
5
Towards a transitive closure approach to DS

3

In order to present a more natural and intuitive way to deal with

Stochastic Petri Nets we present a variation of the DS3 system regarding

a transitive closure operator to express the firing sequence of the Stochastic

Petri Net program, the DS?

3. This operator is primitive from PDL and we show

how to use it with Stochastic Petri Net programs.

With the usage of the transitive closure operator it is possible to achieve

shorter proofs than in DS3. The transitive closure behaviour is also naturally

mapped into CTMCs.

5.1
Basic definitions

The language of DS?

3 is defined as follows.

Propositional symbols: p, q. . . , where � is the set of all propositional

symbols

Place names: e.g.: a, b, c, d . . .

Petri Net Composition symbol: �

PDL operator: ? (iteration)

Sequence of names: S = {✏, s1, s2, . . . }, where ✏ is the empty sequence. We

use the notation s � s0 to denote that all names occurring in s also occur

in s0.

Definition 80 DS?

3 program

We use ⇡ to denote a Stochastic Petri Net program and s a sequence of

names (the markup of ⇡).

Basic programs: ⇡
b

::= at1b | at2bc | abt3c where t
i

is of type T
i

, i = 1, 2, 3

Stochastic Petri Net Programs: ⇡ ::= s, ⇡
b

| ⇡ � ⇡ | ⇡?

DBD
PUC-Rio - Certificação Digital Nº 1012682/CA

Extending Propositional Dynamic Logic for Petri Nets 81

Definition 81 DS?

3 formula

A DS?

3 formula is defined as

' ::= p | > | ¬' | ' ^ ' | hs, ⇡i'.

We use the standard abbreviations ? ⌘ ¬>, ' _ � ⌘ ¬(¬' ^ ¬�),
' ! � ⌘ ¬(' ^ ¬�) and [s, ⇡]' ⌘ ¬hs, ⇡i¬', and ⇡ is a Stochastic Petri

Net program.

The firing of a transition in DS?

3 is defined according the firing function

in Definition 25.

Definition 82 DS?

3 frame

A frame for DS?

3 is a 5-tuple F?

3 = hW,R
⇡

,M, (⇧,⇤), �i such as in DS3

frame definition (Definition 60) including (let ⇡ 2 ⇧) the following.

– R
⇡

? = R?

⇡

, where R?

⇡

denotes the reflexive transitive closure of R
⇡

.

– ⇡ = ⇡1 � ⇡2 � · · · � ⇡
n

, as R
⇡

= {(w, v) | 9⌘
i

, 9u such that s
i

�
M(u) and wR

⇡iu and �(w, ⇡
i

) = min(�(w,⇧)) and uR
⇡

v} where s
i

=

f(s, ⇡
i

), for all 1 i n.

Definition 83 DS?

3 model

A model for DS?

3 is a pair M?

3 = hF?

3 ,Vi, where F?

3 is a DS?

3 frame and

V is a valuation function V : �! 2W .

Lemma 84 Truth Probability of a Modality

The probability of M?

3,w � hs, ⇡
b

i' is (where s = M(w))

Pr(M?

3,w � hs, ⇡
b

i' | �(w,⇧)) = �(w, ⇡
b

)X

⇡b2⇧:f(s,⇡b) 6=✏

�(w, ⇡
b

)

Proof: This proof is straightforward from relation (4-4) and Definition 82. ⌅

Definition 85 DS?

3 semantical notion

Let M?

3 = hW,R
⇡

,M, (⇧,⇤), �,Vi be a model for DS?

3. The notion of

satisfaction of a formula ' in M?

3 at a state w, namely M?

3,w � ' is inductively

defined as follows.

– M?

3,w � p i↵ w 2 V(p)

– M?

3,w � > always

– M?

3,w � ¬' i↵ M?

3,w 1 '

DBD
PUC-Rio - Certificação Digital Nº 1012682/CA

Extending Propositional Dynamic Logic for Petri Nets 82

– M?

3,w � '1 ^ '2 i↵ M?

3,w � '1 and M?

3,w � '2

– M?

3,w � hs, ⌘i' if there exists v 2 W , wR
⌘

v and Pr(M?

