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4 Distributed store for tensor-based RDF Graph Search 

For smaller RDF Databases, a single-machine implementation of the tensor-

based proposal could keep all indexes and at least one instance of the sparse 

matrix in memory for quicker retrieval. However, single-machine storage will 

invariably become a bottleneck on both performance and reliability of a system. 

Furthermore, the set of queries proposed access the indexes and the sparse matrix 

from different perspectives, and enabling uniform performance to all types of 

queries requires different indexing policies implemented on those data stores, 

increasing the amount of memory needed. At a certain point, the implementation 

of an index on a single machine will become unfeasible. 

The tensor-based proposal is well suited to be used in combination with 

innovative Cloud Computing techniques, such as MapReduce over work queues 

and database sharding over non-relational databases that can be useful to scale out 

results. The need for increased scale becomes clear when taking into consideration 

the growth of the Web of Data. 

A distributed system should allow the use of an arbitrary number of 

database nodes on the system as well as indexing policies for the indexes in use 

and sparse matrices stored. On top of such storage, an API to execute queries 

should also be provided (so that knowledge of the exact network topology could 

be hidden from client applications). The main goal of this dissertation is to 

propose and design such a scalable RDF graph storage system, optimized for 

keyword search using the tensor-based approach. 

The tasks necessary for the process of storing and querying an RDF 

database fall on three general steps. First is the distributed indexing of nodes, full-

paths, and templates as defined by the tensor-based proposal. Second is the 

assembly of the sharded sparse matrix. Finally, an interfacing layer over the data 

network must be provided to execute the queries proposed on the tensor-based 

proposal. To accommodate the data generated on the general steps, a distributed 

database is needed. The proposed architecture for this database is to use an in-

memory key-value datastore, sharded among several nodes. 
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4.1.Step one: distributed indexing of nodes, full-paths, and templates 

 

 

Figure 9 - Step one illustration, from RDF to indexes 
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The raw information of the RDF Graph is extracted from either a SPARQL 

end point or from a file of tuples. For simplicity, let's assume that the tuples are 

stored in a file using the N-Triples format, where each line represents one tuple. 

Indexing all nodes is a very straightforward task: for each tuple, both the 

subject and the object are added to a set. Each element of the set can be later taken 

out and numbered. A simplified initial algorithm to store all indexes could be: 

def findNodes(tuples) 
  nodesSet = new DB::Set(); 
  for each tuple in tuples do  # iterates over rdf triples 
    s, p, o = parseTuple(tuple)  # extracts subject, predicate and object 
    nodesSet.add(s) 
    nodesSet.add(o) 
  end 
  nodes = new DB::Array() 
  n = 0 
  for each node in nodesSet do 
    nodes[n] = node  # uses array indexes as node indexes 
    n++ 
  end 
  DB.persist(nodes) 
end 

Algorithm 1 - First approach to build nodes index 

The next task is the construction of the full-path index. For this, all full-

paths of the graph will have to be walked, either using a breadth-first search BFS 

or a depth-first search DFS. A good starting point can be each source of the graph, 

and from this source find all paths leading to a sink. The sources and sinks can be 

found while listing the nodes index with some changes to the algorithm: 
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def findNodesSourcesAndSinks(tuples) 
  nodesSet = new DB::Set() 
  sources = new DB::Set() 
  for each tuple in tuples do  # iterates over rdf triples 
    s, p, o = parseInput(tuple)  # extracts subject, predicate and object 
    if s not in nodesSet do  # if subject is a new node... 
      nodesSet.add(s) 
      sources.add(s)  # ... it is a source until proven wrong 
    end 
    nodesSet.add(o) 
    sources.rem(o)  # an object's node is not a source 
  end 
  nodes = new DB::Array() 
  n = 0 
  for each node in nodesSet 
    nodes[n] = node  # uses array indexes as node indexes 
    n++ 
  end 
  DB.persist(nodes) 
  DB.persist(sources) 
end 

