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5 Tools and implementation 

5.1.Tools and sharding 

A combination of existing open source tools may be used to match the 

architectural elements proposed on Chapter 4. For this implementation, we used 

the following tools: 

• Redis: It is an open source, BSD licensed, key-value store [18]. It is 

often referred to as a data structure server where keys can reference 

strings, hashes, lists and sets. The key-value stores sought for the 

implementation are a very good fit to Redis. The basic collections - 

DB::Set and DB::Array - map directly to existing Redis' structures of 

sets and hash, respectively. DB:: TwoWayArray was built using the 

two-way indexed collection technique described above. Redis is an 

in-memory datastore, associated with great performance. It has a 

built-in replication mechanism, based on a one master read-write 

node with several slaves read-only nodes copying from it, and all 

nodes can be setup to periodically persist the memory status to disk. 

It lacks server-side sharding, but the architecture designed can 

transfer that to the API implementation without loss of functionality; 

• Resque: It is a Redis-backed for creating background jobs, placing 

these jobs on multiple queues and processing them later [19]. A very 

robust job queues and workers framework, it provides an easy 

scheme of job creation and queuing. It can handle job failures and 

retries, schedule jobs with a plugin and has the built-in characteristic 

of being decentralized - workers only need access to the datastore 

that backs its queue data to work, without needing to report to a 

central server. Conveniently, Resque uses Redis as its datastore, so 

the same network built for the indexes will be able to handle the job 

queues with redundancy and scalability; 
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• Elasticsearch: The most used open-source engine to keyword search 

is the Apache Lucene. However, Lucene is a very bare engine, 

designed to work with local documents. Some document stores are 

built on top of Lucene - Solr is the most famous example. 

Elasticsearch [20] - is a document store like this, featuring a 

RESTful API using JSON to store, search, and modify documents. It 

also has built-in mechanisms to be deployed and distributed over 

several nodes, and with those it meets the requirements for the node 

index. 

 
Figure 11 - Architecture with matching tools 
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5.2.Sharding 

In the proposed architecture, the orchestrating API is responsible for 

implementing the sharding strategies. We combined two strategies in our 

implementation. The first strategy consists of splitting up the stores in half by key 

index. So indexes, supporting data structures, and the sparse matrix are stored on 

the key-value store, and keys are always composed by either a node, full-path or 

template index. In our implementation, the value is stored in different key-value 

server nodes, if the related index is odd or even. With this strategy, all nodes, full-

paths, and templates with an odd index are stored on the odd_indexes_store key-

value store, and those with an even index are stored on the even_indexes_store. 

The functionalities listed on Chapter 4 call for two types of queries over the 

sparse matrix quite often. They are set to retrieve data from a single row or a 

single column. To expedite these types of retrieval, the implementation also uses a 

second sharding strategy, consisting of a trade-off. We duplicated the sparse 

matrix data to allow faster sequential retrieval by either row or column. In this 

strategy, for the first copy of the positions, all values of odd rows are stored on the 

odd_rows_store key-value store to expedite retrieval and the other rows stored on 

even_rows_store. For the second copy, the same odd/even strategy is used to store 

columns on the odd_columns_store and even_columns_store, respectively. 

5.3.Networks 

Each of the three architectural elements was chosen because they could 

provide a way to build a network of hosts, making as much resources available as 

needed. For each of the tools chosen, some of their design characteristics implied 

that their networks should be built somewhat differently. 

Redis keeps its data in-memory. It is single-threaded and can be configured 

to work on a read-write master with several read-only slaves copies of it. 

Instances running Redis could then use a lot of memory and bandwidth, but had 

limited use for several cores. With sharding logic handled by the orchestrating 

API, each Redis host would need to store a fraction of the indexes and the sparse 

matrix. For this implementation, we chose to build the Redis network with seven 

master hosts. One of the hosts is dedicated to Resque, and the other six will store 

respectively the odd_indexes_store, even_indexes_store, odd_rows_store, 
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even_rows_store, odd_columns_store, and even_columns_store. Each of those 

hosts is backed up by a slave host. 

Resque workers are also single-threaded each, but with lower requirements 

for memory. Several workers can share a server with multiple cores, limited by 

the available bandwidth they consume. In this implementation, we used ten 

worker hosts, each with four workers. The workers shared the job pool on the 

dedicated Redis host described earlier, and a web interface was also setup on the 

same server running that instance. 

Finally, elasticsearch has built-in configurations for multiple hosts. 

However, during this implementation, there was no need to built a network for 

performance, so it remained with a single master host with a slave host for 

backup. 

AWS zone us-east-1d 

AWS EC2 AMI ami-7539b41c (Ubuntu Server 12.10) 

AWS EC2 Redis Instance type m1.large 

AWS EC2 Workers Instance type c1.medium 

Table 10 - Details of the AWS instances used 

5.4.Details of the execution of RDF parsing and matrix building (steps 1 & 2) 

The first step of the execution followed the proposed two MapReduce sub-

steps. In the implementation, the first sub-step was called admission and the 

second sub-step spider. They are both exposed through REST methods. 