3,v � hs, ⌘
b

i' |
�(v,⇧)) > 0

– M?

3,w � hs, ⌘?i' i↵ M?

3,w � ' or if there exists v 2 W , wR?

⌘

v and

M?

3,v � hs, ⌘i'

If ' is satisfied in all states of M?

3 then ' is satisfied in M?

3, namely M?

3 � ';

and if ' is valid in any model then ' is valid, denoted by � '.

5.2
Axiomatic system

We consider the following set of axioms and rules, where p and q are

propositional symbols, ' and are formulae, ⌘ = ⌘1 � ⌘2 � · · ·� ⌘
n

is a Petri

Net program and ⇡ is a Marked Petri Net program.

(PL) Enough propositional logic tautologies

(K) [s, ⇡](p ! q) ! ([s, ⇡]p ! [s, ⇡]q)

(Rec) hs, ⇡?ip $ p _ hs, ⇡ihs, ⇡?ip

(FP) p ^ [s, ⇡?](p ! [s, ⇡]p) ! [s, ⇡?]p

(PC?

3) hs, ⇡i'$ hs, ⇡1ihs1, ⇡?i' _ hs, ⇡2ihs2, ⇡?i' _ · · · _ hs, ⇡
n

ihs
n

, ⇡?i',
where s

i

= f(s, ⇡
i

), for all 1 i n

(R?

3✏) [s, ⇡]?, if f(s, ⇡) = ✏

(Sub) If � ', then � '�, where � uniformly substitutes propositional symbols

by arbitrary formulae.

(MP) If � ' and � '! , then � .

(Gen) If � ', then � [s, ⇡]'.

DBD
PUC-Rio - Certificação Digital Nº 1012682/CA

Extending Propositional Dynamic Logic for Petri Nets 83

5.3
Soundness and completeness

In this section we prove soundness and completeness of DS?

3 for norm-

alised Stochastic Petri Nets as in section 4.4. The axioms (PL) and (K) and

the rules (Sub), (MP) and (Gen) are standard in the modal logic literature.

We present the cases that are not proved for DS3, that is, proofs for DS?

3 that

are not proofs for DS3 (section 4.4). Notice that a proof for DS3 is a proof for

DS?

3.

Lemma 86 Validity of DS?

3 axioms

1. � Rec

Proof: Supose that there is a world w from a model M?

3 =

hW,R
⇡

,M, (⇧,⇤), �,Vi where Rec is false. For Rec to be false in

w, there are two cases:

(a) Suppose M?

3,w � hs, ⇡?ip (1) and

M?

3,w 1 p _ hs, ⇡ihs, ⇡?ip (2)

Applying Definition 85 in (1) we have that M?

3,w � hs, ⇡ihs, ⇡?ip
(3).

Applying Definition 85 again we have that M?

3,w � p_hs, ⇡ihs, ⇡?ip,
which contradicts (2).

(b) Suppose M?

3,w 1 hs, ⇡?ip (1) and

M?

3,w � p _ hs, ⇡ihs, ⇡?ip (2)

Applying Definition 85 in we have M?

3,w � p _ hs, ⇡ip (3).

Using the axiom (Gen) and then (K) in (3) we have that M?

3,w �
[s, ⇡]p _ hs, ⇡ip, that, using Definition 82, we have that M?

3,w �
hs, ⇡ip_hs, ⇡ip, which by Definition 85 implies that M?

3,w � hs, ⇡ip.
(4)

But by (1) and Definition 85 we can not have (4).

Then, there is a contradiction.

So, Rec is valid. ⌅

2. � FP

Proof: Supose that there is a world w from a model M?

3 =

hW,R
⇡

,M, (⇧,⇤), �,Vi where FP is false.

So, M?

3,w � p ^ [s, ⇡?](p ! [s, ⇡]p) (1) and

M?

3,w 1 [s, ⇡?]p (2).

By (1) and Definition 85 we have that M?

3,w � p and M?

3,w �
[s, ⇡?](p ! [s, ⇡]p) (4)

DBD
PUC-Rio - Certificação Digital Nº 1012682/CA

Extending Propositional Dynamic Logic for Petri Nets 84

Applying (MP) in (4) we have that M?