Algorithm 2 - Second approach to build nodes index 

This algorithm can be modified to allow it to be used in a distributed fashion 

without optimizations - this is a challenging problem on its own and falls outside 

the scope of this dissertation. The second loop to enumerate the nodes can be 

incorporated in the first loop that processes the tuples. Assuming that the database 

architecture will provide a shared data structured for this step, the algorithm can 

use a hash collection to both check for duplicates and enumerate them in a single 

operation. As will be seen later, an index to facilitate the retrieval of all predicate-

objects originating from a node will speed-up the initial sparse matrix 

construction, so the algorithm is also modified accordingly: 
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def findNodesSourcesAndSinks(tuples) 
  nodes = new DB::TwoWayArray() 
  predicateObjects = new DB::Array() 
  sources = new DB::Set() 
  for each tuple in tuples do  # iterates over rdf triples 
    s, p, o = parseTuple(tuple)  # extracts subject, predicate and object 
    if s not in nodes do 
      nodeIndex = nodes.add(s) 
      predicateObjects[nodeIndex] = new DB::Set() 
      sources.add(s)  # ... it is a source until proven wrong 
    end 
    nodes.add(o) 
    nodeIndex = nodes.index(s) 
    predicateObjects[nodeIndex].add((p, o))  # store node connections 
    sources.rem(o)  # an object's node is not a source 
  end 
end 

Algorithm 3 - Distributed approach to build nodes index 

Finally, a very straightforward way to map the distributed execution of this 

algorithm is to split the input file list of tuples in j jobs on a queue, from where 

workers can freely pool from (without interdependency): 

def BRGS.mapTupleParsing(file, j)  # splits the file in j blocks 
  k = files.lines.length / j  # how many lines a block has 
  for i = 0 to j do 
    startLine = i * k  # first block line 
    endLine = (i + 1) * k - 1  # last block line 
    job = new MR::Job( 
      findNodesSourcesAndSinks, 
      file.lines[startLine..endLine])  # maps a new job with k lines 
    MR.enqueue(job) 
  end 
end  

Algorithm 4 - Mapping the distribution of tuple parsing to find nodes 

Once all sources are found, all full-paths of the graph can be found by 

walking the graph with a depth-first search (DFS) that starts from each source. It 

can be intuitively deduced that two sources will produce two completely different 

sets of full-paths, since no path starting with one source can reach the other 

source, by definition. To fit this DFS walk in the MapReduce model, we propose 

a straightforward mapping for this algorithm that creates a job to do a full depth-

first walk for each existing source. A distributed algorithm that implements a DFS 

to find all full-paths starting at a source can be: 
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def pathDive(path, marked) 
  node = path.last  # starts from end of path walked so far 
  marked.add(node)  # prevents node from being rewalked 
  predicateObjects = DB.loadPredicateObjects(node)  # node connections 
  if predicateObjects is empty do  # node has no connections... 
    DB.indexFullPath(path)  # ... path ended, store full-path 
  else: 
    for each (p, o) in predicateObjects do 
      path.push(p, o)  # grow path walked so far this way... 
      pathDive(path, marked)  # ... and recursively keep walking it 
      path.pop(2)  # get back to point before going deeper 
    end 
  end 
  marked.rem(node) 
end  

Algorithm 5 - Recursive DFS to walk all full-paths 

The mapping of the sources to distributed execution of the DFS can be 

simply described as: 

def mapSourceDFS() 
  sources = DB.loadSources() 
  for each source in sources do 
    path = new DB::Set()  # creates a new empty path to start... 
    marked = new DB::Set()  # ... and with no marked nodes yet 
    path.push(source) 
    job = new MR::Job(pathDive, path, marked) 
    MR.enqueue(job)  # maps a job to each source 
  end 
end  

