
Maximilien de Bayser

Flexible Composition for C++11

Dissertação de Mestrado

Dissertation presented to the Programa de Pós-Graduação em
Informática of the Departamento de Informática, PUC-Rio
as partial fulfillment of the requirements for the degree of
Mestre em Informática.

Advisor: Prof. Renato Fontoura de Gusmão Cerqueira

Rio de Janeiro
April 2013

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

Maximilien de Bayser

Flexible Composition for C++11

Dissertation presented to the Programa de Pós-Graduação em
Informática of the Departamento de Informática, PUC-Rio as
partial fulfillment of the requirements for the degree of Mestre
em Informática. Approved by the following commission:

Prof. Renato Fontoura de Gusmão Cerqueira
Advisor

Pontif́ıcia Universidade Católica do Rio de Janeiro

Prof. Alessandro Garcia
Department of Informatics – PUC-Rio

Prof. Waldemar Celes
Department of Informatics – PUC-Rio

Prof. José Eugenio Leal
Coordinator of the Centro Técnico Cient́ıfico

Pontif́ıcia Universidade Católica do Rio de Janeiro

Rio de Janeiro — April 4th, 2013

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

All rights reserved. It is forbidden partial or complete
reproduction without previous authorization of the university,
the author and the advisor.

Maximilien de Bayser

Maximilien de Bayser graduated from PUC-Rio in Computer
Engineering. He is also working at the Research Center for
Inspection Technology where he works on software for non-
destructive testing of oil pipelines and flexible risers for PE-
TROBRAS.

Bibliographic data
de Bayser, Maximilien

Flexible Composition for C++11 / Maximilien de Bayser;
advisor: Renato Fontoura de Gusmão Cerqueira . — 2013.

107 f. : il. ; 30 cm

1. Dissertação (Mestrado em Informática) - Pontif́ıcia
Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2013.

Bibliography included

1. Informática – Teses. 2. Componentes de Software.
3. Modulos. 4. Serviços. 5. Service Component Architecture.
6. Reflexão. 7. Introspecção. 8. C++11. 9. Injeção de De-
pendências. 10. Inversão de Controle. I. Cerqueira, Renato
Fontoura de Gusmão. II. Pontif́ıcia Universidade Católica
do Rio de Janeiro. Departamento de Informática. III. T́ıtulo.

CDD: 004

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

Acknowledgments

First of all I would like to thank my family for their continuous support.

I would never have gotten so far if it wasn’t for them and for the education

they gave me.

I would like to thank my adviser Renato Cerqueira who has always

supported me since my undergrad courses He has always given me a lot

of freedom to develop my ideas and helped to point out my mistakes and

suggested improvements and alternatives when I got stuck.

I am very grateful to my friend Vitor Pinheiro who understood and

supported me not only in academic matters but also during personal difficulties.

I would like to thank my professors Edward Herman Haeusler, Marcelo

Gattass, Noemi Rodriguez, Roberto Ierusalimschy, Waldemar Celes and others

for their stimulating lectures that made this work much more diversified than

would otherwise be.

I am very grateful for the funding from CNPQ, without which this work

would not have been possible. I also am very much indebted to PUC-Rio whose

generous scholarship made my graduation possible.

I would like to thank all my colleagues from CPTI with whom I have

worked on many interesting projects, shaping my view of programming in

real-world projects.

And finally I would like to thank all my friends whose wonderful company

made my procrastinating hours so pleasant to the point of endangering the

conclusion of this work.

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

Abstract

de Bayser, Maximilien; Cerqueira, Renato Fontoura de Gusmão
(Advisor). Flexible Composition for C++11. Rio de Janeiro,
2013. 107p. MSc Dissertation — Departamento de Informática,
Pontif́ıcia Universidade Católica do Rio de Janeiro.

Dependency injection, a form of inversion of control, is a way of

structuring the configuration and composition of software components that

brings many benefits such as a loose coupling of components. However, a

generic dependency injection framework requires runtime type introspection

and this is why dependency injection is popular in Java and almost non-

existent in C++. In this work we present a introspection system for C++11 and

show how to use it to improve an implementation of the Service Component

Architecture (SCA) for C++. It uses several features of C++11 such as perfect

forwarding, variadic templates and lvalue references to improve usability

and minimize overhead.

Keywords
Software Components; Modules; Services; Service Component

Architecture; Reflection; Introspection; C++11; Dependency

Injection; Inversion of Control;

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

Resumo

de Bayser, Maximilien; Cerqueira, Renato Fontoura de Gusmão.
Composição Flex́ıvel em C++11. Rio de Janeiro, 2013. 107p.
Dissertação de Mestrado — Departamento de Informática, Pontif́ıcia
Universidade Católica do Rio de Janeiro.

Injeção de dependências, uma forma de inversão de controle, é uma

forma de estruturar a configuração e composição de componentes de

software que traz vários benef́ıcios como um acoplamento reduzido entre

componentes. No entanto, um framework genérico de injeção de

dependências requer instrospecção em tempo de execução, o que explica

por que injeção de dependências é popular em Java mas praticamente

inexistente em C++. Neste trabalho apresentamos um sistema de

introspecção para C++11 e mostramos como ele pode ser usado para

melhorar uma implementação de Service Component Architecture (SCA)

para C++. Usamos vários novas funcionalidades de C++11 como perfect

forwarding, variadic templates e lvalue references para melhorar a

usabilidade da API de reflexão e minimizar o overhead de execução.

Palavras–chave
Componentes de Software; Modulos; Serviços; Service

Component Architecture; Reflexão; Introspecção; C++11; Injeção

de Dependências; Inversão de Controle;

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

Contents

1 Introduction 11

2 Coarse-grained Units of Reuse: Modules, Libraries, Components and
Services 18

2.1 Modules 20

2.2 Libraries 21

2.3 Services 22

2.4 Components 24

2.5 Modularity Patterns and Packaging 28

3 Dependency Injection 32

3.1 Object oriented transients and steady state 32

3.2 Dependency injection frameworks 34

3.3 The benefits of dependency injection 37

4 Reflection 41

4.1 Introspection in Java 44

4.2 Introspection in C++ 50
Existing introspective features of C++ 53

Runtime type introspection 53
Compile-time introspection 55

4.3 The SelfPortrait extension 58
Proposed reflection API 59
Opaque handling of types 61
Call Forwarding 64
Dynamic proxies 69
Meta-data Declarations 70

4.4 Evaluation 71

4.5 Conclusion 77

5 Service Component Architecture 79

5.1 The Model 79
Components 80
Bindings 83
Interfaces 84

5.2 SCA and dependency injection 86

5.3 Tuscany native 87

5.4 Proposed changes and implementation 88

5.5 Results 90

6 Conclusion 97

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

Bibliography 99

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

List of Figures

3.1 Layered Architecture 39
3.2 Inversion of dependencies 39

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

Was uns jetzt zum Forschen antreibt, ist
eben, daß es uns nicht genügt zu wissen, daß
wir Vorstellungen haben, daß sie solche und
solche sind und nach diesen und jenen Geset-
zen, deren allgemeiner Ausdruck allemal der
Satz vom Grunde ist, zusammenhängen. Wir
wollen die Bedeutung jener Vorstellungen wis-
sen: wir fragen, ob diese Welt nichts weiter als
eine Vorstellung sei; in welchem Falle sie wie
ein wesenloser Traum, oder ein gespenster-
haftes Luftgebilde, an uns vorüberziehn müßte,
nicht unser Beachtung wert; oder aber ob sie
noch etwas außerdem ist, und was sodann
dieses sei.

Arthur Schopenhauer

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

1
Introduction

In the past two decades, with the success of object-oriented program-

ming, remote method invocation (RMI) has proven itself an effective way of

building distributed systems. Even if inherent characteristics of remote com-

munication cannot be made totally transparent [54], remote method invocation

is a powerful abstraction because it is easy to reason about. Applying the same

object-oriented methodology across process boundaries, the programmer can

effectively think about his application as a set of interacting objects at all

levels.

Unsurprisingly, there are many different and incompatible middleware

platforms based on RMI. They differ in communication protocol and secondary

services they offer, but core functionality is mostly the same. Many applications

would be equally well served by several RMI implementations and ideally they

could be portable between them. Like everything else, middleware platforms

are subject to change over time, and may prevail or disappear over time. Being

portable is, consequently, a matter of minimizing the risk of being stuck with

an abandoned middleware. Portability also ensures that a piece of software can

be reused independently in other contexts.

While portability is mostly a long-term concern, the incompatibility of

middleware platforms introduces the more immediate problem of interoperabil-

ity. Heavy-weight dependencies frequently pose a problem for effective software

reuse and with distributed objects this is even more so. Distributed objects are

supported by a communication infrastructure and, therefore, their interoper-

ability is limited to software built using the same protocol. In fact, it is inter-

esting to note that some middleware platforms impose such a strong coupling

of objects to their API that it becomes difficult to call methods in the same

process without using the remote communication stack.

To relieve the problem of interoperability several solutions involving

the translation of messages have been proposed. The simplest solution is to

forward messages for a specific object. For example, a SOAP front-end can

be created for a specific CORBA object [86, 26]. A more general approach is to

translate the messages transparently from one middleware protocol to another.

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

Chapter 1. Introduction 12

As more middleware protocols are added, however, the number of translators

needed rises quadratically. To address this problem, some solutions translate

all messages to an intermediate format, which must be a functional subset of

all supported formats, at the expense of expressivity [33, 52, 8, 14, 67]. While

these solutions are certainly needed for the integration of legacy systems, they

don‘t address the source of the interoperability problem which is the tight

coupling that most middleware platforms impose on distributed applications.

If applications were easily portable between middlewares, then it would also be

easy to open ports using several different communication protocols, reducing

the need of message translation solutions.

The recommended solution in software engineering is to build layers

to insulate the application code from third-party libraries that could become

an undesirable dependency [88]. Building such a layer, however, is often too

labour-intensive and cannot realistically be expected from programmers who

already struggle with short deadlines to deliver the code that really matters,

which is the application code. Ideally, the insulation layer would be generated

automatically, and in fact it should not be too difficult. In order to un-marshal

the arguments and call a method, the middleware only needs to know the

method‘s signature. On the other hand, the client could be independent of

middleware if it called the remote object through an abstract interface. If the

application was built using interface-based programming [77], the interfaces

could naturally be used by the middleware to set up the client and server

stubs. like in Java RMI. The client stub would implement this interface and

the server stub would call an user-supplied object that implements this same

interface.

