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Resumo 

Delgado, Danilo Caiano; Medeiros, Marcelo Cunha. Estimação de modelos 

não-lineares baseados em condições de momento. Rio de Janeiro, 2013. 

41 p. Dissertação de Mestrado - Departamento de Economia, Pontifícia 

Universidade Católica do Rio de Janeiro. 

O objetivo desta dissertação é comparar através de um estudo de simulação 

diferentes estimadores de modelos não-lineares. Nós consideramos neste trabalho 

o estimador não-linear de mínimos quadrados em dois estágios (NL2SLS), o 

estimador não-linear de máxima verossimilhança de informação limitada (LIML) 

e o estimador com função controle (CF). Os resultados mostram que os 

estimadores CF e LIML possuem em geral uma performance superior ao do 

NL2SLS para os modelos selecionados. O trabalho considera uma aplicação de 

uma Curva de Phillips não-linear para a Economia Brasileira. 
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Abstract 

Delgado, Danilo Caiano; Medeiros, Marcelo Cunha (Advisor). Moment-

based estimation of nonlinear models. Rio de Janeiro, 2013. 41 p. 

Dissertação de Mestrado - Departamento de Economia, Pontifícia 

Universidade Católica do Rio de Janeiro. 

The aim of this dissertation is to compare, in a simulation study, different 

nonlinear estimators for selected models. We consider the two-stage nonlinear 

least-squares (NL2SLS), the nonlinear limited information maximum likelihood 

(LIML), and the control function (CF) estimator. Our results show that usually 

either CF or LIML estimators perform better than the NL2SLS estimator for the 

selected models. In an application with real data, we consider the estimation a 

nonlinear Phillips Curve for Brazilian economy. 
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1 Introduction 

Economists often use nonlinear models because they can improve results 

obtained with linear models. A common method used on the estimation of 

nonlinear models is the nonlinear two-stage least squares (NL2SLS). In this 

method, among the several conditions imposed to ensure the parameter 

estimation, the rank condition is a key one. It states that instrumental variables 

must be correlated with the gradient vector of the nonlinear function evaluated at 

the true value of the parameters. In the linear framework, this means that 

instruments must be correlated with endogenous variables. However, in the 

nonlinear setting the instruments may have low correlation with gradient vector 

for some function classes. Then, the rank condition for the nonlinear framework 

will not be accomplished. 

In order to improve correlation between instruments and the gradient vector, 

Takeshi (1974) derived the optimal instrument for nonlinear instrumental 

variables estimator. Takeshi (1975) proofed that the nonlinear limited information 

maximum likelihood (LIML) estimator is asymptotically more efficient than 

NL2SLS estimator when the endogenous variable is a linear functions of the 

exogenous variables. Takeshi (1974), Chamberlain (1987), Newey (1990) 

approximated the optimal instrument through nonparametric regression utilizing 

constructed instruments such as polynomials.  

In this paper we compare the performance between the NL2SLS estimator, 

the nonlinear limited information maximum likelihood (LIML) estimator and the 

control function (CF) estimator for specific families of nonlinear functions. 

Simulated data have been generated to measure the performance of the mentioned 

estimators. The first example has generated data from an exponential function that 

is usually found Count Data models. The second example has generated data for 

the logistic function that is usually found in Smooth Transition Regression 

Models. The third example uses the same model as in the previous example 

except that the endogenous variable now is a nonlinear function of the exogenous 

variable. In the presented examples we compare bias, standard deviation, 
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skewness and curtosis of the estimators. Simulation results show that CF estimator 

has better results in most of the settings for all settings, followed by the LIML 

estimator. The results of the developed estimators have presented for simulated 

data that theirs performance do not differ too much from the NL2SLS estimator. 

In application with real data, all the estimators have provided results that are close 

to the underlined economic theory. 