Algorithm 6 - Mapping the distribution of sources to DFSs 

As noted by the algorithms presented so far, several methods must be 

available in the implementation of the database network (DB methods) and some 

from the MapReduce framework (API methods). To facilitate referencing in the 

rest of the text, we baptize each requirement with a method or structure name, 

shown in parenthesis (using "::" to designate structures and "." to designate 

methods). In what follows, we describe the methods that are needed to create data 

structures, as well as the functionalities that they need to provide. The methods 

that handle data structure creation have the following requirements: 

• Create a database backed collection of unique elements, similar to a 

Set, with two-way indexing, i.e., assigns an index to new elements 
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and can retrieve elements by their index, or given an element find its 

index (DB::TwoWayArray); 

• Create a database backed array of elements with one way indexing, 

i.e., can store and retrieve elements given any arbitrary index 

(DB::Array); 

• Create a database backed collections of unique elements without 

indexing and can randomly access any of them (DB::Set); 

 

The methods that handle the functionality needed to manipulate the data 

structures described above have the following requirements: 

• Load a predicateObjects array given a node 

(DB.loadPredicateObjects); 

• Store the full-path and its template serialized as strings on 

DB::TwoWayArray collections (DB.indexFullPath); 

• Load the graph sources' DB.Set (DB.loadSources); 

• Add a unit of work to a job queue (MR.enqueue). 

All these need to be present in any implementation of the proposed 

architecture. This design and the complete relationship to the tools chosen to 

support our implementation will be described in greater detail in the next chapter. 

4.2.Step two: sparse matrix assembly, sharding and storage 

During this step, the indexes built on step one will provide the necessary 

information to assemble and persist the sparse matrix. Each position i, j on the 

sparse matrix depends only on the data from the indexes. We chose to compute all 

positions for any given full-path, which already fits a MapReduce parallel 

computation of this step. An algorithm that populates a line of the sparse matrix 

is: 
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def storeFullPathPositions(fullPath) 
  template = DB.templateFromFullPath(fullPath) 
  fpCount = (fullPath.length / 2) + 1  # how many nodes in full-path 
  fpPos = 1 
  while fpPos < fpCount do 
    i = (2 * fpPos) - 1  # odd full-path values, i.e., nodes 
    node = fullPath[i] 
    DB.storePosition( 
        node, fullPath,  # sparse-matrix position to store 
        fpPos, fpCount, template)  # position, count and template tuple 
    fpPos++ 
  end 
end  

Algorithm 7 - Store all positions of a full-path 

Mapping must make sure that each full-path was de-serialized into a data 

structured useful for the store algorithm. In this case, the algorithm uses an array, 

so the distribution could be: 

def mapStoreFullPathPositions() 
  fullPaths = DB.loadFullPaths() 
  for each fullPath in fullPaths do 
    fullPathArray = new DB::Array(fullPath) 
    job = new MR::Job(storeFullPositions, fullPathArray) 
    MR.enqueue(job)  # maps a job to each full-path 
  end 
end  

Algorithm 8 - Mapping full-paths to store sparse matrix positions 

As it is clear from the tensor-based proposed queries, multiple sharding 

techniques to store the sparse matrix are desired to trade in increased redundancy 

of data for faster retrieval later. This redundancy must be encapsulated on the 

DB.storePosition method. Similar to the last step, we summarize the required 

functionalities for this step and name each as a function: 

• Given a node and a full-path, create a tuple of values as described in 

Section 3.3 - i.e., a tuple with the node position in the full-path, how 

many nodes exist in this full-path and the index of the full-paths' 

template - and store in the sparse matrix applying the active sharding 

policies (DB.storePosition); 

• List all stored full-paths (DB.loadFullPaths); 

• Find a template given a full-path (DB.templateFromFullPath). 
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4.3.Step three: distributed graph queries 

The tensor-based proposal describes several queries for retrieval and 

procedures for maintenance. These queries are key to the architecture design and 

sharding choices made. In this section, we describe the query requirements, while 

the support for them is described in Section 4.5. 

