
Distributed RDF Graph Keyword Search 34

4 Distributed store for tensor-based RDF Graph Search

For smaller RDF Databases, a single-machine implementation of the tensor-

based proposal could keep all indexes and at least one instance of the sparse

matrix in memory for quicker retrieval. However, single-machine storage will

invariably become a bottleneck on both performance and reliability of a system.

Furthermore, the set of queries proposed access the indexes and the sparse matrix

from different perspectives, and enabling uniform performance to all types of

queries requires different indexing policies implemented on those data stores,

increasing the amount of memory needed. At a certain point, the implementation

of an index on a single machine will become unfeasible.

The tensor-based proposal is well suited to be used in combination with

innovative Cloud Computing techniques, such as MapReduce over work queues

and database sharding over non-relational databases that can be useful to scale out

results. The need for increased scale becomes clear when taking into consideration

the growth of the Web of Data.

A distributed system should allow the use of an arbitrary number of

database nodes on the system as well as indexing policies for the indexes in use

and sparse matrices stored. On top of such storage, an API to execute queries

should also be provided (so that knowledge of the exact network topology could

be hidden from client applications). The main goal of this dissertation is to

propose and design such a scalable RDF graph storage system, optimized for

keyword search using the tensor-based approach.

The tasks necessary for the process of storing and querying an RDF

database fall on three general steps. First is the distributed indexing of nodes, full-

paths, and templates as defined by the tensor-based proposal. Second is the

assembly of the sharded sparse matrix. Finally, an interfacing layer over the data

network must be provided to execute the queries proposed on the tensor-based

proposal. To accommodate the data generated on the general steps, a distributed

database is needed. The proposed architecture for this database is to use an in-

memory key-value datastore, sharded among several nodes.

DBD
PUC-Rio - Certificação Digital Nº 1021777/CA

Distributed RDF Graph Keyword Search 35

4.1.Step one: distributed indexing of nodes, full-paths, and templates

Figure 9 - Step one illustration, from RDF to indexes

DBD
PUC-Rio - Certificação Digital Nº 1021777/CA

Distributed RDF Graph Keyword Search 36

The raw information of the RDF Graph is extracted from either a SPARQL

end point or from a file of tuples. For simplicity, let's assume that the tuples are

stored in a file using the N-Triples format, where each line represents one tuple.

Indexing all nodes is a very straightforward task: for each tuple, both the

subject and the object are added to a set. Each element of the set can be later taken

out and numbered. A simplified initial algorithm to store all indexes could be:

def findNodes(tuples)
 nodesSet = new DB::Set();
 for each tuple in tuples do # iterates over rdf triples
 s, p, o = parseTuple(tuple) # extracts subject, predicate and object
 nodesSet.add(s)
 nodesSet.add(o)
 end
 nodes = new DB::Array()
 n = 0
 for each node in nodesSet do
 nodes[n] = node # uses array indexes as node indexes
 n++
 end
 DB.persist(nodes)
end

Algorithm 1 - First approach to build nodes index

The next task is the construction of the full-path index. For this, all full-

paths of the graph will have to be walked, either using a breadth-first search BFS

or a depth-first search DFS. A good starting point can be each source of the graph,

and from this source find all paths leading to a sink. The sources and sinks can be

found while listing the nodes index with some changes to the algorithm:

DBD
PUC-Rio - Certificação Digital Nº 1021777/CA

Distributed RDF Graph Keyword Search 37

def findNodesSourcesAndSinks(tuples)
 nodesSet = new DB::Set()
 sources = new DB::Set()
 for each tuple in tuples do # iterates over rdf triples
 s, p, o = parseInput(tuple) # extracts subject, predicate and object
 if s not in nodesSet do # if subject is a new node...
 nodesSet.add(s)
 sources.add(s) # ... it is a source until proven wrong
 end
 nodesSet.add(o)
 sources.rem(o) # an object's node is not a source
 end
 nodes = new DB::Array()
 n = 0
 for each node in nodesSet
 nodes[n] = node # uses array indexes as node indexes
 n++
 end
 DB.persist(nodes)
 DB.persist(sources)
end