3,w � [s, ⇡?]([s, ⇡]p), which con-

tradicts (2).

So, FP is valid. ⌅

3. � PC?

3

Proof: Supose that there is a world w from a model M?

3 =

hW 0, R
⇡

,M, (⇧,⇤), �,Vi where PC?

3 is false. For PC?

3 to be false in

w, there are two cases:

(a) Suppose M?

3,w � hs, ⇡i' (1) and

M?

3,w 1 hs, ⇡1ihs1, ⇡?i'_hs, ⇡2ihs2, ⇡?i'_ · · ·_hs, ⇡
n

ihs
n

, ⇡?i' (2)

(1) i↵ there is a world v such that wR
⇡

v and Pr(M?

3,v � hs, ⇡
b

i' |
�(v,⇧)) > 0 (3).

By Definition 82 R
⇡

= (R
⇡1 �R⇡

?)[· · ·[(R
⇡n �R⇡

?) which implies

that for some 1 i n, w(R
⇡i � R⇡

?)v. Using Definition 85 twice

we obtain M?

3,w � hs, ⇡
i

ihs
i

, ⇡?i'.
This implies M?

3,w � hs, ⇡1ihs1, ⇡?i' _ hs, ⇡2ihs2, ⇡?i' _ · · · _
hs, ⇡

n

ihs
n

, ⇡?i', which contradicts (2).

(b) Suppose M?

3,w 1 hs, ⇡i' (1) and

M?

3,w � hs, ⇡1ihs1, ⇡?i'_hs, ⇡2ihs2, ⇡?i'_ · · ·_hs, ⇡
n

ihs
n

, ⇡?i' (2)

(2) i↵ Pr(M?

3,w � hs, ⇡
i

ihs
i

, ⇡?i' | �(w,⇧)) > 0, for some i such

that 1 i n and s
i

= f(s, ⇡
i

) (3).

(3) i↵ there is a world u such that wR
⇡iu and Pr(M?

3,w � hs
i

, ⇡?i' |
�(w,⇧)) > 0, for some 1 i n and s

i

= f(s, ⇡
i

).

By (3) there is a world v such that uR
⇡

v, s
i

� M(u) and M?

3,v � '

(4).

But this implies that w(R
⇡i �R⇡

?)v and consequently w((R
⇡1 �R⇡

?)[
· · · [(R

⇡n �R
⇡

?))v (5).

By Definition 82, (4) and (5) we have wR
⇡

v and s � M(w) and

M?

3 ,v � '. Thus, M?

3,w � hs, ⇡i', which contradicts (1).

So, PC3 is valid. ⌅

4. � R?

3✏

Proof: Suppose a DS?

3 model M?

3 = hW 0, R
⇡

,M, (⇧,⇤), �,Vi.
Suppose a program ⇡ and a sequence s such that f(s, ⇡) = ✏ and that

M?

3, 1 [s, ⇡]? (1).

Then Pr(M?

3,w � [s, ⇡]? | �(w,⇧)) 6= 1, so in some world v such that

wR
⇡

v we have that M?

3,v � > (2).

But f(s, ⇡) = ✏ and thus by Definition 82 (w, v) 62 R
⇡

, which is a

DBD
PUC-Rio - Certificação Digital Nº 1012682/CA

Extending Propositional Dynamic Logic for Petri Nets 85

contradiction.

So, R3✏ is valid. ⌅

As for DS3, the completeness proof goes as in the work of Blackburn et

al. (2001); Harel et al. (2000) and Goldblatt (1992b).

Definition 87 Atoms

Let � be a set of formulae. A set of formulae A is said to be an atom of

� if it is a maximal consistent subset of FL(�). The set of all atoms of � is

denoted by At(�).

Lemma 88 Let � be a set of formulae. If ' 2 FL(�) and ' is consistent then

there exists an atom A 2 At(�) such that ' 2 A.

Proof: We can construct the atom A as follows. First, we enumerate the

elements of FL(�) as �1, . . . ,�n

. We start the construction making A1 = {'},
then for 1 < i < n, we know that `

V
A

i

$ (
V
A

i

^ �
i+1) _ (

V
A

i

^ ¬�
i+1) is

a tautology and therefore either A
i

^�
i+1 or A

i

^¬�
i+1 is consistent. We take

A
i+1 as the union of A

i

with the consistent member of the previous disjunction.