Section 2 presents the Generalized Method of Moments (GMM) and 

estimation methods for nonlinear models and section 3 presents the Control 

Function Estimator. Section 4 shows results for simulated data and section 5 

shows results for an application for a nonlinear Phillips Curve with Brazilian data. 

Appendix presents histograms for simulated data of Section 4. 
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2 GMM and nonlinear models estimation 

This section presents the Generalized Method of Moments (GMM) used to 

obtain consistent estimators for nonlinear models. As in Takeshi (1974), consider 

a data generating process in which  

(i) , is a sequence of random variables such that , 

, ; 

(ii)  is a nonlinear function of covariates  indexed by the true 

parameter ; 

(iii) , is generated by the nonlinear model ; 

(iv)  is an endogenous variable such that . 

 

Define  . According to this model, we have that 

  and, consequently, . In this case, due 

to endogeneity of  , the standard nonlinear least squares estimator for  is 

inconsistent. 

The endogeneity problem can be dealt with by using the Generalized 

Method of Moments (GMM). Let  be a vector of instrumental variables 

and  .  is a function of  such 

that  moment conditions are given by .  

Define 

 and 

. Let  be a consistent estimator for . Then, the 

GMM estimator is given by 
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Now define 

, and 

. As in Takeshi (1974), by taking  as constant and   

as a consistent estimator for , the nonlinear instrumental variables 

estimator is 

 

 

When  is nonlinear in both parameters and variables and the 

instruments are assumed to be fixed in repeated samples, Takeshi (1974) proofs 

consistency and asymptotic normality of the GMM estimator for IID data. The 

GMM estimator is also efficient when  is nonlinear only in the 

parameters. 

An important condition to ensure the identification of  is to comply with 

the first order condition of the optimization problem, which states that 

 has full rank. Therefore, the instrumental variables must be 

correlated with the gradient vector of the nonlinear function. Thus, an instrument 

that is highly correlated with the endogenous variables in the linear setting may be 

a weak instrument in a nonlinear framework. Takeshi (1975) shows that the 

optimal instrument is given by .  

Now consider the following linear framework 

 , where  is a sequence of I.I.D. random 

variables with zero mean and correlated with . Define , 

 and  as the identity matrix of order T. [Takeshi1975] 

shows that  
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is more efficient than the GMM estimator. 

The GMM optimization problem requires that the instrumental variables 

must be correlated with the gradient vector in order to ensure that 

  has full rank. Nevertheless, the optimal instrument depends 

on the true value of the parameter , that is unknown. The usual procedure is to 

estimate the parameter through nonlinear two-stage least squares. The first stage 

obtains a consistent estimator   for  and the second stage uses  

as instrument. However, in the case we have weak instruments, the rank condition 

may not be satisfied and the resulted estimator might be inconsistent. The next 

section presents the Control Function estimator and how it is used to obtain 

consistent estimation without rely on the rank condition. 
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3 The Control Function Estimation  

A different approach to estimate nonlinear models is given by the use of the 

Control Function (CF) estimator. As in Imbens and Wooldridge (2007), consider 

the linear model  

 

Where  is a  strict sub vector of , a  vector of exogenous 

variables that includes a constant. The  zero covariance conditions are given by  

 . 

We write the reduced form with an error term as 

 , 

 . 

 is endogenous if  is correlated with . Write the linear projection of 

 on , in error form, as  

 , 

where  . Then, , and  due to 

uncorrelation of z with both  and . Then, we have 

 . 

OLS regression of  on ,  and  estimates consistently  and  

because  is uncorrelated with ,  and  by construction. However,  is not 

observed. The suggested approach is to estimate  in a first moment by running 

OLS regression on the reduced form equation. This first stage will 

provide , that will replace  in the structural equation: 

 . 
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OLS estimation by running a regression of  on ,  and  is called 

control function estimation, in the sense that inclusion of  in the structural 

equation controls for the endogeneity of . The error term depends on the 

sampling error from  , unless  (no endogeneity). Some algebra 

shows that function control estimates are identical to 2SLS estimates. When 

correctly specified, the control function (CF) estimator is more efficient than the 

IV estimator. However, its estimation depends on assumptions of linear relation 

between  and , what makes CF estimator less robust than the IV estimator, 

once it may not be consistent for different functional forms. 