The other problem left to solve is how a client would locate the right

server object without resorting to middleware-specific APIs. The answer is that

it should not have to. Actively searching for services simply cannot be done in

a platform-independent way. Applying the principle of dependency injection

[36], the client simply declares that it depends on a service implementing a

certain interface and during the configuration phase, it is supplied with a

reference to a conforming service. In other words, the concern of composition

and configuration is removed from the application code.

Actually there is a middleware platform that separates the concerns

of communication protocols and other infrastructure services in the way we

have described. It is the Java implementation of the Service Component

Architecture (SCA). An SCA application server reads a configuration file that

states how services are to be configured and connected. The RMI technology

used to connect the objects can be configured explicitly and can be changed

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

Chapter 1. Introduction 13

without requiring changes to application objects. Unfortunately SCA for Java

is an exception. The specification of SCA for C++, for example, ties distributed

objects to its own API. The RMI protocol can be changed at will, but the code

is no longer truly portable. While Java is well-suited for many applications,

native code might be better for situations where execution speed or fast

response times are required.

As Al-Gahmi and Cook [1], we think that the difference in flexibility

and ease of development in native languages is exacerbated by the lack of

new developments in tools and runtime infrastructure during the 2000s. The

reason is that managed languages such as Java, C# and Python, that focus

on flexibility and programmer productivity have been favored over traditional

native languages such as C and C++ 1. According to Sutter [91], this has been

possible because during the period from 90s to the mid 2000s the only really

widespread kind of computer was the personal computer. Also during this time

hardware performance kept increasing. However, in the last few years, there

has been dramatic change on two fronts: mobile computing and servers.

With the introduction of smartphones and tablets, new ways of user

interaction have been made possible such as augmented reality [71, 90, 53, 6,

41]. Some of these applications are very CPU-intensive and some require short

response times in order to be useful. Clearly, these applications are in direct

conflict with the general goal of preserving battery life. Therefore, the best

possible performance per watt becomes essential and this is something dynamic

languages cannot offer. Initially, several of the most popular smartphone

platforms supported only applications written in managed languages, such

as Java or C#. However, the second generation of these platforms is now

supporting native applications, which means applications written in C and

C++.

Moreover, with the explosion of web-based applications and cloud com-

puting, significant demand has been placed on the server infrastructure. Most

of these applications are supported by huge server farms which consume equally

huge amounts of power. According to Hamilton [43], 88% of a datacenter’s cost

is directly related to hardware and power expenses. Therefore, it becomes es-

sential to maximize the performance per watt ratio. Facebook, for example has

developed a PHP to C++ compiler, HipHop [48], in order to meet the increas-

ing performance demands. According to Facebook engineers, with HipHop, the

same workload can be handled with a 50% reduction in CPU usage in com-

parison to PHP. Another benefit is that, if a server farm requires less power

1We adopt the terms native and managed languages as they capture more accurately the
essence of the difference between languages like C++ and C#

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

Chapter 1. Introduction 14

consumption for the same functionality, it is also better for the environment.

An interesting project that confirms the need for more performance

and low-level access to the operating system is Google’s Native Client [66].

The Native Client is an infrastructure embedded in Google’s Chrome browser

to enable the execution of x86, x86-64 and ARM native code on the client’s

machine. The motivations behind this project are better performance and

integration with local resources like graphics and audio. This infrastructure

forces the developer to provide one version of his application for each hardware

platform, but there is a research project at Google called the Portable Native

Client [74] that proposes to deliver the executables in the form of LLVM

bytecode. This bytecode is then locally converted from LLVM bytecode to

native bytecode.

In addition to these questions, there is another change that is worth

pointing out. The shift to multi-core architectures means that the speed of

execution of sequential code is now effectively limited, at least for the next

years. While many important algorithms and applications can be parallelized

efficiently on current hardware, many algorithms are inherently serial or can’t

be run efficiently in parallel [62]. For these applications the performance per

cycle will be absolutely essential.

Of course, managed languages have seen tremendous improvements

in performance, using just-in-time compilation (JIT) [5]. But the addition

to Java’s standard library of facilities to directly manage memory buffers

confirms that to extract even more performance out of these languages it is

necessary to fight against the overhead imposed by an interpreter that hides

the hardware too much. Indeed, memory access is a critical performance issue.

JIT compilation can significantly improve CPU intensive micro-benchmarks

in managed languages making them competitive with native languages in

this aspect, but efficient memory access is inherently inefficient in languages

where relationships between objects are restricted to references. In C++, in

contrast, the programmer objects can contain other objects directly giving the

programmer control of the memory layout of objects.

In the past years, we have seen huge improvements in processor speed but

the RAM access speed has increased at a smaller rate. To counter this problem

modern processors typically have three levels of cache to increase memory

access operation. Although caching improves performance, it also makes it

very sensitive to the memory layout of data structures. High performance data

structures have to maximize cache hits making use of pre-fetching of cache

lines. In C++ an array of objects can be allocated in a single continuous chunk

of memory and the traversal is very efficient. However, in Java an array is a

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

Chapter 1. Introduction 15

chunk of memory with pointers to many other memory locations, making the

traversal very inefficient in terms of cache hits. The effects of using a single

buffer instead of several linked ones are demonstrated in the work of Häubl

and colleagues who modified a Java virtual machine to merge the meta-data

and character array components of the class java.lang.String achieving a

considerable speed-up.

Even worse is that multi-core processors have separate level-one caches

for each core. Every time a core updates a memory location the other caches

must be updated if they are caching this same location, causing memory access

stalls. Because cache lines contain several words, it can happen that two cores

update different memory locations that happen to fall into the same cache

unit. When this happens, both caches are constantly synchronized causing

considerable slowdown. This is called false sharing and must be avoided at all

costs to allow the cores to run independently at full speed.

By denying programmers the possibility to fine-tune the memory lay-

out of their data structures, higher-level languages can impose a significant

performance overhead. To complicate matters, some virtual machines employ

a technique called heap compaction [22], that on one hand makes the pro-

gram more space-efficient, but can cause false-sharing of variables that were

previously independent.

These languages also require a more sophisticated infrastructure that can

make them unsuitable for embedded devices. When more control is needed

languages closer to the hardware have to be employed at the expense of

flexibility and programmer productivity.

Of course, choosing a language is an engineering trade-off. Often it is

cheaper to maximize programmer productivity. The problem is that today’s

low-level programming languages are more complicated than strictly necessary.

Basically today the options are pure C or C++. Fortran and Objective-C are

also important native languages but are more restricted to specific markets.

Google’s Go language has still to get a more widespread adoption. While C

is very successful as a “high-level assembler”, it has no support for object-

oriented programming and therefore is not very suitable for component-based

development. C++ on the other hand supports programming at a higher level of

abstraction but suffers from several problems such as a very convoluted syntax

that makes it difficult to develop tooling and represents a steep learning curve.

In addition it has no complete introspection support. Although the language

can be difficult to master, the primary reason why it is difficult to develop

reusable components in C++ is because the language encourages a strong

coupling of application code to infrastructure APIs. Due to the difficulty of tool

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

Chapter 1. Introduction 16

development and the lack of introspection, it is easier for framework developers

to leave the development of glue code to the application programmer. To

save time this glue code is usually tangled with application code instead of

being an insulating layer. The result is that software in C++ is usually tightly

coupled to the infrastructure. In other languages such as Java, techniques

relying on introspection make it possible to develop frameworks that adapt

themselves to the business code instead of the other way around. The result

is that business code can be kept clean of references to infrastructure code,

resulting on components that are portable between different frameworks and

more reusable.

The present work attempts to improve the situation of C++ component

development by providing a portable introspection support on which non-

invasive frameworks can be based. In 2011, a new C++ standard was published

[51] providing a few new features that were essential in the development of

this introspection library, as explained in more detail on Chapter 4. With

this introspection framework we have developed a component container that

supports the composition and configuration of components without requiring

components to be explicitly developed for it. This container is based on an

existing open-source implementation of SCA for C++, which we extended to

make component development in C++ comparable to Java in ease of use and

flexibility.

The contributions of this dissertation are a type-safe, standards con-

forming and non-intrusive reflection framework for C++ and an extension of

a Service Component Architecture implementation for C++ to support depen-

dency injection. In addition, this dissertation contains an extended discussion

of the dependency injection principle and its consequences on source code and

package design. As dependency injection was conceived by industry develop-

ers to simplify software composition, there are few formal sources discussing

it. Indeed, the most cited source on dependency injection is Martin Fowler’s

personal web page.

This work is organized as follows: In Chapter 2, we discuss forms of

software reuse and establish components as coarse-grained units that are self-

contained both logically and in terms of packaging. In Chapter 3, we discuss the

dependency injection principle and its relevance for building applications out of

software components. We conclude this chapter by pointing out the necessity of

computational introspection for the implementation of this principle. Chapter

4 discusses the history of computation reflection and introspection, and in

particular the importance as the basis for meta-programming in strongly-

typed languages as Java. The remainder of this chapter is dedicated to

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

Chapter 1. Introduction 17

introduce the introspection support that we have designed. In Chapter 5, we

describe the Service Component Architecture component model and how its

use of dependency injection in languages with introspection support decouples

components from the infrastructure, consequently making them more reusable.

We then proceed to show how we used our introspection framework to support

dependency injection of native components written in C++, and what the

consequences on source code are. And finally, in Chapter 6, we conclude with

a few thoughts about the relations of our work with others and about future

directions.

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

2
Coarse-grained Units of Reuse: Modules, Libraries, Compo-
nents and Services

In this chapter, we give a precise definition of several concepts that will

be used later in this dissertation, and establish the relations between them. It

is often the case that words that denote intangible things, such as concepts,

are vague and can have slightly different interpretations for different persons

or in different contexts. The most representative example of this is the term

object that, even restricted to the field of computer science, supports many

different interpretations. In many cases this vagueness is a good thing because

the human intellect is able to adapt the intuitive notion behind a word to

different usages. For instance, even if object orientation manifests itself in

many different forms in different programming languages, we are still able

to recognize the same idea. However, in order to develop the ideas of the

forthcoming chapters without ambiguity, we need to tie a few terms to very

specific meanings. Component, module, service and library are such words for

which we will give precise definitions. But, before we delve into the details of

those definitions we will first analyze why coarse grained units of reuse are

needed.