At the end, we make A = A
n

. ⌅

Definition 89 Canonic relations

Let � be a set of formulae and hs, ⌘i' 2 At(�). The canonic relations

over � S�
⌘

on At(�) are defined as AS�
⌘

B, i↵
V

A ^ hs, ⌘i
V

B is consistent.

Definition 90 Canonic marking

Let {hs1, ⌘1i'1, . . . , hsn, ⌘ni'n

} be the set of all formulae in the form

hr, ⌘i' occurring in an atom A. We define the canonic marking of A, says

M(A), as follows

1. M(A) := s1; s2; . . . ; sn;

2. for all basic programs ⇡
b

, if AS�
⌘

B and f(M(A), ⇡
b

) 6� M(B), then add

to M(B) as few as possible names to make f(M(A), ⇡) � M(B).

Lemma 91 Suppose A and B two atoms of a model M?

3 =

hW,R
⇡

,M, (⇧,⇤), �i. There is an R � S such that f(M(A), ⇡
b

) � M(B) � R
where ⇡

b

2 ⇧ is a basic program.

Proof: For M(A) and M(B) there are three cases.

(i) f(M(A), ⇡
b

) � M(B) and R = ;.

(ii) {f(M(A), ⇡
b

)} \M(B) = ; and R = {f(M(A), ⇡
b

)}.

DBD
PUC-Rio - Certificação Digital Nº 1012682/CA

Extending Propositional Dynamic Logic for Petri Nets 86

(iii) {f(M(A), ⇡
b

)} \M(B) 6= ; and R = {f(M(A), ⇡
b

)} \ ({f(M(A), ⇡
b

)} \
M(B)).

⌅

Definition 92 Canonic Model

Let � be a set of formulae. The canonic model over � is a tuple M?

�

3 =

hAt(�), S�
⌘

,M�, (⇧�,⇤�), ��,V�i, where for all propositional symbols p and for

all atoms A 2 At(�) we have as follows.

– S�
⌘

the canonic relations

– M� : At(�) ! S, the canonic marking

– (⇧�,⇤�) is a Stochastic Petri Net program

– �� : At(�)⇥ ⇧� ! ~ +.

– V�(p) = {A 2 At(�) | p 2 A} the canonic valuation

Lemma 93 For all basic programs ⇡
b

, let s = M(A), S
⇡b

satisfies

1. if f(s, ⇡
b

) 6= ✏, if AS
⇡b
B then f(s, ⇡

b

) � M(B)

2. if f(s, ⇡) = ✏, then (A,B) 62 S
⇡b

Proof: The proof of 1. is straightforward from the Definition 90 and

Lemma 91. The proof of 2. is straightforward from the soundness of axiom

R?

3✏. ⌅

Lemma 94 Existence Lemma for Canonic Models

Let A 2 At(�) and hs, ⌘i' 2 FL(�). Then, hs, ⌘i' 2 A i↵ there exists

B 2 At(�) such that AS
⌘

B, s � M(A) and ' 2 B.
Proof: This proof goes in two steps.

1. Suppose hs, ⌘i' 2 A. By Definition 90 and Lemma 91 s � M(A) By

Definition 87, we have that
V
A^hs, ⌘i' is consistent. Using the tautology

` ' $ ((' ^ �) _ (' ^ ¬�)), we have that either
V

A ^ hs, ⌘i(' ^ �) is

consistent or
V
A ^ hs, ⌘i(' ^ ¬�) is consistent. So, by the appropriate

choice of �, for all formulae � 2 FL(�), we can construct an atom B such

that ' 2 B and
V
A ^ hs, ⌘i(' ^

V
B) is consistent and by Definition 89

we have that AS
⌘

B.

2. Suppose there is B such that ' 2 B and AS
⌘

B and s � M(A). Then
V
A ^ hs, ⌘i

V
B is consistent and also

V
A ^ hs, ⌘i' is consistent. But

hs, ⌘i' 2 FL(�) and, by maximality, hs, ⌘i' 2 A.