Now consider the following nonlinear model in which  

and  . Assume that  and that the relation between  

and  is linear, i.e. , . We also assume also that   and 

, that is more restrictive than the previous correlation hypothesis. Then 

we have 

 

. 

This model can be estimated through simple nonlinear least-squares as well. 

The first step consists on the construction of a residual vector  from the 

nonparametric regression of  on . The second step runs the regression of  on 

 and . As before, CF estimator is more efficient than the IV estimator 

when correctly specified, but less robust to different functional forms.  

The next session shows simulation results for LIML, NL2SLS and CF 

estimators for different data generating processes in order to evaluate theirs 

performances for different nonlinear models. 
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4 Simulation 

In this section, we use simulated data to evaluate the performance of the 

indicators for selected non-linear models. Simulated data was generated by using 

the exponential and logistic functions, that are widely used in the economic 

models as Count Data models and Smooth Transition Regression (STR) models, 

respectively. We present results for NL2SLS, LIML, and CF estimators 

(estimations of the control function parameter are omitted for simplicity). 

Histograms are provided in Appendix We make 1000 simulations with sample 

sizes N=100, N=250 and N=500. We constrain the parameters of the optimization 

problem on intervals of length R=8. The first example is given by the following 

data generating process: 

 

  

  

In this example, , ,  and  are standard normal iid  random variables. 

 is an endogenous variable and  is an exogenous observed variable. The true 

parameter values are , , . Results are shown on Table 1. 
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TABLE 1 – Estimation Results of Example1 

Parameter Sample Size Estimator Bias
Standard 

Deviation
Skewness Kurtosis

LIML -0.4287 1.6921 -3.3140 10.8972

NL2SLS -0.3841 1.8838 -3.6799 11.9317

CF -0.2513 1.4215 -4.3331 20.0472

LIML -0.3216 1.3761 -3.6113 14.7775

NL2SLS -0.1259 1.3926 -5.4208 27.8049

CF -0.1045 0.9790 -5.3180 36.8406

LIML -0.1966 1.0665 -4.2078 23.0809

NL2SLS -0.0287 1.1154 -6.9402 46.8110

CF -0.0559 0.9913 -5.6619 39.2679

LIML -0.0698 0.6219 1.3624 19.4416

NL2SLS -0.0280 0.6759 0.4782 19.1284

CF -0.0894 0.4515 -3.7518 17.1932

LIML -0.0842 0.4410 0.6248 20.8432

NL2SLS 0.0018 0.4553 0.7502 36.9238

CF -0.0457 0.2730 -3.5570 21.6015

LIML -0.0637 0.3566 1.6965 35.9536

NL2SLS 0.0025 0.3283 1.2245 65.1663

CF -0.0285 0.2526 -4.1127 25.8734

LIML -0.1083 0.6512 -3.9627 41.9855

NL2SLS -0.1137 0.8022 -3.3253 31.1256

CF -0.0455 0.3748 -3.6093 31.1749

LIML -0.0549 0.4242 -1.1224 46.0618

NL2SLS -0.0418 0.4596 -5.0496 69.1375

CF -0.0273 0.2846 -4.0060 30.1992

LIML -0.0432 0.3152 -7.2574 79.5337

NL2SLS -0.0331 0.3653 -9.2114 94.3324

CF -0.0078 0.2571 0.6042 43.7625

BETA 3

100

250

500

BETA 1

100

250

500

BETA 2

100

250

500

 

 

