

byK repetitions of “BB” and “OK” and ' is some property that holds after the

running of this SPN. Verify if this formula holds in a state w of a model M (i.e.

verify if it is possible that some transition fires) is equivalent to compute the

probability of some basic program fires is greater than zero, which is reduced to

the equation in lemma 63. To verify if it is possible process two resources at the

same time, we verify that after some of them begin to process something (i.e.

there is a token in place B), Id will not be anymore in the sequence of names,

so it is not possible that other resource begins it process unless a transition

that restates a token to Id fires.

Verify if from a world w 2 W it is possible that some resource begins

its processing is equivalent to compute if Pr(M,w � hr, IB,Idt2B � Bi> |
�(w,Kt1IB � IB,Idt2B � B,OKt2l � lt3OK,x � xt3Id,OB � OBt1BB �
OKt1Error�Errort1Ok)) > 0 where r = M(w). Using lemma 63 it is equivalent

to verify if
�(Idt2B � B)X

⇡b2⇧:f(r,⇡b) 6=✏

�(w, ⇡
b

)
> 0

where ⇧ = Kt1IB�IB,Idt2B�B,OKt2l� lt3OK,x�xt3Id,OB�OBt1BB�
OKt1Error� Errort1Ok and ⇡

b

is a basic transition of ⇧.

DBD
PUC-Rio - Certificação Digital Nº 1012682/CA

Extending Propositional Dynamic Logic for Petri Nets 79

4.8
A note on the length of proofs

To describe the behaviour of a program it is necessary a long sequence

of states (worlds). It is needed to apply the axiom (PC) consecutively and

eliminate the disjunctions which may lead to a proof di�cult to read. In order

to reduce the length of proofs, we will introduce another approach for DS3,

using a transitive closure operator.

DBD
PUC-Rio - Certificação Digital Nº 1012682/CA