DBD
PUC-Rio - Certificação Digital Nº 1012682/CA

Extending Propositional Dynamic Logic for Petri Nets 87

So, this lemma holds. ⌅

Lemma 95 Truth Lemma for Canonic Models

Let M?

3 = hW,S
⌘

,M, (⇧,⇤), �,V) be a finite canonic model constructed

over a formula �. For all atoms A and all ' 2 FL(�), M?

3,A � ' i↵ ' 2 A.

Proof: The proof is by induction on the construction of ': M?

3,A � ' i↵

' 2 A.

– Atomic formulae: the proof is straightforward from the definition of V.

– Boolean formulae: the proof is straightforward from the semantical notion

of DS?

3 (Definition 85).

– Modality hs, ⌧i, for ⌧ 2 {⇡, ⇡1 � · · ·� ⇡
n

, ⌘?}: there are two cases.

1. Suppose M?

3,A � hs, ⌧i', then there exists A0 such that AS
⌧

A0,

s � M(A) and M?

3,A0 � '. By the induction hypothesis we know

that ' 2 A0, and by Lemma 94 we have hs, ⌧i' 2 A.

2. Suppose M?

3,A 1 hs, ⌧i', by the definition of satisfaction (Defin-

ition 85) we have M?

3,A � ¬hs, ⌧i'. Then for all A0, AS
⌧

A0 and

s � M(A) implies M?

3,A0 1 '. By the induction hypothesis we

know that ' 62 A0, and by Lemma 94 we have hs, ⌧i' 62 A.

⌅

Lemma 96 Let A,B 2 At(�). Then if AS
⌘

?B then AS?

⌘

B.
Proof: Suppose AS

⌘

?B. Let C = {C 2 At(�) | AS?

⌘

C} where C1, C2, . . . , Cn

is an enumeration of C. We want to show that B 2 C. Let C^
_ =

(
V
C1 _ · · · _

V
C
n

) and s = s1, . . . , sn, where s
i

= M(C
i

).

We have that, C^
_ ^ hs, ⌘i¬C^

_ is inconsistent, otherwise for some D 2
At(�) not reachable from A, C^

_^hs, ⌘i
V
D would be consistent, and for some

C
i

,
V
C
i

^hs
i

, ⌘i
V
D was also consistent, which would mean that D 2 C, which

is not the case. From a similar reasoning we know that
V
A^hs, ⌘i¬C^

_ is also

inconsistent and hence � V
A ! [s, ⌘]C^

_ is a theorem.

As C^
_ ^ hs, ⌘i¬C^

_ is inconsistent, so its negation is a theorem �
¬ (C^

_ ^ hs, ⌘i¬C^
_) and also � (C^

_ ! [s, ⌘]C^
_) (1),

therefore we can apply generalization, � [s, ⌘?] (C^
_ ! [s, ⌘]C^

_). Using ax-

iom (FP), we have � ([s, ⌘]C^
_ ! [s, ⌘?]C^

_) and by (1) we obtain �
(C^

_ ! [s, ⌘?]C^
_). As �

V
A ! [s, ⌘]C^

_ is a theorem, then � V
A ! [s, ⌘?]C^

_.

By supposition,
V

A^ hs, ⌘?i
V
B is consistent and so is

V
B ^C^

_. Therefore,

for at least one C 2 C, we know that
V

B ^
V
C is consistent. By maximality,

we have that B = C. And by the definition of C^
_, we have AS?

⌘

B. ⌅

DBD
PUC-Rio - Certificação Digital Nº 1012682/CA

Extending Propositional Dynamic Logic for Petri Nets 88

Definition 97 Proper Canonic Model

Let � be a set of formulae. The proper canonic model over � is a tuple

N � = hAt(�), R�
⌘

,M�, (⇧�,⇤�), ��,V�i, where for all propositional symbols p

and for all atoms A 2 At(�) we have

– V�(p) = {A 2 At(�) | p 2 A}, the canonic valuation;

– M� is the canonic marking;

– R�
⌘b
:= S�

⌘b
, for every basic program ⌘

b

;

– we inductively define the binary relation R�
⌘

follows (for the sake of clarity

we ommit the � subscripts)

– R�
⌘

? = R�?