4.3.1.Node Query, Path Query and Final Node Query 

A Node Query finds all full-paths containing given nodes that were selected 

by keyword. As seen on the tensor-based proposal, this translates to extracting the 

sparse matrix column j, where j is the given node index. As such, this query 

presents two requirements for the underlying database architecture. First, select a 

node index from keywords inputted by the user, with margin for small input 

errors. Second, the retrieval of a full column of the sparse matrix should be an 

optimized function given the database sharding. A simplified high-level 

description of the Node Query could be: 

def BRGS.nodeQuery(keywords) 
    node = SE.selectNode(keywords)  # finds a node by keyword search 
    return DB.sparseMatrixColumn(node)  # gets corresponding column 
end  

Algorithm 9 - High-level description of a Node Query 

Very similar to the Node Query are the Path and Final Node Queries. The 

Path Query differs by the fact that selecting a full-path query by keyword is not as 

user-friendly as selecting a node, so the query assumes that a path was selected by 

other means. Once selected, the requirement of retrieval is similar, except that the 

Path Query will require the underlying database to provide a full row retrieval. 

The Final Node Query is a special case of the Node Query, which the purpose is 

to find all full-paths where the selected node is at the end of it. Instead of 

retrieving the whole column of the sparse matrix, only those positions where the 

tuple indicates that the node position is the same as the full-path nodes count, i.e., 

where given {i,j} = {o,l,t}, o and l are equal. This could generate another 

requirement for the database, but will be left out of the design scope on this 

dissertation. 

To execute these queries, the functionalities needed are: 
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• Select one node that best matches the given keywords provided by 

the user (SE.selectNode); 

• Retrieve a full column of the sparse matrix 

(DB.sparseMatrixColumn); 

• Retrieving a full row of the sparse matrix (DB.sparseMatrixRow). 

4.3.2.Path Intersection Query 

The Path Intersection Query verifies if two given full-paths have 

intersections. On the sparse matrix, this is translated by retrieving the two 

corresponding rows of those full-paths and finding if they have intersecting rows. 

This query could use the previously defined DB.sparseMatrixRow method for 

quick retrieval of the rows and subsequent intersection, as proposed on the tensor-

based approach: 

def BRGS.pathIntersectionQuery(path1, path2) 
  path1Row = DB.sparseMatrixRow(path1) 
  path2Row = DB.sparseMatrixRow(path2) 
  intersectingNodes = new DB::Set() 
  for each node in path1Row do 
    if node in path2Row do  # intersects path1 and path2 nodes 
      intersectingNodes.add(node) 
    end 
  end 
  return intersectingNodes 
end  

Algorithm 10 - Naïve intersection of the two paths 

This intersection can be further optimized on the implementation to take 

into account the fact that the rows are numbered and have gaps. Those 

optimizations won't be described here. The functionalities needed for this query 

have already been listed on previous steps or queries. 

4.3.3.Path Intersection Retrieval Query 

Another query described on the tensor-based proposal is the Path 

Intersection Retrieval Query. The purpose of this query is to find all full-paths that 

intersect a given full-path. The query, as described on the proposal works, uses a 

previously defined query, the Path Query, to get all nodes of a query. However, 

previous requirements described the need to find nodes back and forth from their 
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values and indexes. Given that full-paths are string serializations of nodes, the 

Path Query won't be necessary, and the nodes can be found directly from the full-

path de-serialization. With the nodes selected, the query then joins the results of a 

Node Query on each node of the full-path, representing all full-paths intersecting 

the given full-path: 

def BRGS.pathIntersectionRetrievalQuery(path) 
  paths = new DB::Set() 
  for each node in path do 
    intersectingPaths = BRGS.nodeQuery(node)  # full-paths with this node 
    paths.add(intersectingPaths) 
  end 
  return paths 
end  

Algorithm 11 - Path Intersection Retrieval Query 

The functionalities needed for this query have already been listed on 

previous steps or queries. 