Algorithm 2 - Second approach to build nodes index

This algorithm can be modified to allow it to be used in a distributed fashion

without optimizations - this is a challenging problem on its own and falls outside

the scope of this dissertation. The second loop to enumerate the nodes can be

incorporated in the first loop that processes the tuples. Assuming that the database

architecture will provide a shared data structured for this step, the algorithm can

use a hash collection to both check for duplicates and enumerate them in a single

operation. As will be seen later, an index to facilitate the retrieval of all predicate-

objects originating from a node will speed-up the initial sparse matrix

construction, so the algorithm is also modified accordingly:

DBD
PUC-Rio - Certificação Digital Nº 1021777/CA

Distributed RDF Graph Keyword Search 38

def findNodesSourcesAndSinks(tuples)
 nodes = new DB::TwoWayArray()
 predicateObjects = new DB::Array()
 sources = new DB::Set()
 for each tuple in tuples do # iterates over rdf triples
 s, p, o = parseTuple(tuple) # extracts subject, predicate and object
 if s not in nodes do
 nodeIndex = nodes.add(s)
 predicateObjects[nodeIndex] = new DB::Set()
 sources.add(s) # ... it is a source until proven wrong
 end
 nodes.add(o)
 nodeIndex = nodes.index(s)
 predicateObjects[nodeIndex].add((p, o)) # store node connections
 sources.rem(o) # an object's node is not a source
 end
end

Algorithm 3 - Distributed approach to build nodes index

Finally, a very straightforward way to map the distributed execution of this

algorithm is to split the input file list of tuples in j jobs on a queue, from where

workers can freely pool from (without interdependency):

def BRGS.mapTupleParsing(file, j) # splits the file in j blocks
 k = files.lines.length / j # how many lines a block has
 for i = 0 to j do
 startLine = i * k # first block line
 endLine = (i + 1) * k - 1 # last block line
 job = new MR::Job(
 findNodesSourcesAndSinks,
 file.lines[startLine..endLine]) # maps a new job with k lines
 MR.enqueue(job)
 end
end

Algorithm 4 - Mapping the distribution of tuple parsing to find nodes

Once all sources are found, all full-paths of the graph can be found by

walking the graph with a depth-first search (DFS) that starts from each source. It

can be intuitively deduced that two sources will produce two completely different

sets of full-paths, since no path starting with one source can reach the other

source, by definition. To fit this DFS walk in the MapReduce model, we propose

a straightforward mapping for this algorithm that creates a job to do a full depth-

first walk for each existing source. A distributed algorithm that implements a DFS

to find all full-paths starting at a source can be:

DBD
PUC-Rio - Certificação Digital Nº 1021777/CA

Distributed RDF Graph Keyword Search 39

def pathDive(path, marked)
 node = path.last # starts from end of path walked so far
 marked.add(node) # prevents node from being rewalked
 predicateObjects = DB.loadPredicateObjects(node) # node connections
 if predicateObjects is empty do # node has no connections...
 DB.indexFullPath(path) # ... path ended, store full-path
 else:
 for each (p, o) in predicateObjects do
 path.push(p, o) # grow path walked so far this way...
 pathDive(path, marked) # ... and recursively keep walking it
 path.pop(2) # get back to point before going deeper
 end
 end
 marked.rem(node)
end

Algorithm 5 - Recursive DFS to walk all full-paths

The mapping of the sources to distributed execution of the DFS can be

simply described as:

def mapSourceDFS()
 sources = DB.loadSources()
 for each source in sources do
 path = new DB::Set() # creates a new empty path to start...
 marked = new DB::Set() # ... and with no marked nodes yet
 path.push(source)
 job = new MR::Job(pathDive, path, marked)
 MR.enqueue(job) # maps a job to each source
 end
end

Algorithm 6 - Mapping the distribution of sources to DFSs

As noted by the algorithms presented so far, several methods must be

available in the implementation of the database network (DB methods) and some

from the MapReduce framework (API methods). To facilitate referencing in the

rest of the text, we baptize each requirement with a method or structure name,

shown in parenthesis (using "::" to designate structures and "." to designate

methods). In what follows, we describe the methods that are needed to create data

structures, as well as the functionalities that they need to provide. The methods

that handle data structure creation have the following requirements:

• Create a database backed collection of unique elements, similar to a

Set, with two-way indexing, i.e., assigns an index to new elements

DBD
PUC-Rio - Certificação Digital Nº 1021777/CA

Distributed RDF Graph Keyword Search 40

and can retrieve elements by their index, or given an element find its

index (DB::TwoWayArray);

• Create a database backed array of elements with one way indexing,

i.e., can store and retrieve elements given any arbitrary index

(DB::Array);

• Create a database backed collections of unique elements without

indexing and can randomly access any of them (DB::Set);

The methods that handle the functionality needed to manipulate the data

structures described above have the following requirements:

• Load a predicateObjects array given a node

(DB.loadPredicateObjects);

• Store the full-path and its template serialized as strings on

DB::TwoWayArray collections (DB.indexFullPath);

• Load the graph sources' DB.Set (DB.loadSources);

• Add a unit of work to a job queue (MR.enqueue).

All these need to be present in any implementation of the proposed

architecture. This design and the complete relationship to the tools chosen to

support our implementation will be described in greater detail in the next chapter.

4.2.Step two: sparse matrix assembly, sharding and storage

During this step, the indexes built on step one will provide the necessary

information to assemble and persist the sparse matrix. Each position i, j on the

sparse matrix depends only on the data from the indexes. We chose to compute all

positions for any given full-path, which already fits a MapReduce parallel

computation of this step. An algorithm that populates a line of the sparse matrix

is:

DBD
PUC-Rio - Certificação Digital Nº 1021777/CA

Distributed RDF Graph Keyword Search 41

def storeFullPathPositions(fullPath)
 template = DB.templateFromFullPath(fullPath)
 fpCount = (fullPath.length / 2) + 1 # how many nodes in full-path
 fpPos = 1
 while fpPos < fpCount do
 i = (2 * fpPos) - 1 # odd full-path values, i.e., nodes
 node = fullPath[i]
 DB.storePosition(
 node, fullPath, # sparse-matrix position to store
 fpPos, fpCount, template) # position, count and template tuple
 fpPos++
 end
end

Algorithm 7 - Store all positions of a full-path

Mapping must make sure that each full-path was de-serialized into a data

structured useful for the store algorithm. In this case, the algorithm uses an array,

so the distribution could be:

def mapStoreFullPathPositions()
 fullPaths = DB.loadFullPaths()
 for each fullPath in fullPaths do
 fullPathArray = new DB::Array(fullPath)
 job = new MR::Job(storeFullPositions, fullPathArray)
 MR.enqueue(job) # maps a job to each full-path
 end
end

Algorithm 8 - Mapping full-paths to store sparse matrix positions

As it is clear from the tensor-based proposed queries, multiple sharding

techniques to store the sparse matrix are desired to trade in increased redundancy

of data for faster retrieval later. This redundancy must be encapsulated on the

DB.storePosition method. Similar to the last step, we summarize the required

functionalities for this step and name each as a function:

• Given a node and a full-path, create a tuple of values as described in

Section 3.3 - i.e., a tuple with the node position in the full-path, how

many nodes exist in this full-path and the index of the full-paths'

template - and store in the sparse matrix applying the active sharding

policies (DB.storePosition);

• List all stored full-paths (DB.loadFullPaths);

• Find a template given a full-path (DB.templateFromFullPath).

DBD
PUC-Rio - Certificação Digital Nº 1021777/CA

Distributed RDF Graph Keyword Search 42

4.3.Step three: distributed graph queries

The tensor-based proposal describes several queries for retrieval and

procedures for maintenance. These queries are key to the architecture design and

sharding choices made. In this section, we describe the query requirements, while

the support for them is described in Section 4.5.