In the history of programming, there has always existed the desire to

reuse existing work. In other words, designers have always striven to reduce

the waste of programming effort. In 1968, McIlroy advocated that to turn

the building of software into a truly industrial activity there should be a

way of building applications by composing pieces of software available on

the marketplace [65]. The key, in his vision, was a concept called software

components, in analogy to hardware components. Also in analogy to electrical

and mechanical engineering, there should be a wiring standard that would make

the third-party composition of software possible. Although it is questionable if

software could ever be mass-produced, it is clear that there is a need for tools

and standards that effectively supports code reuse by independent developers.

In the beginning, when there were no high-level languages, it was difficult

to reuse code because it was tightly coupled to a specific machine, and there

were only rudimentary tools to compose independently developed pieces of

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

Chapter 2. Coarse-grained Units of Reuse: Modules, Libraries, Components
and Services 19

software. With procedural languages, small, encapsulated units of code called

procedures were introduced with standardized calling conventions, making

separate compilation possible. In addition, these procedures could now be

ported to all other computer platforms that had a compiler for this language.

However, procedures were too fine-grained entities to be distributed and

reused independently. Procedures often depend on definitions of data types

and on other procedures but these dependencies are implicit, buried in their

encapsulated implementation. It would be a lot of work for an application

builder to take hundreds of packages containing single procedures and compose.

For this reason procedures had to be grouped in large libraries.

Then came object-oriented programming encapsulating data structures

and procedures behind well defined interfaces. It was thought that objects

would revolutionize reuse by allowing one to build an application entirely out

of pre-defined, loosely coupled, objects. Object orientation was indeed very

successful and objects such as supported by most programming languages can

be used to model entities going from the granularity of employee records to

huge subsystems. But it is precisely this lack of syntactical distinction and of

distinct tooling support that makes it difficult to use objects as units of third-

party reuse and composition. Normally, the programmer is free to randomly

assign class definitions to modules and there is no way of expressing the

dependencies between subsystems at a higher level than module dependencies

that are resolved by the linker.

This was a very unsatisfactory state of affairs as concepts from object

orientation, such as separation of interface and implementation, and Liskov’s

substitution principle fitted perfectly into McIlroy’s vision of software com-

ponents [61]. However, object-orientation has not failed, as is sometimes said

[96], rather it was mistakenly seen as the solution for the reuse problem. As

expressed by Knoernschild [57],

“We need to break away from the thinking that objects help us

create more reusable software. Instead, objects help us create more

extensible software, which is an enabler of reuse.”

Individual classes cannot be units of reuse because they are too fine-

grained to be independently released and deployed. This is nicely summarized

in the Reuse/Release principle: The unit of reuse is the unit of release [64].

Consequently, in the 1990’s several attempts were made to create coarse-

grained units of software with object-oriented interfaces, that could be units of

release. These units are called software components and are built on the ideas

of object-orientation, software modules and services. Thus in the remainder of

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

Chapter 2. Coarse-grained Units of Reuse: Modules, Libraries, Components
and Services 20

this chapter we will first go through the definitions of modules in section 2.1,

and services in section 2.3, to establish them as basic constructs that can be

used to build component standards. Libraries are covered in 2.2, as they share

the primordial motivation of software reuse but are an essentially different

concept. The chapter ends with Section 2.4 covering modern definitions of

software components and presenting some of the most important component

technologies available.

2.1
Modules

Modules make it possible to partition a program into smaller parts that

can be developed independently and assembled. A good description of the

motivation for modular programming can be found in Parnas [70]

“The benefits expected of modular programming are: (1) man-

agerial - development time should be shortened because separate

groups would work on each module with little need for commu-

nication; (2) product flexibility - it should be possible to make

drastic changes to one module without a need to change others;

(3) comprehensibility - it should be possible to study the system

one module at a time. The whole system can therefore be better

designed because it is better understood.”

Although this lucidly states why modules are important, it doesn’t really

describe what they are. A more complete definition was given by Knoernschild

[57]:

“A module is a deployable, manageable, natively reusable, com-

posable, stateless unit of software that provides a concise interface

to consumers”

Modules are deployable because they are physical packages of code. The

details vary depending on the programming language but modules are always

meant for local loading into a process and therefore come in a format that is

understood by the machine or interpreter that is executing the process. This

is what is meant by native use. They are stateless because they are just the

binary representation of the code that is brought to life during execution. In a

way, modules are the persistent storage equivalent of the read-only instruction

memory space of the Harvard architecture.

But the most important aspect of modules is that they are composable,

providing a mechanism to delay the binding of entities to its consumers to a

point in time after the compilation is finished. As Szyperski [92] put it,

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

Chapter 2. Coarse-grained Units of Reuse: Modules, Libraries, Components
and Services 21

“An important hallmark of truly modular approaches is the

support of separate compilation, including the ability to type-check

across module boundaries properly.”

This is possible precisely because modules provide the specification of an

interface that instructs the compiler how an entity must be used. As long as the

compiler generates code that follows this usage specification, the actual linking

need only be done when these entities are actually required during execution.

Because modules can be composed after their compilation, they can be

developed by independent teams as long as their interface doesn’t change. This

also makes modules an important managerial tool to partition the development

of a software product,

An important consequence of the separation of compilation units is that

the same module can be used to build different software products if it’s contents

are useful in more than one context. This feature makes modules the basic unit

of native reuse.

It is easy to extend the meaning of the term module to include concepts

such as components or objects, but this overly broad concept would only lead

to confusion and to a lack of precision of our definitions. Indeed, as Szyperski

noted,“...modules can be used, and always have been used, to package multiple

entities, such as ADTs or, indeed, classes, into one unit. Also modules do not

have a concept of instantiation, whereas classes do”

Modules in C/C++ are object files, static or dynamic libraries and

executables. In Java modules are represented by the JAR file format and

its variants, WAR and EAR files. The problem with Java modules is that

they provide no truly effective mechanisms of encapsulation. All classes,

even internal implementation classes in the classpath are globally visible.

In addition it is difficult to trace dependencies between JAR files because

classes can refer to any other class visible in this global name space. The OSGi

framework was created to remedy this situation, enforcing visibility restrictions

and managing the dependencies on a JAR file level [42].

2.2
Libraries

A library is a stateless collection of reusable, fine-grained entities such as

procedures and classes, put together in a single package. These entities could

be reused and delivered individually but the cost of managing a high number

of modules would be too high. The use of libraries is always local and intra-

process, using the linking mechanism of modules.

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

Chapter 2. Coarse-grained Units of Reuse: Modules, Libraries, Components
and Services 22

An essential difference between libraries and modules is that libraries

have no representation in the language. Even in language with primitive

modularity resources, there are elements in the language provided to control

aspects of the resulting module, such as the visibility of symbols.

Libraries allow a separation of interface and implementation, the former

usually called Application Programming Interface (API). There are many

examples of a standardized APIs that have many implementations such as

the OpenGL graphics library. To a certain extent, libraries enable late-binding

but not as much as object-oriented polymorphism would allow. Programs

don’t usually select a specific version of a library at runtime and its not

possible to load more than one implementation of a library at once. In addition

libraries are only replaceable without recompilation of its clients if their binary

interface, also called Application Binary Interface (ABI), remains the same

despite internal differences. Libraries are also stateless; it would make no sense

to load a library more than once in the same process. There are no instances

of libraries.

In general, the procedures or classes in a library are not randomly thrown

together. They are assembled in one package because they all deal with the

same problem domain. Libraries are most successfully employed to achieve code

reuse across horizontal domains. Most widely used libraries address problems

that are common to many applications. For example, the BLAS linear algebra

package, the Hibernate library and the Qt windowing library are used in many

different context because they contain infrastructure code that is independent

of any specific application domain. In contrast, it is difficult to see libraries

that contain a generic class modeling employees because each organization is

likely to have different requirements for such a class.

Libraries are a natural consequence of modules and separate compilation

and appeared mostly at the same time. Because the same collection of

horizontal utilities could be used in many applications in the same system,

it made sense to install pre-compiled modules.

2.3
Services

The notion of a service incorporates a pattern of control flow. A service

is always reactive, responding to requests of a client process. In some cases,

services can call a client using a callback mechanism, but the initiator of the

dialogue is always the client. An essential property of services is a separation

of interface and implementation akin to polymorphism in object oriented

languages. A service is a runtime entity and has its own identity. The same

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

Chapter 2. Coarse-grained Units of Reuse: Modules, Libraries, Components
and Services 23

process can use several individual services that implement the same interface.

For example, a process could read files from different file servers, all providing

the same set of operations.

Although in some cases it is convenient to use the term service to describe

an object or an architectural unit within a process that is used in a reactive

manner, we will add two more requirements to our definition of service to

prevent unnecessary confusion.

The first requirement is that a service should be accessible through

some form of inter-process communication (IPC). For example, a local printing

service could be invoked by placing the documents to print in a certain location

in the filesystem. The second requirement is that any individual service should

have a location transparent identifier, an URL.

These two requirements allow us to establish services as a primary form

of inter-process code reuse. Services are deployed only once and can be used

by many clients within an organization.

Services are particularly useful as building blocks of large enterprise

systems where procedures must follow work flows that involve retrieving

data from a centralized database system, billing external organizations and

so on. The individual services are in many cases re-used in more than one

application. For example, the employee database service could be consulted

both by a human resources application or an accounting application. This

kind of architecture is known as Service Oriented Architecture (SOA).

Due to the cost of IPC operations, services tend to provide coarse grained

operations that do a lot of work to compensate for the invocation overhead.

Although our definition allows any IPC mechanism to be used, in this

discussion, whenever we use the term service, we will be referring to services

accessible using a Remote Procedure Call (RPC) or Remote Method Invocation

(RMI) abstraction.

Despite being conceptually unrelated, services are necessarily packaged

and deployed using modules and this has important consequences on the

reusability of services. If more than one service implementation is packaged

in the same module, one cannot be used without including the other and

its dependencies. Also if a service is called through RMI, the interface classes

cannot be put in the same module as the implementation, as this would force

clients to depend on the module of a specific implementation, even if they use

another one.

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

Chapter 2. Coarse-grained Units of Reuse: Modules, Libraries, Components
and Services 24

2.4
Components

As discussed in the introduction of this chapter, to achieve reuse we

need coarse-grained units of release with an explicit and abstract interface.

Intuitively, what is needed is a concept that denotes a unit of both physical

and logical design. We will call those units software components. As is the

case with many other concepts, the term software component means slightly

different things to different people. Perhaps the most general definition, which

encompasses the core notions behind components, is the one given by Grady

Booch [10]:

“A reusable software component is a logically cohesive, loosely

coupled module that denotes a single abstraction”

A point of contention is the moment when the actual phase of composi-

tion takes place. Several authors view components as reusable source entities

that are integrated at build-time (at build-time there is no difference if the

components are in source form or already in module form) [58], some insist

that components should be assembled only at runtime [92] [46], and others feel

that it is not worth to make this distinction [29] [82].