Results from Table 1 show that CF estimator performs better than NL2SLS 

and LIML estimators for all parameters and all sample sizes when standard 

deviation is observed. CF estimator also shows good performance on bias for 

parameters  and . LIML estimator has in most configurations lower standard 

deviation than NL2SLS estimator, but it shows usually higher bias. The results for 

standard deviation are according expectations, given that the CF estimator is more 

efficient than the other estimators. On Skewness, LIML estimator presents in most 

settings the lowest skewness measures in absolute values while FC estimator 

usually presents the higher measures. In most settings, the skewness values are 

negative. Kurtosis values vary among different settings, without showing a clear 

pattern among different settings. 
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In the next example, we simulate data for the logistic function. The 

simulated data ha the following generating process:  

 

 

 

In this example, ,  and  are standard normal iid random variables.  

is the endogenous variable and  is an exogenous observed variable. The true 

parameter values are , , , , , , 

. Each coordinate is a real interval with length  centralized in the 

true parameter value. Results are shown on Table 2. 
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TABLE 2 – Estimation Results of Example 2 

Parameter Sample Size Estimator Bias
Standard 

Deviation
Skewness Curtosis

LIML 0.0547 0.3935 -4.6685 74.1905

NL2SLS 0.0173 1.2410 -2.0484 35.2310

CF -0.0065 0.1633 -3.8999 41.4142

LIML 0.0813 0.1882 0.5200 3.8301

NL2SLS -0.0724 1.1717 -6.4681 51.0804

CF 0.0221 0.0737 -0.0116 0.0628

LIML 0.0572 0.1220 0.0102 1.1245

NL2SLS -0.1198 0.9356 -6.6804 54.2414

CF 0.0213 0.0509 0.0233 0.0392

LIML 0.0710 0.3074 -0.5326 2.1532

NL2SLS 0.0664 0.6767 0.1401 22.3509

CF -0.0061 0.1874 -0.9391 2.9145

LIML 0.0725 0.1837 -0.5073 2.7746

NL2SLS 0.0108 0.5039 -4.3014 30.9611

CF 0.0151 0.1023 -0.2612 0.3338

LIML 0.0570 0.1193 -0.4182 1.5387

NL2SLS -0.0242 0.3933 -5.1687 42.3855

CF 0.0211 0.0697 -0.0003 -0.0817

LIML -0.0603 6.9763 -0.2306 -0.7602

NL2SLS -0.0118 8.2506 -0.0553 -1.1953

CF 2.8607 3.9409 -0.7023 1.6471

LIML 0.0406 5.2844 -0.4565 0.3627

NL2SLS 0.6276 6.9347 -0.1694 -0.5846

CF 2.7364 2.2395 -0.2070 1.3943

LIML 0.8264 4.0105 -0.5621 1.9981

NL2SLS 1.7073 5.5606 -0.2560 0.2223

CF 2.6687 1.5686 -0.2180 0.1117

LIML 0.0341 2.6524 0.2261 -0.0584

NL2SLS 0.1950 3.0869 0.1787 -0.4619

CF -0.9987 1.4406 0.4215 1.9739

LIML -0.0298 1.9751 0.3975 0.8144

NL2SLS -0.0346 2.4714 0.1414 -0.0404