4.3.1.Node Query, Path Query and Final Node Query

A Node Query finds all full-paths containing given nodes that were selected

by keyword. As seen on the tensor-based proposal, this translates to extracting the

sparse matrix column j, where j is the given node index. As such, this query

presents two requirements for the underlying database architecture. First, select a

node index from keywords inputted by the user, with margin for small input

errors. Second, the retrieval of a full column of the sparse matrix should be an

optimized function given the database sharding. A simplified high-level

description of the Node Query could be:

def BRGS.nodeQuery(keywords)
 node = SE.selectNode(keywords) # finds a node by keyword search
 return DB.sparseMatrixColumn(node) # gets corresponding column
end

Algorithm 9 - High-level description of a Node Query

Very similar to the Node Query are the Path and Final Node Queries. The

Path Query differs by the fact that selecting a full-path query by keyword is not as

user-friendly as selecting a node, so the query assumes that a path was selected by

other means. Once selected, the requirement of retrieval is similar, except that the

Path Query will require the underlying database to provide a full row retrieval.

The Final Node Query is a special case of the Node Query, which the purpose is

to find all full-paths where the selected node is at the end of it. Instead of

retrieving the whole column of the sparse matrix, only those positions where the

tuple indicates that the node position is the same as the full-path nodes count, i.e.,

where given {i,j} = {o,l,t}, o and l are equal. This could generate another

requirement for the database, but will be left out of the design scope on this

dissertation.

To execute these queries, the functionalities needed are:

DBD
PUC-Rio - Certificação Digital Nº 1021777/CA

Distributed RDF Graph Keyword Search 43

• Select one node that best matches the given keywords provided by

the user (SE.selectNode);

• Retrieve a full column of the sparse matrix

(DB.sparseMatrixColumn);

• Retrieving a full row of the sparse matrix (DB.sparseMatrixRow).

4.3.2.Path Intersection Query

The Path Intersection Query verifies if two given full-paths have

intersections. On the sparse matrix, this is translated by retrieving the two

corresponding rows of those full-paths and finding if they have intersecting rows.

This query could use the previously defined DB.sparseMatrixRow method for

quick retrieval of the rows and subsequent intersection, as proposed on the tensor-

based approach:

def BRGS.pathIntersectionQuery(path1, path2)
 path1Row = DB.sparseMatrixRow(path1)
 path2Row = DB.sparseMatrixRow(path2)
 intersectingNodes = new DB::Set()
 for each node in path1Row do
 if node in path2Row do # intersects path1 and path2 nodes
 intersectingNodes.add(node)
 end
 end
 return intersectingNodes
end

Algorithm 10 - Naïve intersection of the two paths

This intersection can be further optimized on the implementation to take

into account the fact that the rows are numbered and have gaps. Those

optimizations won't be described here. The functionalities needed for this query

have already been listed on previous steps or queries.

4.3.3.Path Intersection Retrieval Query

Another query described on the tensor-based proposal is the Path

Intersection Retrieval Query. The purpose of this query is to find all full-paths that

intersect a given full-path. The query, as described on the proposal works, uses a

previously defined query, the Path Query, to get all nodes of a query. However,

previous requirements described the need to find nodes back and forth from their

DBD
PUC-Rio - Certificação Digital Nº 1021777/CA

Distributed RDF Graph Keyword Search 44

values and indexes. Given that full-paths are string serializations of nodes, the

Path Query won't be necessary, and the nodes can be found directly from the full-

path de-serialization. With the nodes selected, the query then joins the results of a

Node Query on each node of the full-path, representing all full-paths intersecting

the given full-path:

def BRGS.pathIntersectionRetrievalQuery(path)
 paths = new DB::Set()
 for each node in path do
 intersectingPaths = BRGS.nodeQuery(node) # full-paths with this node
 paths.add(intersectingPaths)
 end
 return paths
end

Algorithm 11 - Path Intersection Retrieval Query

The functionalities needed for this query have already been listed on

previous steps or queries.