Although we feel personally more inclined to accept a more general

definition of components, in this text we will use the one by Szyperski and

Pfisters [12]

“A Software component is a unit of composition with contractu-

ally specified interfaces and explicit context dependencies only. A

software component can be deployed independently and is subject

to composition by third parties.”

Even with all these carefully crafted definitions, the distinction between

modules and components can become blurry if we do no take care to insist

that a component should be a logically cohesive unit, in other words, it should

contain a single abstraction. Without this requirement what remains is a

specification for modules that are composed at runtime, as exemplified by

the following definition of OSGi modules: [42]

“Module A set of logically encapsulated implementation

classes, an optional public API based on a subset of the imple-

mentation classes, and a set of dependencies on external code.”

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

Chapter 2. Coarse-grained Units of Reuse: Modules, Libraries, Components
and Services 25

Although this definition agrees with most things we have said about

components, the difference, of course, is that modules are not required to

contain code for a single unit of functionality. An OSGi module can be a loose

collection of classes, a library indeed, if it explicitly specifies what classes are

part of its public API and on which other modules it depends. As a matter

of fact, OSGi has been used as an infrastructure for component frameworks in

Java.

In addition, to be independently deployable, a component cannot be

physically integrated in a larger software product at build-time it must

remain independent and be composed at runtime. This requirement means

that, to support composition, we cannot rely on the mechanisms provided

by the compiler and the linker to check dependencies and compose modules.

We must establish rules to reify these dependencies and make components

programmatically composable at runtime.

First we require that the interaction between two connected components

should happen through a well defined interface. For component orientation to

make sense at all, it should be possible to exchange a component in an applica-

tion by another one that has the same interface but a different implementation.

In other words, components should follow Liskov’s Substitution Principle [61].

If the interaction is based on method calls, there should be an abstract

interface type that is implemented by the component responding to method

calls and known to the requesting component. If the interaction is based on

streams of data, it should follow a protocol that is known to both parties and

to the external agent responsible for the composition.

The points of connection between components are called ports and can

be of two kinds. The first kind are ports used to get access to a service that

is provided by the component. The second kind is used by the component to

interact with services it depends on. We will adopt CCM’s nomenclature and

use the terms facet and and receptacle for “provides” and “requires” ports,

respectively [69]. The general idea is that one component is connected to the

other by connecting a facet to a receptacle. Ports are always associated to an

interface.

Although the general idea of these rules is simple, there are many ways

of implementing them; the languages used to implement components, the form

of interaction, how interfaces are represented and implemented. For every

one of those details there are many possible choices of implementation. At

the same time, it is essential that components conform to the same set of

rules to be able to interact. A set of these rules is called a component model.

This model implicitly defines an abstract platform or environment suitable for

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

Chapter 2. Coarse-grained Units of Reuse: Modules, Libraries, Components
and Services 26

executing these components. We will use the term component framework for

the implementation of such a model.

These ideas are captured more precisely in the following definition by

Council and Heineman [46]:

“A software component is a software element that conforms to

a component model and can be independently deployed and com-

posed without modification according to a composition standard.

A component model defines specific interaction and composition

standards. A component model implementation is the dedicated set

of executable software elements required to support the execution

of components that conform to the model.

A software component infrastructure is a set of interacting

software components designed to ensure that a software system

or subsystem constructed using those components and interfaces

will satisfy clearly defined performance specifications.”

An interesting example that predates the modern definition of software

components and component model are UNIX pipes and filters. Filters are

programs that communicate by streams of text data, while pipes are channels

through which the output of one filter can be directed to the input of

another one. It is common to use program such as the sed stream editor to

adapt a streams content to the input protocol of another one. To construct

more advanced behaviors, shell command languages are commonly used

as glue language. In addition, the individual filter programs are perfectly

self-contained, independently deployable and perform well defined tasks. The

component infrastructure is the UNIX operating system itself.

However most of the “canonical” component models interact using

object-oriented approaches. In some languages interface are elements of the

language, in others they are represented as abstract base classes and compo-

nents represent their facets as objects that implement these interfaces. Con-

versely, a receptacle receive a reference to an object implementing the interface

it expects and is then able to use it by the means of method calls. In the case of

intra-process components, a connection can be established by means of a refer-

ence to the facet object. When RMI is used, the receptacle receives a reference

to a stub object that forwards the calls across an IPC channel.

Local component frameworks are little more than a set of infrastructure

utilities that perform the loading of components and their composition. Remote

component frameworks are typically more heavyweight, including implementa-

tions for one or more RMI protocols, component registries, and so forth. Some

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

Chapter 2. Coarse-grained Units of Reuse: Modules, Libraries, Components
and Services 27

frameworks go to the point of providing an entire environment that includes

persistence and distributed transactions support.

Perhaps the most prominent example of a local component framework is

Microsoft’s Component Object Model (COM), although later remote compo-

nents were introduced. It is, essentially, specification for binary interfaces. An

interface is represented as a table of pointers to methods. A facet is an object

whose binary representation has a pointer to the method table representing

its implemented interfaces. It is not by chance that this scheme is precisely

how Microsoft’s C++ compiler lays out polymorphic objects in memory. In COM,

every facet has to implement the interface IUnknown that contains methods

for reference counting and a method to obtain reference to other interfaces im-

plemented by this component. In COM, interface and components are identified

by universally unique identifiers (UUID), 128-bit random numbers generated

in a way to make clashing extremely unlikely. When components are installed,

factory objects are registered in a system registry using the component’s UUID

as a key. When a program needs the functionality of a specific component, it

locates a factory using this registry and instantiates the desired component.

The same mechanism is used for components that depend on other compo-

nents, which means that component dependencies are not explicit in COM. COM

was the infrastructure used for the Object Linking and Embedding (OLE)

technology that enables things such as editing rich text using a word proces-

sor component inside a spreadsheet cell. COM is still being used in a variety

of services in Microsoft’s operating system but is largely being superseded by

the .NET framework for application programming. Nonetheless, it has influ-

enced many other component frameworks like Mozilla’s XPCOM and OpenCOM, a

component framework for embedded applications [34] [27].

Another good example of local components are Sun’s JavaBeans tech-

nology. There are several component models supported by the Java platform,

each suited to a particular problem domain. JavaBeans are visual components

that can be composed and configured in a visual development environment

to produce user interfaces. JavaBeans can be configured by changing the val-

ues of their properties, which, by convention are accessed by getter and setter

methods. JavaBeans can be sources or consumers of events and thus can be

connected to each other.

Sun’s component frameworks are all based on the Java language and

depend heavily on features of the JVM. The packaging of all Java components

is done using Java archive (JAR) files, that basically are compressed files

containing class files and resources.

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

Chapter 2. Coarse-grained Units of Reuse: Modules, Libraries, Components
and Services 28

For the enterprise market, Sun introduced the Enterprise Java Beans

(EJB) component framework. This specification includes several kinds of

beans, but the most important ones are the so-called session beans. Session

beans are service components that run on an application server that provide

all the infrastructure needed to enable remote access using Java RMI. The

EJB platform also includes directory, messaging, persistence and transaction

support services. The session beans model is not connection oriented. A bean

that depends on other beans has to go through the directory service to get a

reference to the desired bean.

In addition to JavaBeans and EJB beans, there is the Java servlet

specification. Java servlets are components that contain an implementation of

a server for some protocol, usually HTTP. Java servlets are usually packaged

in WAR files, which are an extension to the JAR format with a pre-defined

standardized structure for the laying out web applications. These WAR files

can be deployed directly in an application server.

The CORBA Component Model (CCM) is OMG’s response to EJB and

proposes a language-independent component model, compatible with EJB.

CCM is built on top of CORBA, a language independent standard for remote

objects and remote method invocation [69]. CCM extends CORBA’s interface

definition language (IDL) to include the concept of component connectors

such as facets and receptacles. Unlike EJB and COM, by enforcing explicit

receptacles, support a connection-oriented style of composition.

2.5
Modularity Patterns and Packaging

Because the unit of reuse is the unit of release special care has to be

put into packaging. The relationship between modules is defined by the logical

relationship of classes and procedures and how they are assigned to physical

units. If two related classes are assigned to different modules, a physical

dependency is created. There is a lot of literature on object-oriented design

that shows how to create extensible and reusable logical designs but few treat

the physical design that must be considered to make reuse possible. This section

is based on the work of Szyperski [92], [58], [64] and [57]. Packaging is also

called physical design by Knoernschild, so both terms are used interchangeably

in this text.

Creating units of independent reuse and deployment is not an easy task.

The more flexible and configurable a unit of reuse is, the more difficult it is

to use because more decisions are delegated to the user. In the same way, a

coarse-grained physical unit is easier to use but also less flexible because its

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

Chapter 2. Coarse-grained Units of Reuse: Modules, Libraries, Components
and Services 29

impossible to use only a small part of it. These conflicting concerns are well

summarized in Szyperski’s statement:

“Maximizing reuse minimizes use”

Most of the time, there are no hard rules that can be followed to

create code that is both reusable and easy to use. The engineer has to

find the best trade-off between these conflicting requirements. However there

are principles that can be followed that lead to good designs. In his book,

Java Application Architecture, Knoernschild listed a series of physical design

patterns or guidelines for sound physical design. Although his guidelines are

directed at module design, his concept of modules is very close to Szyperski’s

notion of software components, and actually his principles are even more

important when applied to components.

External Configuration: Modules and components often need infor-

mation that instructs them on how to interact with their environment. For

example, modules often build on the functionality of other modules. But of-

ten the information of which external module to use is hard-coded as is often

the case with libraries that use other libraries. To create really independently

reusable components that have no implicit dependencies on their environment

we need to move these from hard-coded information to implicit configuration

that can be externally controlled. The same applies to other kinds of infor-

mation. For example, a logging component should not write its output to a

fixed location but rather allow this location to be configured externally. Ex-

ternal configuration allows a wider range of behaviors of component making it

potentially more useful.

There are several ways of allowing for external configuration. It could

be done with configuration files, but it is difficult to do this without making

several assumptions on the environment, such as the existence of a file system,

and a specific path in that filesystem. It is best to provide a programmatic

interface for external configuration. In Chapter 3, we discuss a better way to

do this.