CF -0.9409 0.8094 -0.0992 1.9126

LIML -0.2741 1.4639 0.5450 2.2567

NL2SLS -0.3741 1.9320 0.3595 0.8724

CF -0.8972 0.5523 0.0578 0.2211

LIML 28.0135 48.1874 1.2298 -0.2753

NL2SLS 70.0454 56.9214 -0.3318 -1.8067

CF 23.2848 46.1554 1.4868 0.4017

LIML 10.2422 33.3717 2.7430 6.0586

NL2SLS 66.4734 58.3630 -0.2284 -1.8807

CF 4.1552 22.7637 4.3923 18.9138

LIML 3.9727 21.7184 4.4426 19.9778

NL2SLS 64.6422 58.3556 -0.1730 -1.8958

CF -0.3235 9.4305 9.7049 112.0940

LIML 0.2997 0.3086 2.2638 13.8849

NL2SLS 0.5769 0.6285 2.0932 6.0902

CF 0.2521 0.2500 0.9479 1.6021

LIML 0.2333 0.2028 2.4290 12.9883

NL2SLS 0.5300 0.5530 2.2025 6.5778

CF 0.1972 0.1428 0.5322 1.0059

LIML 0.2080 0.1367 2.0720 11.5628

NL2SLS 0.4708 0.4801 2.3090 7.8329

CF 0.1900 0.1026 0.0479 -0.4559

GAMMA

100

250

500

C

100

250

500

BETA 3

100

250

500

BETA 4

100

250

500

BETA 1

100

250

500

BETA 2

100

250

500
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Results from Table 2 show that CF estimator has again a better performance 

on standard deviation than NL2SLS and LIML estimators for all parameters and 

sample sizes. CF estimator shows good performance on bias for parameters , 

, , and  . LIML estimator has better performance on bias for parameters   

and   than CF and NL2SLS estimators. The results for standard deviation are 

according expectations, given that the CF estimator is more efficient than the 

others. This result holds from the previous example due to the linear relation 

between the endogenous variable and the instrumental variable. The next example 

changes this linear relationship. Therefore, we should expect that CF estimator 

will not be the more efficient anymore. Performance on skewness differ among 

estimators depending on the estimated parameter. NL2SLS has better results for 

gamma and CF has better results for c. For other parameters, there is not an 

estimator that is consistent closer to zero than the others. On kurtosis, there is no 

estimator that is consistently closer to zero than other estimators. It only happens 

on the estimation of the parameter c, in which FC estimator shows results closer 

to zero for all sample sizes. 

In the third example, 1000 simulated data have been generated with the 

same specifications as the previous example, except in the data generating process 

of the endogenous variable. In this example  is a quadratic function of the 

exogenous variable :  

 

 

 

 

Simulation results are presented on Table 3: 
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TABLE 3 – Estimation Results of Example 3 