4.3.4.Path Cutting Query 

This final retrieval query from the tensor-based proposal is a two-direction 

operation to return the part of a given full path that either starts or ends on a given 

node. Similar to the Final Node Query, this is based on extracting the given full-

path corresponding row and returning the nodes which node position values on the 

tuples are greater or lesser than (depending on the direction chosen for the 

operation) the selected node position, i.e., given the node in and path jp, the query 

returns all i where {i,jp} = {oi,l,t}, have oi greater or lesser than on in {in,jp} = 

{oi,l,t}. The algorithm for this is can be simply designed as: 
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def BRGS.pathCuttingQuery(path, node, direction) 
  cells = BRGS.pathQuery(path)  # sparse matrix cells of full-path line 
  refPosition = cells[node].position  # position in full-path of node 
  selectNodes = new DB::Set() 
  for each cell in cells do  # cell has node and full-path position 
    if direction == 'gt' do  # from start cutting direction 
      if cell.position > refPosition do 
        selectedNodes.add(cell.node) 
      end 
    else  # to end cutting direction 
      if cell.position < refPosition do 
        selectedNodes.add(cell.node) 
      end 
    end 
  end 
  return selectedNodes 
end  

Algorithm 12 - Path Cutting Query 

The functionalities needed for this query have already been listed on 

previous steps or queries. 

4.3.5.Node Deletion Procedure and Node Insertion Procedure 

The first maintenance procedures are for node removal and inclusion. When 

removing a node, the full-paths including the node deleted are also deleted. To do 

so, a Node Query is executed to retrieve all full-paths involving the deleted node 

and this removes each position from the sparse-matrix and the full-path from the 

index. Finally, the node is also removed from the index. 

The procedure to add a node is similar, but since the node is still not 

connected to the graph - only the node was added, not an edge connecting it - the 

procedure will only include a new entry on the nodes index. This means that a 

new column was created on the sparse matrix, but there are no values for this 

column yet, so no operations are needed since the sparse matrix doesn't store 

positions without values. This queries use only queries described before and don't 

need new functionalities. 
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4.3.6.Edge Deletion Procedure 

It is expected that, coupled with the node deletion procedure, several edge 

deletions will precede it, removing connections before taking the node out of the 

graph. This procedure is proposed in two formats. 

First is the deletion of all edges by label. Given an edge label e, the 

procedure should look for its index and then select all templates containing that 

edge. For each template selected, the corresponding full-paths of that template 

should be deleted as well. In the sparse matrix, this translates to removing all 

positions. The tensor-based proposal suggests to perform the selection of full-

paths directly on the sparse matrix, instead of storing a full-path to template 

relationship, i.e., finding all positions {i,j} -> (o,l,t) where t is one of the selected 

templates, and then deleting the full-path j from the full-path index: 

def BRGS.deleteEdgeByLabel(label) 
  templates = SE.selectTemplates(label) # gets template by keyword search 
  cells = BRGS.sparseMatrixByTemplates(templates) 
  BRGS.clearPositions(cells) 
end 
def BRGS.clearPositions(cells)  # clears position 
  fullPaths = new DB::Set() 
  templates = new DB::Set() 
  for each cell in cells do 
    fullPaths.add(cell['fullPath'])  # cascade full-path removal 
    templates.add(cell['template'])  # cascade template removal 
    DB.clearPosition(cell['node'], cell['fullPath']) 
  end 
  for each fullPath in fullPaths do 
    DB.deIndex(fullPath) 
  end 
  for each template in templates do 
    DB.deIndex(template) 
  end 
end  

Algorithm 13 - Edge Deletion by Label - simplified without MapReduce 

The second format for is the deletion of a specific edge between two nodes, 

i.e., the procedure has an input in the form n1, e, n2. In this case, only the positions 

selected by a Node Query on each node n1 and n2 that are adjacent in the full-path 

are deleted, i.e., positions {i1,jp} -> (o1,lp,tp) and {i2,jp} -> (o2,lp,tp) where o2 - o1 