⌘

– ⌘ = ⌘1 � ⌘2 � · · ·� ⌘
n

– R�
⌘

= (R�
⌘1
�R�

⌘

?) [· · · [(R�
⌘n

�R�
⌘

?).

– (⇧�,⇤�) is a Stochastic Petri Net program

– �� : At(�) ⇥ ⇧� ! ~ + such that (let ⌘ 2 ⇧�, w 2 At(�), v 2 At(�),

s = M�(w) and r = M�(v))

– if wR�
⌘

v then f(r, ⌘) = ✏ and ��(w, ⌘) = ��(v, ⌘) (once there was no

firing);

– if f(s, ⌘) = ✏, f(r, ⌘) 6= ✏ and wR�
⌘

v, ��(v, ⌘) is an occurrence of a

random variable of exponential distribution with parameter ⇤�(⌘)

– if f(s, ⌘) 6= ✏ then f(r, ⌘) 6= ✏ and wR�
⌘

v, ��(v, ⌘) < ��(w, ⌘)

Lemma 98 Let A be an atom, a set � of formulae in the formhs, ⌘i' and a

sequence of names s. Then, there is an atom C such that
V
A ^ hs, ⇡

i

i
V
C is

consistent.

Proof: By Definition 89 we can construct C and apply (PC) over �, such

that, according to Lemma 88 we can force a choice to make
V
A ^ hs, ⇡

i

i
V
C

consistent. ⌅

Lemma 99 For all programs ⌘, S
⌘

✓ R
⌘

as in definition 97.

Proof: Induction on the length of programs ⌘.

– For basic programs ⇡
b

, S
⌘b
= R

⌘b
(Definition 97)

– ⌘ = ✓?. We have that R
✓

? = R?

✓

. By the induction hypothesis S
✓

✓ R
✓

.

But we know that if S
✓

✓ R
✓

then S?

✓

✓ R?

✓

. So S?

✓

✓ R?

✓

.

By Lemma 96, S
✓

? ✓ S?

✓

, and thus S
✓

? ✓ S?

✓

✓ R?

✓

= R
✓

?

DBD
PUC-Rio - Certificação Digital Nº 1012682/CA

Extending Propositional Dynamic Logic for Petri Nets 89

– ⌘ = ⇡1�⇡2� · · ·�⇡
n

. We have that R
⌘

= (R
⇡1 �R⌘

?)[· · ·[(R
⇡n �R⌘

?).

By the previous item we know S
✓

? ✓ R
✓

?, and by the induction hypothesis

S
⇡i ✓ R

⇡i and thus (S
⇡1 � S⌘

?) [· · · [(S
⇡n � S

⌘

?) ✓ R
✓

(1).

Suppose AS
⌘

B, i↵
V
A ^ hs, ⌘i

V
B is consistent (from the distribution

and semantics of disjunction).

Using axiom (PC)
V
A ^ hs, ⇡1ihs1, ⌘?i

V
B _ hs, ⇡2ihs2, ⌘?i

V
B _ · · · _

hs, ⇡
n

ihs
n

, ⌘?i
V
B is consistent.

For at least one i,
V
A ^ hs, ⇡

i

ihs
i

, ⌘?i
V
B is consistent.

By Lemma 98 we can construct a C such that
V
A ^ hs, ⇡

i

i
V

C is

consistent (2) and
V
C ^ hs

i

, ⌘?i
V
B is consistent.

Let s0 = M(C). As s
i

� s0, then
V
C ^ hs0, ⌘?i

V
B is consistent (3).

From (2) and (3) we have AS
⇡iC and CS

⌘

?B, and
A(S

⇡i � S⌘

?)B. Thus
A(S

⇡1 � S⌘

?) [· · · [(S
⇡n � S

⌘

?)B.
By (1), AR

⌘

B. Therefore, S
⌘

✓ R
⌘

.