4.3.4.Path Cutting Query

This final retrieval query from the tensor-based proposal is a two-direction

operation to return the part of a given full path that either starts or ends on a given

node. Similar to the Final Node Query, this is based on extracting the given full-

path corresponding row and returning the nodes which node position values on the

tuples are greater or lesser than (depending on the direction chosen for the

operation) the selected node position, i.e., given the node in and path jp, the query

returns all i where {i,jp} = {oi,l,t}, have oi greater or lesser than on in {in,jp} =

{oi,l,t}. The algorithm for this is can be simply designed as:

DBD
PUC-Rio - Certificação Digital Nº 1021777/CA

Distributed RDF Graph Keyword Search 45

def BRGS.pathCuttingQuery(path, node, direction)
 cells = BRGS.pathQuery(path) # sparse matrix cells of full-path line
 refPosition = cells[node].position # position in full-path of node
 selectNodes = new DB::Set()
 for each cell in cells do # cell has node and full-path position
 if direction == 'gt' do # from start cutting direction
 if cell.position > refPosition do
 selectedNodes.add(cell.node)
 end
 else # to end cutting direction
 if cell.position < refPosition do
 selectedNodes.add(cell.node)
 end
 end
 end
 return selectedNodes
end

Algorithm 12 - Path Cutting Query

The functionalities needed for this query have already been listed on

previous steps or queries.

4.3.5.Node Deletion Procedure and Node Insertion Procedure

The first maintenance procedures are for node removal and inclusion. When

removing a node, the full-paths including the node deleted are also deleted. To do

so, a Node Query is executed to retrieve all full-paths involving the deleted node

and this removes each position from the sparse-matrix and the full-path from the

index. Finally, the node is also removed from the index.

The procedure to add a node is similar, but since the node is still not

connected to the graph - only the node was added, not an edge connecting it - the

procedure will only include a new entry on the nodes index. This means that a

new column was created on the sparse matrix, but there are no values for this

column yet, so no operations are needed since the sparse matrix doesn't store

positions without values. This queries use only queries described before and don't

need new functionalities.

DBD
PUC-Rio - Certificação Digital Nº 1021777/CA

Distributed RDF Graph Keyword Search 46

4.3.6.Edge Deletion Procedure

It is expected that, coupled with the node deletion procedure, several edge

deletions will precede it, removing connections before taking the node out of the

graph. This procedure is proposed in two formats.

First is the deletion of all edges by label. Given an edge label e, the

procedure should look for its index and then select all templates containing that

edge. For each template selected, the corresponding full-paths of that template

should be deleted as well. In the sparse matrix, this translates to removing all

positions. The tensor-based proposal suggests to perform the selection of full-

paths directly on the sparse matrix, instead of storing a full-path to template

relationship, i.e., finding all positions {i,j} -> (o,l,t) where t is one of the selected

templates, and then deleting the full-path j from the full-path index:

def BRGS.deleteEdgeByLabel(label)
 templates = SE.selectTemplates(label) # gets template by keyword search
 cells = BRGS.sparseMatrixByTemplates(templates)
 BRGS.clearPositions(cells)
end
def BRGS.clearPositions(cells) # clears position
 fullPaths = new DB::Set()
 templates = new DB::Set()
 for each cell in cells do
 fullPaths.add(cell['fullPath']) # cascade full-path removal
 templates.add(cell['template']) # cascade template removal
 DB.clearPosition(cell['node'], cell['fullPath'])
 end
 for each fullPath in fullPaths do
 DB.deIndex(fullPath)
 end
 for each template in templates do
 DB.deIndex(template)
 end
end

Algorithm 13 - Edge Deletion by Label - simplified without MapReduce

The second format for is the deletion of a specific edge between two nodes,

i.e., the procedure has an input in the form n1, e, n2. In this case, only the positions

selected by a Node Query on each node n1 and n2 that are adjacent in the full-path

are deleted, i.e., positions {i1,jp} -> (o1,lp,tp) and {i2,jp} -> (o2,lp,tp) where o2 - o1

== 1. Once those positions of the sparse matrix are found, the same procedure

follows:

DBD
PUC-Rio - Certificação Digital Nº 1021777/CA

Distributed RDF Graph Keyword Search 47

def BRGS.deleteEdge(node1, label, node2)
 templates = SE.selectTemplates(label)
 positionsToDelete = new DB::Set()
 positions1 = new DB::Array()
 positions2 = new DB::Array()
 positions1 = BRGS.nodeQuery(node1)
 positions2 = BRGS.nodeQuery(node2)
 for each position1 in positions1 do
 fullPathIdx = position1['fullPath']
 position2 = positions2[fullPathIdx]
 dist = position1['fullPathPos'] = position1['fullPathPos']
 if position1['template'] in templates and dist == 1 do
 positionsToDelete.add(position1)
 positionsToDelete.add(position2)
 end
 end
 BRGS.clearPositions(positionsToDelete)
end

Algorithm 14 - Edge Deletion - simplified without MapReduce

To execute these queries, the functionalities needed are:

• Select all templates that include a given edge label

(SE.selectTemplates);

• Select all positions of the sparse matrix that belong to full-paths of a

given template (DB.sparseMatrixByTemplates);

• Clear a position from the sparse matrix, i.e., remove the tuple from

storage (DB.clearPosition);

• Remove a full-path or template from the full-paths or templates

indexes (DB.deIndex);

4.3.7.Edge Insertion Procedure

The edge insertion procedure is the most complex of all operations, but is a

combination of previously discussed maintenance queries. This procedure gets as

input the specific edge e between two existing nodes in the format n1, e, n2, with

both n1, and n2 already in the graph. The procedure will have to generate new full-

paths involving e based on using Path Cutting Query to find, among the full-paths

that contain the node n1, the parts that end at n1 and, among the full-paths that

contain the node n2, the parts that start at n2. All partial paths from the first group

DBD
PUC-Rio - Certificação Digital Nº 1021777/CA

Distributed RDF Graph Keyword Search 48

are concatenated with all the paths on the second group, generating new lines on

the sparse matrix for each combination.

4.3.8.Node Update Procedure and Edge Update Procedure

Those procedures don't access the sparse matrix to execute. They only

change values on the indexes generated to search for nodes and templates by

name.

4.4.Review of architecture requirements

The analysis of the steps listed several functionalities and data structures

with specific requirements to be met by any proposed architecture. These

functionalities are referenced here by the method and structure names we used to

reference them. These methods can be grouped by what kind of support or

specific uses they will need from the architecture.

The first group are the functionalities that require generic shared data

structures. These methods need to have some data structure common accessible by

all workers that will execute them. The requirements that describe the necessary

structures are the structures we named earlier, listed on Table 4.

Structure alias Ref. Requirement

DB::TwoWayArray 4.1 Key-Value store in both directions - k/v and v/k

DB::Array 4.1 Key-Value store in one direction - k/v

DB::Set 4.1 Values store without repetition

Table 4 - Requirements of generic shared data structures

The second group are the functionalities that must store or load specific data

structures of the tensor-based model. Even though those procedures are built on

top of the generic data structures, they have the additional requirement of being

optimized for larger volumes and can be sharded through several generic data

structures on different nodes of the database network. The method names we

listed before that fall on this group are listed on Table 5.

DBD
PUC-Rio - Certificação Digital Nº 1021777/CA

Distributed RDF Graph Keyword Search 49

Method alias Ref. Requirement

DB.loadPredicateObjects 4.1 Load predicateObjects given a subject

node

DB.indexFullPath 4.1 Store a full-path

DB.deIndex 4.3.6 Clears a full-path or template from the

index

DB.templateFromFullPath 4.2 Retrieve a template given a full-path

DB.loadFullPaths 4.2 Retrieves all full-paths

DB.loadSources 4.1 Retrieve all sources

Table 5 - Methods requiring specific distributed data structures

The third group raises the requirement of a MapReduce framework in place.

The algorithms described so far don't detail how the steps of the process are

started, i.e., how the map methods are invoked, neither how specific workers will

receive their jobs, leaving those details to the implementation. However, it is clear

that the framework must be able to handle with failed executions, retries, as well

as a large and varying number of worker nodes. The single method present in the

algorithms above is the MR.enqueue, but that is expected as other methods from

the framework would only surface on the implementation of workers.