== 1. Once those positions of the sparse matrix are found, the same procedure 

follows: 
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def BRGS.deleteEdge(node1, label, node2) 
  templates = SE.selectTemplates(label) 
  positionsToDelete = new DB::Set() 
  positions1 = new DB::Array() 
  positions2 = new DB::Array() 
  positions1 = BRGS.nodeQuery(node1) 
  positions2 = BRGS.nodeQuery(node2) 
  for each position1 in positions1 do 
    fullPathIdx = position1['fullPath'] 
    position2 = positions2[fullPathIdx] 
    dist = position1['fullPathPos'] = position1['fullPathPos'] 
    if position1['template'] in templates and dist == 1 do 
      positionsToDelete.add(position1) 
      positionsToDelete.add(position2) 
    end 
  end 
  BRGS.clearPositions(positionsToDelete) 
end  

Algorithm 14 - Edge Deletion - simplified without MapReduce 

To execute these queries, the functionalities needed are: 

• Select all templates that include a given edge label 

(SE.selectTemplates); 

• Select all positions of the sparse matrix that belong to full-paths of a 

given template (DB.sparseMatrixByTemplates); 

• Clear a position from the sparse matrix, i.e., remove the tuple from 

storage (DB.clearPosition); 

• Remove a full-path or template from the full-paths or templates 

indexes (DB.deIndex); 

4.3.7.Edge Insertion Procedure 

The edge insertion procedure is the most complex of all operations, but is a 

combination of previously discussed maintenance queries. This procedure gets as 

input the specific edge e between two existing nodes in the format n1, e, n2, with 

both n1, and n2 already in the graph. The procedure will have to generate new full-

paths involving e based on using Path Cutting Query to find, among the full-paths 

that contain the node n1, the parts that end at n1 and, among the full-paths that 

contain the node n2, the parts that start at n2. All partial paths from the first group 
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are concatenated with all the paths on the second group, generating new lines on 

the sparse matrix for each combination. 

4.3.8.Node Update Procedure and Edge Update Procedure 

Those procedures don't access the sparse matrix to execute. They only 

change values on the indexes generated to search for nodes and templates by 

name. 

4.4.Review of architecture requirements 

The analysis of the steps listed several functionalities and data structures 

with specific requirements to be met by any proposed architecture. These 

functionalities are referenced here by the method and structure names we used to 

reference them. These methods can be grouped by what kind of support or 

specific uses they will need from the architecture. 

The first group are the functionalities that require generic shared data 

structures. These methods need to have some data structure common accessible by 

all workers that will execute them. The requirements that describe the necessary 

structures are the structures we named earlier, listed on Table 4. 

Structure alias Ref. Requirement 

DB::TwoWayArray 4.1 Key-Value store in both directions - k/v and v/k 

DB::Array 4.1 Key-Value store in one direction - k/v 

DB::Set 4.1 Values store without repetition 

Table 4 - Requirements of generic shared data structures 

The second group are the functionalities that must store or load specific data 

structures of the tensor-based model. Even though those procedures are built on 

top of the generic data structures, they have the additional requirement of being 

optimized for larger volumes and can be sharded through several generic data 

structures on different nodes of the database network. The method names we 

listed before that fall on this group are listed on Table 5. 
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Method alias Ref. Requirement 

DB.loadPredicateObjects 4.1 Load predicateObjects given a subject 

node 

DB.indexFullPath 4.1 Store a full-path 

DB.deIndex 4.3.6 Clears a full-path or template from the 

index 

DB.templateFromFullPath 4.2 Retrieve a template given a full-path 

DB.loadFullPaths 4.2 Retrieves all full-paths 

DB.loadSources 4.1 Retrieve all sources 

Table 5 - Methods requiring specific distributed data structures 

The third group raises the requirement of a MapReduce framework in place. 

The algorithms described so far don't detail how the steps of the process are 

started, i.e., how the map methods are invoked, neither how specific workers will 

receive their jobs, leaving those details to the implementation. However, it is clear 

that the framework must be able to handle with failed executions, retries, as well 

as a large and varying number of worker nodes. The single method present in the 

algorithms above is the MR.enqueue, but that is expected as other methods from 

the framework would only surface on the implementation of workers. 