Parameter Sample Size Estimator Bias
Standard 

Deviation
Skewness Curtosis

LIML 0.3192 1.3920 0.9280 11.1951

NL2SLS 0.4787 3.3778 -0.2695 3.9673

CF 0.4620 0.4057 -5.9099 110.1470

LIML 0.3146 1.1494 1.2199 19.5811

NL2SLS 0.4262 4.1899 -0.3713 2.1552

CF 0.4340 0.2139 0.5118 0.2970

LIML 0.1704 0.7037 3.4992 21.1529

NL2SLS 0.2287 4.9284 -0.4562 1.1509

CF 0.3990 0.1485 0.4925 0.7266

LIML 0.2731 1.1421 1.1509 9.7344

NL2SLS 0.4207 2.2282 0.1232 2.5026

CF 0.6061 1.5012 1.8964 42.9453

LIML 0.2758 0.9367 2.5995 17.0629

NL2SLS 0.5149 2.7022 0.1816 2.0787

CF 0.4680 1.1482 -1.0367 70.2909

LIML 0.1437 0.5919 3.4469 19.7187

NL2SLS 0.6203 2.9106 0.1225 1.0238

CF 0.4829 1.3803 2.1850 45.3437

LIML -0.6854 2.5421 -0.8842 6.3821

NL2SLS -0.8770 4.7317 0.1104 1.5145

CF -0.1971 0.7941 1.1515 16.5548

LIML -0.5733 1.9576 -2.0341 13.6920

NL2SLS -0.7401 5.2045 0.3080 1.0235

CF -0.2117 0.4489 0.0494 0.7688

LIML -0.3110 1.2620 -3.6649 21.2593

NL2SLS -0.4731 5.8241 0.3045 0.3829

CF -0.2475 0.2949 -0.1751 0.8656

LIML -0.2478 1.0812 -1.2292 10.5253

NL2SLS -0.3945 2.1528 -0.1468 2.7572

CF -0.5104 0.1947 -0.3300 1.0763

LIML -0.2607 0.8944 -2.5864 17.3566

NL2SLS -0.4972 2.6511 -0.2101 2.2255

CF -0.4851 0.1254 -0.6105 0.5080

LIML -0.1359 0.5636 -3.3865 19.3691

NL2SLS -0.6071 2.8628 -0.1400 1.1050

CF -0.4622 0.0844 -0.3495 0.5054

LIML 32.7788 47.8411 0.9720 -0.7483

NL2SLS 53.1008 57.3207 0.2256 -1.8674

CF 32.0854 51.5647 0.9352 -0.9275

LIML 18.6800 38.9737 1.9443 2.2271

NL2SLS 73.3277 56.9283 -0.4611 -1.7160

CF 12.8033 39.4727 2.1934 3.1185

LIML 8.3095 25.7861 3.5859 12.2833

NL2SLS 78.6949 55.0424 -0.6614 -1.4755

CF 0.2037 20.2142 5.1424 26.7201

LIML 0.0667 0.3737 2.8003 12.2197

NL2SLS 0.3650 0.8644 1.5611 2.3504

CF 0.4142 0.6525 1.6285 1.7806

LIML 0.0269 0.2314 7.4027 93.5865

NL2SLS 0.6844 1.1556 1.4053 1.6060

CF 0.2508 0.4282 2.6609 6.5832

LIML 0.0063 0.1089 4.1612 43.3998

NL2SLS 0.9871 1.3393 1.1059 0.4112

CF 0.1331 0.1657 4.9338 40.7142

C

BETA 1

BETA 2

BETA 3

BETA 4

GAMMA

100

250

500

100

250

500

100

250

500

100

250

500

100

250

500

100

250

500
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Results on Table 3 show now that CF estimator has better performance on 

standard deviation only for parameter  ,  , and  . LIML estimator 

overcomes the performance of the CF estimator on standard deviation for 

parameters ,  , and   for almost all simple sizes. LIML estimator presents 

lower bias for parameters   ,  ,  , and   while CF estimtor has lower bias 

for   and . Differently from previous examples, CF estimator has not a better 

performance over the other estimators on standard deviation, particularly the 

LIML estimator. This may occur because the relationship of the endogenous 

variable and the instrumental variable is not linear anymore. Results show, 

however, that either LIML or CF estimators perform better than the NL2SLS 

estimator. Skewness results for NL2SLS estimator is closer to zero than the other 

estimators in all settings for all parameters. Kurtosis results for NL2SLS are the 

closest to zero for all parameters and sample sizes. Its kurtosis remains steady 

among the different settings, without reaching very large values. 
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5 Application 

In this section we estimate a nonlinear Phillips curve for Brazilian economy 

using a Smooth Transition Regression (STR) model as in Areosa (2011). The 

estimated model has the following equation: 

 

 . 

The instruments set is   , where  is 

the inflation rate,  is the output gap,  is the inflation expectation,  is 

the standard deviation of the inflation expectation and  is the interest rate. The 

set of instruments is obtained from the moment condition derived from the 

rational expectations hypothesis. Data is obtained from IBGE and Brazilian 

Central Bank. Inflation rate corresponds to annualized consumers price index 

(IPCA) and interest rate corresponds to monthly average SELIC rate.  

 

In this application it is assumed that each coordinate of  is centered at 

(0,0290, 0,3310, 0,0040, 0,8440, 0,0160, -0,2250, 0,8950, 2,3380, 18, 1,0600) 

with length (8, 8, 8, 8, 8, 8, 8, 8, 80, 8). The parameter  of the control function is 

centered at 1 with interval length equal to 5. Results are shown in Table 4. 