Thus, this lemma holds. ⌅

Lemma 100 Existence Lemma for Proper Canonic Models

Let A 2 At(�) and hs, ⌘i' 2 FL(�). Then, hs, ⌘i' 2 A i↵ there exists

B 2 At(�) such that AR
⌘

B, s � M(A) and ' 2 B.
Proof: This proof follows in two steps.

– Suppose hs, ⌘i' 2 A. By the Existence Lemma for Canonic Models,

Lemma 94, we have that there exists B 2 At(�) such that AS
⌘

B and

' 2 B. By Lemma 99, S
⌘

✓ R
⌘

. Thus, there exists B 2 At(�) such that

AR
⌘

B and ' 2 B.

– Programs x, for x 2 {⇡, ⇡1� · · ·�⇡
n

, ⌘?}. Suppose there exists B 2 At(�)

such that AR
x

B and ' 2 B. This part of the proof follows by induction

on the structure of x.

(base) x = ⇡
b

: this is straightforward once R
⇡b

= S
⇡b

and, by the

existence lemma for canonic models, Lemma 94, hs, ⇡i' 2 A.

? x = ⌘?. By definition R
⌘

? = R?

⌘

Suppose that for some B, AR?

⌘

B and

' 2 B. Then, for some n A = A1R⌘

· · ·R
⌘

A
n

= B. We can prove

by sub-induction on 1 k n.

k = 1 : AR
⌘

B and A 2 B. By induction hypothesis, hs, ⌘i' 2 A.

By axiom (Rec), we know that ` hs, ⌘i' ! hs, ⌘?i' and by the

definition of FL(�) and maximality we have hs, ⌘?i' 2 A.

DBD
PUC-Rio - Certificação Digital Nº 1012682/CA

Extending Propositional Dynamic Logic for Petri Nets 90

k > 1 : By the sub-induction hypothesis hs, ⌘?i' 2 A2 and

hs, ⌘ihs, ⌘?i' 2 A1. By axiom (Rec), we know that `
hs, ⌘ihs, ⌘?i' ! hs, ⌘?i' and by the definition of FL(�) and

maximality we have hs, ⌘?i' 2 A.

� x = ⇡1 � · · · � ⇡
n

: AR
⇡1�···�⇡nB and ' 2 B i↵ A(R

⇡1 � Rx

?) [· · · [
(R

⇡n � R
x

?)B and ' 2 B. For some 1 i n, A(R
⇡i � R

x

?)B
and ' 2 B. There exists a C such that AR

⇡iC and CR
x

?B and

' 2 B. By the previous case hs
i

, x?i' 2 C, where s
i

= f(s, ⇡
i

), and

by the induction hypothesis hs, ⇡
i

ihs
i

, x?i' 2 A. But this implies

that hs, ⇡1ihs1, x?i' _ · · · _ hs, ⇡
n

ihs
n

, x?i' ^
V
A is consistent. By

axiom (PC), hs, ⇡1� · · ·�⇡
n

i'^
V
A is consistent. By maximality,

hs, ⇡1 � · · ·� ⇡
n

i' 2 A.

So, there exists a proper canonic model. ⌅

Lemma 101 Truth Lemma for Proper Canonic Models

Let N ?

3 = hW,R
⌘

,M, (⇧,⇤), �,V) be a finite proper canonic model

constructed over a formula �. For all atoms A and all ' 2 FL(�), N ?

3 ,A � '

i↵ ' 2 A.

Proof: The proof is by induction on the construction of '.

– Atomic formulae: the proof is straightforward from the definition of V.

– Boolean operators: the proof is straightforward from the semantical notion

of DS?

3 (Definition 85).

– Modality hs, xi, for x 2 {⇡, ⇡1 � · · ·� ⇡
n

, ⌘?}.

– Suppose N ?

3 ,A � hs, xi', then there exists A0 such that AS
x

A0 and

N ?

3 ,A0 � '. By the induction hypothesis we know that ' 2 A0, and

by Lemma 94 we have hs, xi' 2 A.

– Suppose N ?

3 ,A 1 hs, xi'. By the semantical notion we have

N ?

3 ,A � ¬hs, xi'. Then for all A0, AR
x

A0 implies N ?

3 ,A0 1 '. By

the induction hypothesis we know that ' 62 A0, and by Lemma 100

we have hs, xi' 62 A.