The fourth group is the evidence needed for searching nodes and templates 

by keywords. Even though the node index can be backed up by a generic data 

structure, as seen on the first and second group, the search for nodes using user-

friendly keywords points to the need of a more specialized structure for this type 

of data, based on a search engine that can be more tolerant and not require exact 

matches only. Selecting templates by an edge label is one of the requirements for 

the edge removal procedure. It could also be implemented by keeping the reverse 

relationship of edges that belongs to a template, however, as it happens with the 

node searching, a search engine based index for the edges would be required 

anyway. Storing the whole template text on a search engine index skips the 

creation of that relationship. The method names we listed before that fall on this 

group are listed on Table 6. 
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Method alias Reference Requirement 

SE.selectNode Section 4.3.1 Select a node by keyword search 

SE.selectTemplates Section 4.3.6 Retrieve all templates given an edge label 

Table 6 - Requirements for a keyword search engine 

The fifth group of methods revolve around the requirement of having a 

sparse matrix that will have a low density of elements and should save memory by 

not storing positions that don't have values. Also, the sparse matrix positions will 

often be retrieved in whole rows or columns at a time, which generates the need to 

have this kind of request optimized. The method names we listed before that fall 

on this group are listed on Table 7. 

Method alias Ref. Requirement 

DB.storePosition 4.2 Store a tuple (o,l,t) at the position (i,l) 

of the sparse matrix 

DB.clearPosition 4.3.6 Clear a position of the sparse matrix 

DB.sparseMatrixColumn 4.3.1 Retrieves all tuples of a column of the 

sparse matrix 

DB.sparseMatrixRow 4.3.1 Retrieves all tuples of a row of the 

sparse matrix 

DB.sparseMatrixByTemplates 4.3.6 Retrieves all tuples matching a 

template index in the sparse matrix 

Table 7 - Methods requiring a sparse matrix with optimized access 

4.5.Architectural elements 

The architectural elements needed to handle the requirements for the 

proposed system are: 

4.5.1.A Key-value store 

As seen before, several non-relational databases with key-value stores are 

available. To handle with the first, second, and the fifth requirements for two-way 

indexed collection of unique elements, a basic key-value store could be used. By 

creating namespaces on the keys names, several indexed collections could be 

stored on the same store. 
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key value 

nodes::next_index:: 4 

nodes:1 Movie 

nodes:2 Director 

nodes:3 Actor 

Table 8 - Example of using namespaces for storing collections 

Some key-value NoSQL stores mentioned before have this namespace 

functionality built-in, calling the second part of the name of the keys of fields. By 

using this, it won't be necessary to build an auxiliary key-value position to store 

all used indexes for iteration. However, as seen in the example, a next-index 

counter is still needed, and the underlying key-value must also provide an atomic 

get-and-increment operation for this kind of value, which is an operation available 

on some stores. 

Furthermore, the reverse operation is also needed (i.e., find the key from the 

value). This is not a common functionality found on the NoSQL stores listed 

earlier. But it can be emulated by duplicating the key-value collections and using 

an inverted naming convention. In this scheme, values are used on the keys and 

indexes are the stored values. 

key value 

nodes-index:Movie 1 

nodes-index:Director 2 

nodes-index:Actor 3 

Table 9 - Example of using inverted key naming convention 

The two-way indexed collection is the most complex type of structure listed, 

and the other two kinds of collections (Array and Set) can be easily mapped to a 

DB::TwoWayArray if needed, but most key-value stores available have specific 

structures for them and won't need this mapping. 

So the first element of the architecture is pinned down: a key-value store 

with an atomic integer read-and-increment for the index building, and preferably a 

key-value store with structures for sets, arrays and fields. 
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4.5.2.Use of sharding on the stored collections by key 

Since a key-value store is needed, the second and fifth requirements will 

further dictate that some sharding schemes need to be used. The requirements so 

far call for at least three forms of optimized access: retrieving all elements of a 

sparse matrix's row, all elements of a sparse matrix's column, and sequential 

access of all elements of a collection. 