The admission sub-step was implemented to receive a URI as a POST 

parameter. This could be a local file:// URI, or a public http:// URI. The controller 

of this method downloads the file and creates an rdf_admission job to split the 

input file implementing the Algorithm 4. The implementation assumed the input 

files were in the NTriples format, and future implementations could add before 

this point another sub-step to convert files from other formats, or allow other 

forms of input, such as SPARQL end-points. 

For every segment of the input file, an rdf_parsing job was created. This job 

implemented Algorithm 3 to find nodes, sources, and sinks of the segment. 

The second sub-step was triggered manually, after all the input segments 

were processed. The spider sub-step was implemented as a GET method that 

creates a graph_spider job. This job implements Algorithm 6 to create a 
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graph_crawler job for each source, which, in turn, implements a breadth-first 

search of Algorithm 5, without recursion and the map functionality of Algorithm 

8. 

The second step, i.e., the sparse matrix assembly, was triggered 

automatically by the graph_crawler execution. For every full-path found during 

its execution, the full-path was immediately stored, and a matrix_builder job was 

created with that full-path as a parameter. This job implements Algorithm 7 to 

store the associated full-path positions in the sparse matrix. 

We faced a difficulty during these two steps. We tried to reproduce the 

results of the tensor-based proposal [1] with the same datasets - the DBLP and 

LinkedMDB as found on [7]. However, the number of full-paths found was many 

times larger the numbers shown in the proposal, and the execution time reached 

many hours instead of the minutes described in the proposal. In order to complete 

the experiment, we chose a smaller dataset - the STW Thesaurus for Economics 

[21]. 

We were then able to complete these two steps that had an average 

execution time of 2573 seconds (42.89 minutes) taken from 5 measurements, as 

listed on Table 11, along with how many times each job was triggered, the 

average time for each experiment, and the total execution time for each job time. 

This time is the total processing time only, excluding the manual triggering. The 

final dataset, after the default LZF compression reached 361.7MB, for a total of 

1,334,563 full-paths found. Other details are listed on Table 12. 

It is important to note that the implementation could not reproduce the 

results found on the tensor-based proposal that inspired it, given the excessive 

amount of full-paths produced by the proposal, and future work could improve on 

that, by pruning out less meaningful full-paths by ranking their relevance. 
 execs. t1 t2 t3 t4 t5 Avg. Total 

rdf_admission 1 1.08 1.19 1.12 1.08 1.21 1.14 1.14 

rdf_parsing 2 126.41 129.68 127.37 127.89 129.34 128.14 128.14 

graph_spider 1 1.04 1.29 1.12 1.05 1.17 1.13 1.13 

graph_crawler 218 147.84 133.27 141.27 143.45 145.23 142.21 775.06 

matrix_builder 1334563 0.05 0.05 0.05 0.05 0.05 0.05 1,668.20 

 2,573.67 

Table 11 - Steps 1 and 2 jobs execution times 

DBD
PUC-Rio - Certificação Digital Nº 1021777/CA



Distributed RDF Graph Keyword Search                                                                           61 

Nodes found 13,434 Edges found 38 

Sources found 218 Full-paths found 1,334,563 

Sinks found 6,589 Templates found 573 

Table 12 - STW RDF graph details 

5.5.Performance of the queries execution 

The data retrieval queries were exposed in the implementation as RESTful 

actions with the same name of the query, all using the HTTP GET method. To 

measure the performance of the methods, we used the Apache Benchmarking tool 

[22]. This open-source tool allowed experimenting with concurrent access and 

automatic test repetition. In Table 13, we list the queries minimum, average, 

standard deviation, and maximum response time for 10.000 queries with 20 

concurrent users. All queries were executed from other AWS EC2 instances, using 

the internal addresses so network trip times were minimized. 

Query 
 

ms/req standard 
deviation min avg max 

node_query 51 564 2,174 86.2 

path_query 11 75 1,639 57.6 

final_node_query 8 83 3,097 112.0 

path_intersection_query 15 95 1,138 60.8 

path_intersection_retrieval_query 112 871 3,163 340.8 

path_cutting_query - from start 12 79 1,602 57.4 

path_cutting_query - to end 10 79 1,316 58.5 

Table 13 - Queries response time - times in milliseconds per request 

5.6.Summary 

In this chapter, we described a possible implementation of the proposed 

architecture. We described how we matched each architectural element to an open 

source tool, and how we built the network of each element. Finally, we presented 

the execution times of the sparse matrix building and query executions, using the 

proposed distributed RDF data store. In the next chapter, we wrap up the proposal 

and guide the reader to related and future work. 
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