Table 4 shows estimation results for LIML, NL2SLS, and CF estimators.  
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TABLE 4 – Estimation Results for STR Model 

PARAMETER OLS LIML NL2SLS CF

0.0282 0.057 0.059 0.008

(11.747) (0.007) (11.747) (11.747)

0.4145 -0.166 -0.203 0.565

(0.956) (0.111) (0.903) (0.956)

-0.0237 0.002 0.006 -0.302

(0.477) (0.084) (0.429) (0.477)

0.8803 1.423 1.471 0.293

(0.209) (0.587) (0.207) (0.209)

0.04 0.09 0.099 0.18

(4.657) (0.033) (3.422) (2.509)

-0.3854 0.193 0.235 -0.869

(0.650) (0.235) (0.605) (0.469)

1.685 2.599 2.663 3.397

(0.180) (0.459) (0.155) (0.088)

1.591 0.201 -0.013 1.933

(0.191) (1.013) (0.184) (0.129)

17.9891 17.954 58 0.948

(0.002) (12.4) (0) (0.477)

1.4656 1.692 1.745 3.234

(0.653) (0.064) (0.762) (0.204)

-0.014

(4.497)

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

	




�
 

 

The estimated parameters partially differ from the economic theory 

presented in Areosa (2011) and the values are similar to the obtained in the paper 

only for some parameters. Results of Table 4 show that   is not positive and 

significant for any estimator while   is positive and significant for almost all 

estimators.  and , on the other hand, are positive and significant for most 

estimators. It’s interesting to notice that with exception from , all estimations 

from CF estimator are in line with the economic theory. Moreover, for the 

parameters  and , the CF estimator presented the lowest standard errors. 

However, the estimation of  is not significant.  
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6 Conclusion 

The aim of this paper is to compare the performance of the two-stage 

nonlinear least-squares (NL2SLS) estimator, the nonlinear limited information 

maximum likelihood (LIML) estimator and the Control Function (CF) estimator 

for specific families of nonlinear functions. For simulated data on examples 1 and 

2, the CF estimator performed better than the other estimators for standard 

deviation in settings with different sample sizes, followed by the LIML estimator. 

This result was expected due to the linear relation between the endogenous 

variable and the instrumental variable. On example 3, there was a nonlinear 

relation between the instrumental variable and the endogenous variable. 

Therefore, it was not straightforward to determine what estimator has presented 

the best performance. However, results have shown that both CF estimator and 

LIML estimator performed better than the NL2SLS estimator. The use of the STR 

model to estimate a nonlinear Phillips curve for the Brazilian economy showed 

that estimation results for LIML and CF estimators are in line with the ones 

previously estimated by Areosa et al. and corroborate results underlined by the 

economic theory. 
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Appendix 

 

FIGURE 1 – Histograms of Example 1 ( ) 
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 FIGURE 2 – Histograms of Example 1 

( )
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FIGURE 3 – Histograms of Example 1 ( ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

DBD
PUC-Rio - Certificação Digital Nº 1012743/CA



30 
 

 

 

 

 

 

FIGURE 4 – Histograms of Example 2 ( ) 
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FIGURE 5 – Histograms of Example 2 ( ) 
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 FIGURE 6 – Histograms of Example 2 ( ) 
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FIGURE 7 – Histograms of Example 2 ( ) 
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FIGURE 8 – Histograms of Example 2 ( ) 
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FIGURE 9 – Histograms of Example 2 ( ) 
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FIGURE 10 – Histograms of Example 3 ( ) 
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FIGURE 11 – Histograms of Example 3 ( ) 

 

 

 

 

 

 

DBD
PUC-Rio - Certificação Digital Nº 1012743/CA



38 
 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 12 – Histograms of Example 3 ( ) 
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FIGURE 13 – Histograms of Example 4 ( ) 
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FIGURE 14 – Histograms of Example 3 ( ) 
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FIGURE 15 – Histograms of Example 3 ( ) 
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