Cohesion: This pattern states that modules should be functionally

cohesive. Classes that are used together should be put in the same module.

Conversely, unrelated classes belong in different modules. Cohesion has several

advantages. Cohesive modules are easier to understand because they have a

single, well defined role in a larger system. Also, with a better understanding

comes a better maintainability. Cohesive module also tend to have fewer

dependencies. As random functionality is thrown into a single module, chances

are that each functionality introduces dependencies to external modules. When

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

Chapter 2. Coarse-grained Units of Reuse: Modules, Libraries, Components
and Services 30

a module with low cohesion is used, it is likely that only a small subset of

its functionality is needed. However as a consequence of the common reuse

principle [64], the use of a part of a module forces the inclusion of all external

dependencies. This complicates deployment as several external modules must

be installed as well, even if they are only required by parts of modules that are

not used.

Independent deployment: The most reusable module or component

is one that can be deployed without requiring the deployment of any other

modules. Of course this is not always possible, but one should try to minimize

outgoing dependencies. If a lot of functionality is put into a module to minimize

its dependencies, cohesion will suffer. The key is to find a balance between the

two concerns.

Acyclic relationships: Relationship between modules should always

be acyclic. Modules that are part of a cycle of dependencies must always be

deployed together, pretty much defeating the purpose of modularizing code in

the first place. Cyclic dependencies are induced by cyclic class dependencies

and can be broken using the techniques of demotion and escalation [58]

Container Independence: Modules should be as independent on their

runtime container as possible. Modules that depend heavily on their container

are not portable to other runtime environments. In addition it can be difficult

to effectively test modules with strong container coupling. This guideline is

sometimes difficult to achieve because programming frameworks often impose a

strong coupling. As an example, components that are built on top of CCMmust

inherit from abstract bases classes generated by CCM’s tools. As inheritance is

the strongest coupling these components are difficult to port to other platforms.

Container independence requires abstracting the runtime environment away.

In Chapters 3 and 5, we treat this issue in depth.

Published Interface: The public interface of a module should be

well known. Conversely, internal implementation classes should always be

encapsulated. While this is not mandatory for modules, it is one of the defining

traits of software components.

Separate Abstraction: This pattern states that the abstract interface

of a module and its implementation should be put in separate modules. This is

essential if we want to allow alternative implementations of an abstraction.

If the interface and one implementation are packaged together, it is still

possible to plug another implementation into the client modules but now

two implementations must be deployed together with their dependencies. This

pattern is essential for component frameworks that use interfaces to express

service contract.

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

Chapter 2. Coarse-grained Units of Reuse: Modules, Libraries, Components
and Services 31

Abstract Module: This pattern states that one module should only

depend on the abstract interface of other modules. Depending directly on con-

crete classes couples a module unnecessarily to a fixed implementation, whereas

depending on abstract classes allows to plug alternative implementation. Ide-

ally a module should only depend on pure interface modules as resulting from

the application of the Separate Abstraction pattern. However, this pattern

introduces a significant difficulty. A module can only use abstract references

to objects but behind those references are objects of concrete implementation

classes. It cannot instantiate these because this would couple the module to the

concrete implementation classes. This problem is a crucial one, nevertheless,

and chapter 3 is entirely devoted to this subject.

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

3
Dependency Injection

3.1
Object oriented transients and steady state

The greatest strength of object-oriented programming is also directly

related to the greatest source of poor and inflexible designs. Polymorphism

allows one to separate interface from implementation, making it possible for

an object to depend on an abstraction instead of a concrete implementation.

In theory, we can plug one of several possible implementations into an object

at runtime.

In steady-state, when the program can be seen as a graph of communicat-

ing objects, this scheme works very well. The problem is the initial construction

of this graph, which is when a concrete implementation must be selected for

each object reference. In terms of program control flow, there are only two

ways of filling in an abstract reference: internally or externally.

Internal control flow is when the configuration of a reference is initiated

by a method of the same object that holds this reference, for example its

constructor method. The easiest and most commonly used way to fill the

reference is to simply create a new instance of a concrete implementation

class. The problem, of course, is that now the client class is tied to a specific

implementation and we can no longer plug in alternative implementations,

negating the benefits of polymorphism. Direct instantiation also has a direct

influence on physical dependencies. The client class’ module now depends

directly on the module containing the implementation class.

The problem here is that there is no such thing as a polymorphic

constructor. With internal control flow the only way to decouple a class from

a specific implementation class is to delegate the creation of objects. Several

of the Creational Patterns [38] are ways of implementing this delegation, the

most commonly used being the Factory Pattern. A factory is an object whose

purpose is to encapsulate the instantiation of other objects. A client object can

fill in an abstract reference without being tied to any concrete implementation

using a factory object. However, this pattern simply trades the coupling to one

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

Chapter 3. Dependency Injection 33

concrete class for the coupling to a specific factory class.

A difficulty with the factory pattern is the obtention of a reference to a

factory object. Direct instantiation is not commonly used because this restricts

the flexibility of the factory implementation too much. A widely used scheme

is to use the singleton pattern to ensure that there is only one, globally-visible

instance of the factory. This has the advantage that the creation of objects is

consistent for all clients because there is only one configuration of the factory.

The drawback is that all clients are tied to a concrete factory class on a

logical and physical level. In addition, it is cumbersome to supply different

implementations of the factory to create mock objects for testing purposes.

Another possibility is to pass a reference to a factory object to the constructor

method, which allows to split the factory into interface and implementation

and to have several instances. This simplifies testing because a different factory

implementation can be supplied for testing purposes.

The flexibility of the externally supplied abstract factory leads us to the

external configuration control flow: all abstract references of an object could be

supplied externally either as arguments to the constructor method or during

a special initialization phase. Following this approach the object’s method are

written assuming a steady-state situation, the concern of dependency resolu-

tion is left for an external party to resolve. This has many benefits because the

object can depend only on abstract interface classes. To put it in a different

way, the functionality is now performed entirely in terms of abstract opera-

tions. This reduced coupling is beneficial for software maintenance because the

implementations of the other objects can evolve without affecting this client

object. It also facilitates testing because mock object can be supplied. In terms

of physical design the only dependencies left are the dependencies on the mod-

ules containing the interface classes.

The same discussion applies to software components, as they can be

seen as coarse-grained objects at runtime. Many component frameworks such

as COM, EJB or CCM expect an internal control flow for the configuration

of components. A basic service offered by these platforms is a global directory

or a registry. Every component can register itself using a symbolic name. To

find other services it depends on, a component uses a shared symbolic name

to look it up in the registry. In a way, a global directory service is just another

manifestation of the factory pattern with a singleton implementation. There-

fore, although components are decoupled from each other, every component is

strongly tied to the platform infrastructure with obvious drawbacks such as

the lack of portability and independent deployment. The deployment of such a

component always requires the deployment of the the framework modules. To

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

Chapter 3. Dependency Injection 34

make matters worse, these platforms often require components to implement

one or more standard interfaces. Inheritance, be it of interface or implemen-

tation, is the strongest coupling in an object-oriented programming language

and therefore even components without external dependencies cannot easily

ported to other frameworks.

In addition to dependencies on other components, components also often

support parameters for their execution that must be configured. Most of the

times these parameters are not hard-coded but left open for configuration

during initialization. With internal control flow there is no way of retrieving

the values for these parameters without making many assumptions about the

execution environment. A component framework could have a registry for

configuration values or the component could read a configuration file, but in

all cases it depends on a significant infrastructure to do so.

An amusing way to see internal configuration control flow appears if we

extend the analogy between software components and electronic components:

electronic components searching for each other on the circuit board instead of

just assuming they are correctly connected.

3.2
Dependency injection frameworks

The lack of portability and interoperability between components devel-

oped for different frameworks, among other reasons [30], has lead the devel-

opment of so-called lightweight containers such as Spring, PicoContainer and

Guice [89], [73], [40]. These containers are based on an idea called dependency

injection [36].

Dependency injection is often called inversion of control, but it is really

only a special case [35]. Inversion of control happens when a programming

framework calls the application code instead of the other way around. For

example, in windowing frameworks, when the user pushes a button, the

framework calls the application code. In contrast, in a command-line program

it is the application code that initiates a request to read data from the standard

input. Arguably, inversion of control is a defining feature of frameworks,

separating them from mere libraries.

Dependency injection involves the inversion of control flow during the

configuration of an object or component. The idea is that there is a special layer

in the application that is responsible for the composition and configuration of

application components [87].

What separates manual external configuration and dependency injection

are generality and physical dependencies. A piece of manual configuration

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

Chapter 3. Dependency Injection 35

code contains a lot of repetitive code for the instantiation and connection

of objects and is therefore hard to maintain because of issues such as the order

of instantiations. In addition, because it uses direct type definitions, there

is a direct physical dependency on other module. Otherwise, a dependency

injection procedure takes a declarative representation of the connected object

graph and returns the desired graph of objects. All the code for the ordering

of instantiations and connections is generic and reusable. Of course, for this

to be possible it must be possible to handle classes and objects of unknown

types. A direct consequence is that the dependency injection code is free of

dependencies on the classes it instantiates and can be packaged as a generic

library and independently reused.

A crucial requirement for the implementation of dependency injection

is the support for a generic and opaque handling of classes and objects

that removes any compile-time or link-time dependencies. Runtime reflection

as supported by a meta-object protocol [55] or even a pure runtime type

introspection such as built in the Java language is the most common enabler of

dependency injection. Aspect-oriented programming has also been proposed as

an implementation tool for dependency injection as it has reflective capabilities

[18].

Dependency injection usually comes in three flavors: constructor injec-

tion, attribute injection and setter injection. Constructor injection is when

references and values are passed to an object as actual parameters to its con-

structor. Constructor injection guarantees that an object is never in a incon-

sistent state between construction and initialization but makes circular object

references impossible. Attribute injection happens when the public attributes

of an object are modified directly. Setter injection, happens when accessor

methods are used to change the value of an attribute. These last two forms

are more flexible, but create a state when the object is already created but not

ready to run. For this reason dependency injection frameworks that support

attribute or setter injection usually also support initializer methods without

arguments that are called when the configuration phase is finished.