The first two forms of retrieval can also make use of duplicating the 

involved data and distributing it through the nodes. This way each column and 

row can be stored in a collection, and the whole collection can either be kept in-

memory on a single machine or distributed through several nodes depending on 

the network environment available. The decision on which strategy has greater 

performance is one of the parameters for the implementation and testing. The third 

form of sequential access doesn't need data duplicating, but has to go through the 

same process of being sharded by key, depending on the network environment. 

4.5.3.A MapReduce framework based on job queues 

The third requirement calls for a MapReduce framework. Most modern 

frameworks have evolved from the abstraction of MapReduce to be based on job 

queues, pooled by a group of worker nodes. This allows for the requirements 

needed by this proposal, such as handling individual job failures, retries of jobs, 

adding or removing workers on the fly, etc. 

The choice of a job queue based framework has the additional benefit of 

allowing the control of the workflow described on steps one and two of the 

indexing and sparse matrix assembly process. In this way, the Map procedure of 

each step can also be a job, which will in turn generate all the jobs needed for the 

step, and the Reduce procedure can be a scheduled job that runs periodically and 

checks if all intermediate jobs have finished, moving the process to the next step. 

On the third step, queries can be handled in the same fashion. 

4.5.4.A search engine 

In order to allow for user-friendly keyword search, a strictly key-value store 

won't be enough. This would require the user to type in exact matches with 
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subject or object values. Furthermore, keyword search should allow for fine-

tuning the scheme for finding and selecting entries, applying well established 

strategies for weighting specific words against another, ignoring words too small, 

and other language specific details such as pluralisation. This calls for a dedicated 

search engine with a parallel collection for the nodes. This collection will allow 

the retrieval of node's indexes given keywords with full or partial matches. 

 
Figure 10 - Architectural elements, orchestrating API and interactions 
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4.6.Proposed architecture 

To cater to the requirements described, we propose using the elements 

described on the previous section with a central orchestrating element that will 

implement the proposed algorithms and expose them via an API. The architectural 

elements interaction is described on Figure 10. 

The MapReduce element of the architecture will allow a generic way to 

harness scalable computing resources. Coupled with Job Queues it will enable the 

addition or removal of more resources without rewriting or restarting the current 

network. Also, this abstraction will help the orchestrating element to isolate its 

API from the sharding logic. 

Each of the key-value store nodes should have its own internal redundancy, 

making it transparent to the orchestrating element. However it will not need to 

know the distributed structure of the other nodes. This logic will be part of the 

orchestrating element. This way the key-value stores can have a very simple 

master-slave setup for redundancy. The search engine element is also isolated as 

several tools are known to exist that match this functionality. 

In this architecture we centralized the communication between the 

components through the orchestrating element. This will allow the distribution 

logic of the different elements to work independently, i.e., the MapReduce 

network may grow or shrink while the Search engine nodes remain the same. This 

centralization also allows future work to replace individual elements to 

experiment with other setups. 

4.7.Summary 

In this chapter, we detailed the tensor-based approach that consists of three 

independent, sequential steps: indexing, building the matrix, and querying. We 

discussed each step in detail and provided the requirements for their 

implementation. For the first step, the construction of the index, we centred our 

discussion on the shared memory structures that needed to be created, as well as 

the functionalities that are needed to build a scale up keyword based search 

mechanism. For the second step, we discussed the algorithms needed to compute 

and assemble the matrix. The distributed queries, which constitute the third and 

final step of the process, were discussed and exemplified. A recap of the 
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requirements provides a comprehensible summary to anyone that intends to 

implement the ideas proposed in this dissertation. We close the chapter by 

presenting a possible architecture that matches the requirements described. In the 

next chapter, we detail a possible implementation for the requirements presented 

in this chapter, used to validate our ideas. 
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