So, this lemma holds. ⌅

Theorem 102 Completeness for Proper Canonic Models

DS?

3 programs are complete with respect to the class of Proper Canonic

Models.

Proof: If ' is valid then it is valid in all models, including in a Proper Canonic

Model. So it is valid in all worlds of N ?

3 . By Lemma 101, ' is derivable.

Therefore if � ', then ` '. Thus, DS?

3 is complete. ⌅

DBD
PUC-Rio - Certificação Digital Nº 1012682/CA

Extending Propositional Dynamic Logic for Petri Nets 91

Definition 103 The Fischer-Ladner closure

It is inductively defined as follows, where FL(') denotes the smallest set

containing ' which is closed and closed under sub formulae.

FL : ⌥! 2⌥, where ⌥ is the set of all formulae

1. FL(') is closed under subformulae;

2. if hs, ⌘?i� 2 FL('), then � 2 FL(');

3. if hs, ⌘?i� 2 FL('), then hs, ⌘i� 2 FL(');

4. if hs, ⌘?i� 2 FL('), then hs, ⌘ihs, ⌘?i� 2 FL(');

5. if hs, ⌘i� 2 FL('), then hs, ⌘
i

ihs
i

, ⌘?i� 2 FL('),

where ⌘ = ⌘1 � ⌘2 � · · ·� ⌘
n

and s
i

= f(s, ⌘
i

), for all 1 i n.

6. if hs, ⌘i� 2 FL('), then Pr(M3,v � hs, ⌘
b

i | �(v,⇧)) > 0, according to

the semantical notion of DS?

3 (Definition 85), so hs, ⌘
i

ihs
i

, ⌘i 2 FL('),

where ⌘ = ⌘1 � ⌘2 � · · ·� ⌘
n

and s
i

= f(s, ⌘
i

), for all 1 i n;

Lemma 104 FL(') is finite.

Proof: The proof is the same of Lemma 73 including the transitive closure

case. If hs,?i � hs,ihf(s,
i

),?i , for a normalised Stochastic Petri Net

program, then, as there are no places that can accumulate tokens indefinitely,

there are two cases (where S = {s1, s2, . . . , sn} a list of all sequences returned

by applications of f).

(a) After consecutive applications of f over basic programs and their current

markups f will return ✏ for any
i

2 (i.e. the SPN program stopped) and

there will be no changes over the markup anymore.

(b) After j applications of f over basic programs and their current markups

f will return a value s
j

such that s
j

occurs more then once in S (i.e. the

markup repeats).

Therefore there can be no infinitely-long �-sequences.

So, FL(') is finite. ⌅

Lemma 105

(i) If � 2 FL('), then FL(�) ✓ FL(')

(ii) If � 2 FL(hs, ⇡?i'), then FL(�) ✓ FL(hs, ⇡?i') [FL(')

DBD
PUC-Rio - Certificação Digital Nº 1012682/CA

Extending Propositional Dynamic Logic for Petri Nets 92

(iii) If � 2 FL(hs, ⇡i'), then FL(�) ✓ FL(hs, ⇡i') [FL(')

Proof: This proof is the same than for Petri-PDL, regarding DS?

3 FL Defin-

ition 104 ⌅

The Filtration definition is the same of DS3 (Definition 75) regarding

the same properties.

5.4
Computational complexity

As the language of DS3 is subsumed by the language of DS?

3, DS?

3

satisfiability computational complexity is stated bellow.

Theorem 106 DS?

3 satisfiability problem is EXPTime-hard.

Proof: Taking Lemma 45, we use the Petri Net which models the game stating

the same firing rate to each transition. As the DS3 language subsumed by DS?

3

language then the reduction procedure presented in Lemma 45 is also valid for

DS?

3. So DS?

3 SAT is EXPTime-hard. ⌅

Notice that the proof of EXPTime-hardness for DS?

3 may be composed using

the transitive closure operator which leads to a more intuitive way to model

the flow of the game. The flow does not need to be modelled as a sequence of

disjunctions, but may be a sequence of repetitions denoted by the transitive

closure operator.

DBD
PUC-Rio - Certificação Digital Nº 1012682/CA