Different dependency injection frameworks also differ in the declarative

representation of the configured object graph. The most popular approach,

implemented by Spring, is to define an XML configuration language. This

input is then kept as a separate configuration file and allows rewiring the

object graph without recompilation. The drawback is that this configuration

is invisible to code refactoring [37] tools present in development environments

such as eclipse. If such a tool is used on a large code-base, many changes

must be reflected manually on the configuration file and errors are only

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

Chapter 3. Dependency Injection 36

discovered during execution. For this reason, Guice keeps this configuration

information as Java code. Guice makes extensive use of Java annotations

to mark attributes that must be configured, identify initializer methods and

so on. Java annotations have the advantage that they don’t introduce hard

dependencies between modules. A module with Guice annotations can be

deployed and used without any Guice module.

Due to the requirement of introspection dependency injection frame-

works are usually only available for languages that support it, such as Java.

There is, however, a framework for C++, PocoCapsule, that does a limited

form of dependency injection [75]. This framework has a tool that takes as in-

put a configuration file, and the header files containing the class definitions and

generates code for the instantiation and configuration of objects, but only for

the constructors, attributes, and accessor methods explictly mentioned in the

configuration file. This approach allows to make small changes to the configu-

ration file such as the change of parameter values but more extensive changes

in configuration require recompilation.

A popular feature of dependency injection frameworks for Java is auto-

wiring. The Java community has a long tradition of using standard naming

schemes for classes, attributes and methods that makes it possible to use

introspection for inversion of control, an approach called convention over

configuration. For example, acessor methods for a variable called foo are always

spelled setFoo and getFoo. Dependency injection frameworks such as Spring

require that a name is given to identify each object. When auto-wiring is

enabled, any object whose name happens to be foo is injected in every other

object that has a public attribute called foo or a setFoo setter method.

The link between dependency injection and feature-oriented program-

ming (FOP) of product lines has not passed unnoticed. In FOP, each program of

a product line is the result of a unique combination of several minor features. In

many cases the selection and compostion of features happens at compile time

[28]. Dependency injection makes a similar approach possible during the initial-

ization of a program. A configuration file can be used to select and components

representing features from all components that are available after deployment

and wire them in a specific way. Walraven and colleagues proposed the use of

dependency injection to enable multi-tenancy in Software-as-a-Service (SaaS)

applications [98] [94]. To each customer, or tenant, a specific composition con-

figuration is associated and is applied using dependency injection. Rosa and

Lucena Jr. also propose the use of dependency injection to automatically con-

figure a mobile application according to the execution platform [81].

Dependency injection has already been used to separate the concern of

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

Chapter 3. Dependency Injection 37

the communication protocol used between service components, but this is the

subject of Chapter 5 and will be discussed in more detail there.

3.3
The benefits of dependency injection

Dependency injection as opposed to what Fowler calls the Service Locator

Pattern has many benefits. It is an effective tool for the realization of several of

Knoernschild’s modularity patterns. It provides a common framework for the

External Configuration pattern. It makes the Container Independence

pattern possible without requiring the application programmer to write an

insulation layer. It also greatly aides the Abstract Module pattern together

with the closely related Separate Abstractions pattern by providing a non-

intrusive way of injection concrete implementations into abstract reference.

Dependency injection, short D.I. also impacts many other aspects.

Maintainability D.I. aides the reduction of coupling because it effec-

tively support interface-based design. But this does not mean that it enforces

this design. It is possible to create tightly coupled designs on top of D.I., al-

though it is probably easier to refactor such a design to an interface-based

one because the hardest part, the assignement of the responsibility to select

implementation, is already done. In a sample of open-source projects, Razina

and Janzen found no significant correlation between measures of cohesion and

coupling and the use or not of D.I. However, among the projects that used D.I.

they observed a trend to lower coupling in projects that made a more extensive

use of D.I. [79]

Reuse By enabling container independence and abstract dependencies,

this approach makes component code more reusable because it can be used

in many situation without modifications. With D.I the same component can

be reused across many different platforms. Because the core functionality is

separated, it is easy to write adapters, if necessary, for containers that rely

on service locators. It can also be used without any container at all. The

converse is also true. Pre-existing objects can be used in a D.I. container

without modification.

Physical design When components are designed to use a service

locator, a dependency is created on its API that manifests itself at the physical

layer. The component module is now has a dependency an the module that

contains the API definition. With D.I. this dependency is eliminated and

the component module can be deployed independently of any infrastructure

module.

Intentionality Intentionality is a subjective code measure that captures

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

Chapter 3. Dependency Injection 38

to what degree it is possible to understand the specification of a piece of code

only by reading it. It is defined by Armstrong as follows [4]:

“Intentional Programming - this is a programming style where

the programmer can easily see from the code exactly what the

programmer intended, rather than by guessing at the meaning from

a superficial analysis of code”

Another definition is given by Czarnecki [28]:

“... decrease the conceptual gap between program code and

domain concepts (known as achieving high intentionality)...”

We say that intentionality is subjective because it is influenced by a

several factors such as the familiarity of the reader with the programming

language and libraries being used and the overall structure of the code. Despite

this subjectivity it should be clear that if a piece of code is cluttered with

secondary concerns it will be less understandable and therefore have a lower

intentionality. This has to do with the principle of separation of concerns as is

explained very lucidly by Czarnecki:

One of the most important principles of engineering is the

principle of separation of concerns. The principle acknowledges that

we cannot deal with many issues at one, but rather with one at a

time. It also states that important issues should be represented in

programs intentionally (explicitly, declaratively) and well localized.

This facilitates understandability, adaptability, reusability, and the

many other good qualities of a program since intentionality and

localization allow us to easily verify how a program implements

our requirements.

We claim that dependency injection increases the intentionality of code

because the concern of locating external components is separated from the

task that a piece of code is written to accomplish. Also the dependency on

external components is explicitly represented in the external representation of

a concrete class. For example in Java references are represented as attributes

or pairs of accessor methods and are subject to introspection.

Also, as will be discussed more thoroughly in the chapter about SCA,

dependency injection has the potential to remove direct code dependencies on

the component framework being used, which further helps to simplify the code.

Portability In many situations programming frameworks act as facto-

ries or service locators. For example components built on top of CCM explicitly

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

Chapter 3. Dependency Injection 39

Figure 3.1: Layered Architecture

Figure 3.2: Inversion of dependencies

call the CCM framework to locate other components. This means that CCM

components are tightly coupled to the CCM runtime and cannot be reused in

other situations. In other words, they are not portable. In contrast, if we look

at applications developed using the Spring Framework for Java we will see that

they are POJOs that never reference Spring’s API and can therefore be used

in other contexts.

The problem with the earlier component framework is that they are

based on a strictly layered approach, as illustrated in figure 3.1. Traditionally

systems are structured in layers where the more abstract layers depend on more

the concrete layers below them. The benefit is that the higher level layers can

be built without worrying about low-level concerns. The drawback is that the

higher level layers are tightly coupled to the layers directly below them and

are usually not portable to other stacks. This problem can be mitigated by

creating standards for the API of a layer, like POSIX, but cannot be completely

eliminated.

With inversion of control, the infra-structure can sometimes be ab-

stracted away completely eliminating source dependencies on infra-structure

APIs. As will be explained in the chapter about SCA, dependency injection

can be used to adapt a generic component to a specific middleware platform,

by introducing a layer that inverts the direction of dependencies, as shown in

figure 3.2.

Interoperability Component frameworks like CCM are created to

foster the reuse of software components. Unfortunately these component

frameworks are incompatible: a component in a CCM container cannot use a

COM component directly. So the platforms created to enable reuse can actually

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

Chapter 3. Dependency Injection 40

hinder it in some situations, creating islands of compatibility.

There are several solutions to bridge the gap between different middle-

ware platforms such as the translation of network protocols. But it would be

even better if the communication protocol to use was just a matter of external

configuration. Then we could take two components and configure the remote

method invocation protocol they should use to talk to each other. Of course it

may not be possible to map all concepts of an interface defined in one language

on another language or on the communication protocol, but the languages in

widespread use today are often similar enough.

To conclude this section, we remark that dependency injection solves the

classical problem of object instantiation and configuration in a way that keeps

objects dependent on interfaces alone, instead of introducing dependencies to

implementation classes. This has wide-ranging consequences on the quality of

code, packaging and API design.

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

4
Reflection

Every computational system is built to solve a particular problem. As

a consequence, all data structures and procedures of a program represent this

particular problem domain. A reflective system is one that is augmented with

a representation of itself. In other words, a reflective program can perform

computations about its own computation.

Self-reference is a deeply philosophical issue and is often identified

as an essential property of intelligence. For instance, in his highly influ-

ential book, Gödel, Escher, Bach: An Eternal Golden Braid, Hofstadter

[49] discusses how Gödel’s incompleteness theorem, biological systems and hu-

man intelligence all exhibit forms of self-reference and self-representation. As

a result, it should come as no surprise that the first studies of computational

reflection came from the mathematical logic and artificial intelligence commu-

nities.

One of the earliest works in computational reflection was Smith’s 3-LISP

language [85], which he proposed as a first step towards intelligent systems that

could reason about themselves. Smith first considered the possibility of a self-

referential language when he wrote an interpreter for the KRL language in

that same language. Later he refined his ideas in a new version of the LISP

language where the interpreter would expose details about the interpretation

to the program being interpreted. In this language, which he called 3-LISP, an

interpreted program could manipulate its own expressions, continuations and

environments, thereby changing its own behavior.

One aspect of self-reference is that it can go on indefinitely. An inter-

preter written in the same reflective language that it interprets opens up the

possibility of infinite levels of reflection, requiring what Smith called an infinite

tower of interpreters. In practice, this issue is solved by a so-called meta-circular

interpreter that is able to simulate the infinite levels of regression.

Smith also outlined six general properties of reflective systems. The

first principle is the requirement of a causal connection between its self-

representation and its behavior. This means that a reflective program should

use this information to alter its behavior. It would be useless if a process only

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

Chapter 4. Reflection 42

contemplated itself without any further consequence. The second property is

that self-reference is necessarily associated to a theory, a representation of

the knowledge, of itself. The third property is that self-reference does not

entail the ability of focusing on its current self. A process can only inspect

what it was doing before taking up the reflective activity. Otherwise, it could

reflect about itself reflecting about itself reflecting ... and so on. The fourth

property of reflection is that it enables a finer grained control over the behavior

of a program. In other words, it enables more sophisticated programming

techniques. The fifth property is that total detachment or objectivity is not

possible, because the self-knowledge is represented in the same formalism. The

last property is that “..Being reflective is a stronger requirement on a calculus

than simply being able to model the calculus in the calculus”. The ability to

reflect cannot be programmed from the inside. A Turing machine can simulate

another Turing machine augmented with reflective capabilities but it cannot

reflect about itself. We will return to some of these points throughout this

discussion.