The fourth group is the evidence needed for searching nodes and templates

by keywords. Even though the node index can be backed up by a generic data

structure, as seen on the first and second group, the search for nodes using user-

friendly keywords points to the need of a more specialized structure for this type

of data, based on a search engine that can be more tolerant and not require exact

matches only. Selecting templates by an edge label is one of the requirements for

the edge removal procedure. It could also be implemented by keeping the reverse

relationship of edges that belongs to a template, however, as it happens with the

node searching, a search engine based index for the edges would be required

anyway. Storing the whole template text on a search engine index skips the

creation of that relationship. The method names we listed before that fall on this

group are listed on Table 6.

DBD
PUC-Rio - Certificação Digital Nº 1021777/CA

Distributed RDF Graph Keyword Search 50

Method alias Reference Requirement

SE.selectNode Section 4.3.1 Select a node by keyword search

SE.selectTemplates Section 4.3.6 Retrieve all templates given an edge label

Table 6 - Requirements for a keyword search engine

The fifth group of methods revolve around the requirement of having a

sparse matrix that will have a low density of elements and should save memory by

not storing positions that don't have values. Also, the sparse matrix positions will

often be retrieved in whole rows or columns at a time, which generates the need to

have this kind of request optimized. The method names we listed before that fall

on this group are listed on Table 7.

Method alias Ref. Requirement

DB.storePosition 4.2 Store a tuple (o,l,t) at the position (i,l)

of the sparse matrix

DB.clearPosition 4.3.6 Clear a position of the sparse matrix

DB.sparseMatrixColumn 4.3.1 Retrieves all tuples of a column of the

sparse matrix

DB.sparseMatrixRow 4.3.1 Retrieves all tuples of a row of the

sparse matrix

DB.sparseMatrixByTemplates 4.3.6 Retrieves all tuples matching a

template index in the sparse matrix

Table 7 - Methods requiring a sparse matrix with optimized access

4.5.Architectural elements

The architectural elements needed to handle the requirements for the

proposed system are:

4.5.1.A Key-value store

As seen before, several non-relational databases with key-value stores are

available. To handle with the first, second, and the fifth requirements for two-way

indexed collection of unique elements, a basic key-value store could be used. By

creating namespaces on the keys names, several indexed collections could be

stored on the same store.

DBD
PUC-Rio - Certificação Digital Nº 1021777/CA

Distributed RDF Graph Keyword Search 51

key value

nodes::next_index:: 4

nodes:1 Movie

nodes:2 Director

nodes:3 Actor

Table 8 - Example of using namespaces for storing collections

Some key-value NoSQL stores mentioned before have this namespace

functionality built-in, calling the second part of the name of the keys of fields. By

using this, it won't be necessary to build an auxiliary key-value position to store

all used indexes for iteration. However, as seen in the example, a next-index

counter is still needed, and the underlying key-value must also provide an atomic

get-and-increment operation for this kind of value, which is an operation available

on some stores.

Furthermore, the reverse operation is also needed (i.e., find the key from the

value). This is not a common functionality found on the NoSQL stores listed

earlier. But it can be emulated by duplicating the key-value collections and using

an inverted naming convention. In this scheme, values are used on the keys and

indexes are the stored values.

key value

nodes-index:Movie 1

nodes-index:Director 2

nodes-index:Actor 3

Table 9 - Example of using inverted key naming convention

The two-way indexed collection is the most complex type of structure listed,

and the other two kinds of collections (Array and Set) can be easily mapped to a

DB::TwoWayArray if needed, but most key-value stores available have specific

structures for them and won't need this mapping.

So the first element of the architecture is pinned down: a key-value store

with an atomic integer read-and-increment for the index building, and preferably a

key-value store with structures for sets, arrays and fields.

DBD
PUC-Rio - Certificação Digital Nº 1021777/CA

Distributed RDF Graph Keyword Search 52

4.5.2.Use of sharding on the stored collections by key

Since a key-value store is needed, the second and fifth requirements will

further dictate that some sharding schemes need to be used. The requirements so

far call for at least three forms of optimized access: retrieving all elements of a

sparse matrix's row, all elements of a sparse matrix's column, and sequential

access of all elements of a collection.