The next step in the research of computational reflection was its applica-

tion to object-oriented languages. In her seminal paper, Maes [63] outlined the

basic features of reflection in an object-oriented context. The language 3-KRS,

built to demonstrate her ideas, had the following properties:

1. A split between object-level and meta-level. The meta-level was com-

prised of objects containing informations about the user-defined object.

2. A uniform self representation: everything in 3-KRS is an object and

consequently has a meta-object that can be inspected.

3. A complete self-representation. Every object has a meta-object.

4. Self-consistency. The meta-level is consistent with the object level and

vice versa. A modification to one entails a modification to the other.

5. Modifiable self-representation. Meta-objects in 3-KRS can be modified.

This design has several interesting consequences. First of all, properties 2

and 3 guarantee that all entities in a program can be inspected by the program

itself. This alone opens up a myriad of possibilities of generic programming,

auditing and debugging. Second, properties 4 and 5 enable the modification of

object properties at runtime since, to maintain consistency, modifications in

the meta-level must be reflected in the object level. Third, as a consequence of

the uniformity property, the meta-objects themselves have meta-objects that

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

Chapter 4. Reflection 43

can be modified. An example of a modification is the addition, removal or

redefinition of methods and attributes.

The same design was followed in the implementation of the Common

Lisp Object System (CLOS) and its Meta Object Protocol (MOP) [55]. The idea

behind CLOS, according to the authors, was to define a region in the design-

space of programming languages instead of a point. Because there are several

ways to implement object-oriented mechanisms, each involving different trade-

offs, CLOS was designed to be adaptable to the needs of different application

domains. To enable this, some basic mechanisms such as the rules of method

calls could be modified by specializing meta-classes.

Sadly, all this flexibility also introduces several new problems. One is that

of meta-stability. In the words of Kiczales and colleagues, the modification of

objects at runtime could result in spectacular failure modes [55]. Another seri-

ous issue is the performance price that inevitably must be paid to compensate

for the added flexibility. Taking this into account, the design of the MOP re-

stricts the possibilities of modifications in critical mechanisms, such as method

dispatch to enable implementers to make optimizations. For example, there are

methods of meta-classes that are required to be idempotent. This allows the

implementation to call these methods only once and memoize the result. How-

ever, even with these considerations there is anecdotal evidence that suggests

that opening the language for modification results in a performance overhead

that is prohibitive for some applications [60].

Another problem is the runtime infra-structure needed for a self-

modifiable program. So far in this discussion, it was implicit that all discussed

languages were interpreted rather than compiled. Even considering that ev-

erything is ultimately interpreted by the underlying hardware, it would be a

considerable challenge to implement the previously discussed kind of dynamism

in a compiled language. The language runtime would have to include a com-

piler. There are tools that can be used to provide a meta-object protocol for

compiled languages, but they are restricted to compilation or load time [16]

[17].

Of course it is difficult to draw a line between compiled and interpreted

languages. One reason, as mentioned, is that the hardware itself is an inter-

preter. Another one is that, even interpreted languages, are usually parsed and

compiled to a representation that is easier to handle by the interpreter. A cri-

teria that we can adopt is the following: in compiled languages, the interpreter,

be it hardware or software, cannot understand the source language, while in

interpreted languages it does. This property of interpreted languages is often

made explicit by the presence of an eval primitive that can be called by the

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

Chapter 4. Reflection 44

program at runtime to interpret more code in the form of source text.

A further issue is that runtime modification of a program would be

difficult to conciliate with static typing, which is the norm in compiled

languages. In languages with static typing, types are used as contracts between

different parts of a program. These contracts enable the compiler to generate

optimal code for method invocations because it knows precisely what argument

types to expect.

For the reasons mentioned above, reflection in compiled languages, if

supported, is usually restricted to what is known as introspection. This means

that the meta-data can be inspected but not modified, what implies that no

changes have to be reflected back to the object level. However, somewhat

ironically, in statically typed languages, this limited form of reflection is much

more useful than it would be in dynamic languages, because it enables the use

of types that were unknown at compile time. In other words, introspection can

be used to simulate dynamic typing in a statically typed language.

The primary example of a statically typed language with native intro-

spection is Java, so we will discuss its reflective features in detail and use it

as an inspiration for the implementation of an introspection support for C++.

Finally, we wish to point out that reflection is not an exclusive property of the

programming language. Reflection is also possible at other abstraction layers,

such as the architectural level.

4.1
Introspection in Java

Java is a statically typed language that is compiled to the bytecode of

the Java Virtual Machine (JVM). The fact that it is not executed directly by

hardware does not mean that it can be seen as an interpreted language: there

is no eval primitive. The reason for analyzing Java in detail in this discussion

is that Java has a native introspection support and has many similarities with

C++.

Each source file of Java contains the definition of a single class and is

compiled to a bytecode file called a class file. Class files have a dual role in

Java. The first role corresponds to that of header files in C++: the declaration

of types and methods used by other compilation units. The second second role

corresponds roughly to that of C++ object files, containing data to direct the

linkage of compilation units. This dual use forces this file format to preserve

information about classes, such as the the number and signature of methods,

attributes and constructors. Furthermore, compilation units in Java are linked

at runtime when they are loaded into the JVM. Given that class meta-data

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

Chapter 4. Reflection 45

is present when classes are loaded, it is only logical to make it available to

the programmer by means of an introspection API instead of discarding it

after linking. Another interesting feature of Java is that the loading of classes

can be customized. Application programmers can provide their own custom

class loaders, which presents the opportunity to modify classes before they are

linked, enabling a meta-object protocol at load time [17].

Having seen how class meta-data is obtained by the JVM, let us now

turn our attention to the architecture of the introspection API. In Java, every

class is associated to a meta-object of the class java.lang.Class and every

object inherits from the base class java.lang.Object. The Object base class

can be used to obtain a reference to the meta-object of its class. Only single

inheritance of implementation is possible in Java so this reference always points

unambiguously to the meta-object of the most concrete class of an object.

Observe that, because in Java classes are not first-class citizens, they cannot

be collapsed with their meta-objects as is the case in prototype-based object-

oriented languages.

The class java.lang.Class has class-global methods to search classes

by name and to list all classes, so the meta-data for all classes is reachable at

runtime. The information made available by an instance of java.lang.Class

basically consists of the class’s visibility, a list of its constructors, a list of

its attributes and a list of its methods. These lists include not only public

entities but also those with protected, private or package visibility, making

it possible to bypass the access restrictions.

The entities accessible through a class meta-object are meta-

objects as well. Attribute meta-objects are instances of the class

java.lang.reflect.Field, constructors and methods are represented by the

classes java.lang.reflect.Constructor and java.lang.reflect.Method

respectively. There is no need to go into much detail here so we will only

present a brief summary of the functionality provided by theses classes.

The Field meta-object can be used to inspect the name and the type of

an attribute. The type information is given in the form of a reference to a Class

meta-object. In addition, this object can be used to obtain and to change the

value of the given attribute in a specific object. The value is returned using

a reference to the universal base class, Object. A minor difficulty arises due

to the fact that primitive types are not objects in Java. To deal with this, for

each primitive type Java defines a container class such as java.lang.Integer

and seamlessly performs auto-boxing when necessary.

Constructor meta-objects provide information about the number of

arguments in addition to the type of each one of them. Constructor objects

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

Chapter 4. Reflection 46

also have a method that takes an array of Objects calls the reified constructor

passing these arguments, and returns a new instance of the class this meta-

object is associated with. The class meta-object has a shortcut method called

newInstance that finds a constructor based on the types of its arguments and

uses it to return a new object.

Finally, Method meta-objects are used to reify methods. They provide

the methods name together with all the information relevant to its signature:

the return type, the number of arguments, and their types. As is the case with

the Constructor class, the Method class has a method to invoke the reified

method. It takes as arguments a reference to the target object and an array

of references to Object representing the arguments and subsequently performs

the call returning the result as an Object.

At first sight, this may seem as an overly complicated way of performing

the usual operations on objects, but it enables many advanced programming

techniques that otherwise would be impossible because the reflected entities

are not first-class citizens of the language. Because of its static typing, in

Java, the full definition of a class must be available at compile-time whenever

it is used. However, using introspection meta-classes, it is possible to interact

with classes that were unknown at compile-time. It also enables a style of

programming generally known as duck typing. Suppose that we are building a

system that draws objects on screen. The traditional static typing approach

would require that all graphic objects implement a common interface that

declares a draw method. In contrast, with duck typing we simply check if the

object has a method with an appropriate signature without bothering if the

class implements a specific interface.

It is also common to use introspection for meta-programming. Building

on the previous example, suppose that we decide that requiring the objects

that are to be displayed to have a draw method is a bad design decision: it is

difficult to specify alternative forms of drawing and we may want to reuse these

objects in contexts where they are not displayed. A draw method inevitable

makes use of a graphic library and we would be forced to include it even if

it’s not needed. A possible approach is to define another hierarchy of objects

to draw them. Listing 4.1.1 shows the example of a computer game. In many

games, the enemies that the player has to defeat are assigned to different

categories based on difficulty. Depending on the current setting, the enemies

might be of different species, but behind the scenes share the same artificial

intelligence, differing only in their appearance.

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

Chapter 4. Reflection 47

1 public class DrawOrc implements DrawEnemy {

2

3 public void draw(Enemy enemy) {

4

5 if (enemy instanceof Soldier) {

6 OrcSoldier.draw(enemy);

7 } else if (enemy instanceof Captain) {

8 OrcCaptain.draw(enemy);

9 } else if (enemy instanceof Boss) {

10 OrcBoss.draw(enemy);

11 }

12 }

13 }

Listing 4.1.1: Example of a code with unecessary repetition

There clearly is a pattern in the code of Listing 4.1.1: for each class there

is another class with a predictable name. With introspection we can automate

all this tedious typing, as shown in Listing 4.1.2

1 public class DrawOrc implements DrawEnemy {

2

3 public void draw(Enemy enemy) {

4 Class c = enemy.getClass();

5 Class d = Class.forName("Orc" + c.getSimpleName());

6 Method draw = d.getMethod("draw", Enemy.class);

7 draw.invoke(enemy);

8 }

9 }

Listing 4.1.2: Example of meta-programming based on introspection

Not only is this code more generic, but it also automatically handles

new cases. It can even handle new cases at runtime: we could load the classes

Warrior and OrcWarrior and this code would automatically handle them.