The first two forms of retrieval can also make use of duplicating the

involved data and distributing it through the nodes. This way each column and

row can be stored in a collection, and the whole collection can either be kept in-

memory on a single machine or distributed through several nodes depending on

the network environment available. The decision on which strategy has greater

performance is one of the parameters for the implementation and testing. The third

form of sequential access doesn't need data duplicating, but has to go through the

same process of being sharded by key, depending on the network environment.

4.5.3.A MapReduce framework based on job queues

The third requirement calls for a MapReduce framework. Most modern

frameworks have evolved from the abstraction of MapReduce to be based on job

queues, pooled by a group of worker nodes. This allows for the requirements

needed by this proposal, such as handling individual job failures, retries of jobs,

adding or removing workers on the fly, etc.

The choice of a job queue based framework has the additional benefit of

allowing the control of the workflow described on steps one and two of the

indexing and sparse matrix assembly process. In this way, the Map procedure of

each step can also be a job, which will in turn generate all the jobs needed for the

step, and the Reduce procedure can be a scheduled job that runs periodically and

checks if all intermediate jobs have finished, moving the process to the next step.

On the third step, queries can be handled in the same fashion.

4.5.4.A search engine

In order to allow for user-friendly keyword search, a strictly key-value store

won't be enough. This would require the user to type in exact matches with

DBD
PUC-Rio - Certificação Digital Nº 1021777/CA

Distributed RDF Graph Keyword Search 53

subject or object values. Furthermore, keyword search should allow for fine-

tuning the scheme for finding and selecting entries, applying well established

strategies for weighting specific words against another, ignoring words too small,

and other language specific details such as pluralisation. This calls for a dedicated

search engine with a parallel collection for the nodes. This collection will allow

the retrieval of node's indexes given keywords with full or partial matches.

Figure 10 - Architectural elements, orchestrating API and interactions

DBD
PUC-Rio - Certificação Digital Nº 1021777/CA

Distributed RDF Graph Keyword Search 54

4.6.Proposed architecture

To cater to the requirements described, we propose using the elements

described on the previous section with a central orchestrating element that will

implement the proposed algorithms and expose them via an API. The architectural

elements interaction is described on Figure 10.

The MapReduce element of the architecture will allow a generic way to

harness scalable computing resources. Coupled with Job Queues it will enable the

addition or removal of more resources without rewriting or restarting the current

network. Also, this abstraction will help the orchestrating element to isolate its

API from the sharding logic.

Each of the key-value store nodes should have its own internal redundancy,

making it transparent to the orchestrating element. However it will not need to

know the distributed structure of the other nodes. This logic will be part of the

orchestrating element. This way the key-value stores can have a very simple

master-slave setup for redundancy. The search engine element is also isolated as

several tools are known to exist that match this functionality.

In this architecture we centralized the communication between the

components through the orchestrating element. This will allow the distribution

logic of the different elements to work independently, i.e., the MapReduce

network may grow or shrink while the Search engine nodes remain the same. This

centralization also allows future work to replace individual elements to

experiment with other setups.

4.7.Summary

In this chapter, we detailed the tensor-based approach that consists of three

independent, sequential steps: indexing, building the matrix, and querying. We

discussed each step in detail and provided the requirements for their

implementation. For the first step, the construction of the index, we centred our

discussion on the shared memory structures that needed to be created, as well as

the functionalities that are needed to build a scale up keyword based search

mechanism. For the second step, we discussed the algorithms needed to compute

and assemble the matrix. The distributed queries, which constitute the third and

final step of the process, were discussed and exemplified. A recap of the

DBD
PUC-Rio - Certificação Digital Nº 1021777/CA

Distributed RDF Graph Keyword Search 55

requirements provides a comprehensible summary to anyone that intends to

implement the ideas proposed in this dissertation. We close the chapter by

presenting a possible architecture that matches the requirements described. In the

next chapter, we detail a possible implementation for the requirements presented

in this chapter, used to validate our ideas.

DBD
PUC-Rio - Certificação Digital Nº 1021777/CA