And there are even more possibilities of meta-programming. We can load the

drawing dispatcher class based on the name of the type of enemy of the current

level. For example, if the current type of enemy is “Alien” we could load the

class DrawAlien by name.

Another interesting feature of Java’s introspection support is what is

called dynamic proxies. In object-oriented programming, the proxy design

pattern [38] is a way of intercepting the method invocations to an object.

This is done by inserting a proxy object between the target and client objects.

For this to be possible, the target object must be substitutable for the proxy

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

Chapter 4. Reflection 48

objects. In languages like Java and C++, this is achieved by making the proxy

object implement the same interface as the client object. A proxy class can be

hand written for a specific case and compiled together with the application.

However the standard introspection library in Java allows one to create proxies

at runtime for one or more interfaces. In Java, interfaces are special classes

comprised only of the signature of methods. These interfaces are used to specify

contract between objects and more than one of them can be inherited, or in

Java parlance, implemented by standard classes. Dynamic proxies enable the

programmer to implement interfaces during the execution of the program. The

method invocations on those interfaces are intercepted by the dynamic proxy

and then the arguments are inserted in an array of parameters and forwarded

to a handler object specified by the programmer. This feature has many

applications that would otherwise be difficult to achieve without explicitly

generating source code for each implemented interface. Consider, for example,

the implementation of remote invocation stubs. Upon receiving a method call,

the stub must find out which method was called, put this information together

with a serialized representation of the arguments in a packet, and send it across

the network. Without dynamic proxies, the programmer would have to use a

tool to read the definitions of interfaces and generate a stub source file for each

one, every method containing slightly different code to handle the method’s

signature.

To illustrate this concept, consider again the computer game example.

As previously noted, the implementation of the drawing dispatchers is quite

mechanical. With dynamic proxies, we can automate the definition of these

classes, as shown in Listing 4.1.3

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

Chapter 4. Reflection 49

1 public class DrawingDispatcher

2 implements java.lang.reflect.InvocationHandler {

3

4 private String enemyType;

5

6 public Object invoke(Object proxy, Method m, Object[] args)

7 throws Throwable

8 {

9 Enemy enemy = (Enemy)args[0];

10 Class c = enemy.getClass();

11 Class d = Class.forName(this.enemyType + c.getSimpleName());

12 Method draw = d.getMethod("draw", Enemy.class);

13

14 return draw.invoke(enemy);

15 }

16 }

17

18 public class Game {

19

20 public static void main {

21

22 DrawEnemy drawOrcs = (DrawEnemy)

23 java.lang.reflect.Proxy.newProxyInstance(

24 DrawEnemy.class.getClassLoader(),

25 new Class[] { DrawEnemy.class },

26 new DrawingDispatcher("Orc"));

27

28 DrawEnemy drawAliens = (DrawEnemy)

29 java.lang.reflect.Proxy.newProxyInstance(

30 DrawEnemy.class.getClassLoader(),

31 new Class[] { DrawEnemy.class },

32 new DrawingDispatcher("Alien"));

33

34 }

35 }

Listing 4.1.3: Example of dynamic proxies in Java

Hassoun and colleagues interpret Java’s dynamic proxies as the meta-

objects of CLOS’ meta-object protocol, but we think this is an overstatement,

since the possibilities of dynamic proxies are limited to intercepting method

calls, and they require programmers to follow the rule of separating interface

from implementation, whereas meta-objects can be used to change the behavior

of any object [44, 45].

The separation of interface and implementation is essential for achieving

Martin’s Open-Closed Principle that states that object-oriented designs

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

Chapter 4. Reflection 50

should strive to be closed for modifications but open for extensions. Dynamic

proxies can be used very effectively to extend and configure existing designs at

runtime, when interfaces are separated from implementation. Several cross-

cutting concerns can be handled with proxies. For example, the Spring

Framework for Java provides a proxy implementation that wraps method

call in database transaction transparently.

To conclude this overview of reflection in Java, we point out that it

arguably conforms to the first four requirements listed by Maes [63]. Not all

entities are objects as required, but all have meta-objects.

4.2
Introspection in C++

C++ is a superset of C that supports object-oriented programming. The

design of C++ is primarily concerned with the most efficient implementation of

abstractions. Also, the design is guided by the principle that the programmer

should only pay for what is effectively used (the currency being CPU and

memory overhead). So, for instance, polymorphism is not enabled by default

for objects, one has to explicitly mark at least one method as virtual to obtain

this behavior.

In C++, introspection is severely limited. Basically, all that can be

done at runtime is comparing types for equality. Most likely, a complete

introspection support was never introduced because it is difficult to conciliate

the inherent space overhead with the “pay only for what is used” approach. At

compile-time, template meta-programming techniques can be used to obtain

information about classes. In particular, a technique called Substitution Failure

Is Not An Error (SFINAE) can be used to detect if a class has a method

with a specific name and signature. Combining compile-time introspection

with runtime introspection, it is possible to obtain more detailed runtime

information. However, these techniques can only answer yes-no questions like

“Is class A derived from class B?”. There is no way, for example, to enumerate

all methods of an object.

Clearly, this situation is far from satisfactory and several introspection

extensions have been proposed, but most stumble upon two primary difficulties.

In C++, as specified in the ISO standard of 1998, there is no way of referring

to generic entities without losing all type information. In Java, every objects

can be referred to using the universal java.lang.Object base class and as we

have seen, this base class can be used to recover the full type information of

an object. In C++, there is the void* pointer that can point to anything, but

unfortunately the already limited introspection facilities of the language cannot

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

Chapter 4. Reflection 51

interact with this kind of pointer, so the type information cannot be recovered.

Another difficulty is that, in this version of the standard, it is impossible to

declare methods that accept a variable number of arguments. This makes the

implementation of a totally generic Method meta-class impossible.

To introduce more advanced introspection in C++ two main issues must

be addressed:

1. Compilation of meta-data. All the information about types defini-

tions, methods and functions must be obtained in a way that is compat-

ible with standard C++ implementations.

2. Presentation of meta-data. C++ is a very convoluted language with

many special cases. This makes it difficult to present a consistent and

general view of the meta-data. Also, if runtime introspection is to be

supported, the interactions with types unknown at compile-time must

be carefully designed to be usable.

Attempts to introduce reflection in C++ were made almost since the

language was created. For example, in 1995 Chiba [16] proposed a meta-object

protocol for C++, but it was limited to modifications at compile-time.

Perhaps the most widely known implementation of introspection support

for C++ is the SEAL [80] library developed at CERN. It is very detailed, including

meta-data for typedefs, scopes, primitives and arrays. It has a method call

construct, but it is not type-safe, as arguments are passed as an array of

void pointers and, consequently, unsafe type conversions must be used on the

receiving side. It uses a parser that generates meta-data and method call code

in C++ that must be compiled and linked to the program that uses it.

Chuang and colleagues [20] describe an introspection system for C++ that

aims at being non-intrusive and that supports loading of new classes and meta-

data at runtime. However, they make extensive use of void* pointers leading

to unsafe type conversions.

Devadithya and colleagues [31] present a reflection system similar to

SEAL. It uses template classes to hold method pointers and do the calls. The

number of of arguments is limited to the number of template specializations

implemented in the library. The exact argument and return types must be

known, which has as consequence that the end user code needs their complete

definitions.

Reflection for C++ [56] proposes the gathering of meta-data out of

debug information generated by compilers. This has the advantage that the

meta-data can be extracted of executable files. The drawback is that the

code must be compiled in debug mode. To further complicate matters, each

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

Chapter 4. Reflection 52

compiler uses a different representation for debug information. In addition, this

proposal requires modifications of reflected classes, denying the possibility of

introspecting existing code.

The Rich Pointer proposal [9] proposes a special kind of generic pointer

that, in contrast to void*, would not loose the runtime type information

associated with the referenced object. These pointers could be cast to normal

pointers, allowing their use with legacy code. In addition, this work proposes

a comprehensive runtime type information system that would enable the

iteration over the set of methods of a class, for example. At the time of this

writing, the authors of the proposal express the intention of adding a construct

to call methods and functions dynamically, but no further details are given.

There are proposals to add compile-time introspection to C++ in a

form suitable for template meta-programming [19]. Compile-time and runtime

introspection address slightly different concerns and present different trade-offs.

Compile-time introspection could advance compile-time meta-programming

beyond what is possible today with template meta-programming techniques.

For example, it could be used to generate object-relational mappings to store

objects in a relational database. In addition, the compiler would have many

opportunities for optimization. Because every use of meta-data is known, the

compiler can discard unused data, reducing the memory overhead. Runtime

method calls using pre-compiled introspection mechanisms could also be

optimized, the compiler knowing all variables involved. On the other hand,

compile-time reflection cannot be used to enable late binding. It would be

impossible, for example, to load a module during the execution of a program

and use the classes defined in it.

And finally, there are approaches that modify the language itself. For ex-

ample, Microsoft supports an extended C++ for their Common Language Run-

time (CLR), which provides reflection for all supported languages, including

C++ [24]. Another notable example is the Qt framework. It provides a mecha-

nism called signals and slots that enables a restricted form of late binding that

makes it possible to connect objects at runtime without requiring their defini-

tions to be available during compilation of either parts. However, Qt requires

the extension of the language with additional keywords and forces all con-

nectable objects to inherit a common base class, which introduces difficulties

when multiple inheritance is needed.

Not directly related, but still relevant is CERN’s C++ interpreter, cling

[23], that uses the clang [23] compiler and LLVM’s infrastructure to dynamically

compile C++ code. In view of the above discussion of the relation between

interpretation and reflection, this could open interesting possibilities.

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

Chapter 4. Reflection 53

4.2.1
Existing introspective features of C++

C++ is not totally devoid of introspection. There are some very limited

introspective features both at compile-time and at runtime. In the following

section, we will analyze them in detail not only for the purpose of comparison

but also because our proposed introspection extension is partly built using

these features.

Runtime type introspection

C++ provides some forms of runtime introspection, collectively known as

runtime type information (rtti). The most commonly used rtti operation

is the dynamic_cast that permits the programmer to navigate in a class

hierarchy. The dynamic_cast can be seen as a built-in function template which

takes a pointer to a polymorphic object and a destination type as template

parameter. It thus takes two types as parameters: the origin type implicitly

specified by the pointer argument, and the explicitly specified destination type.

If the object referred to by the argument pointer is an instance of the requested

class, a pointer of the correct type, pointing to that same object, is returned.

Otherwise, a null pointer is returned. Therefore the dynamic_cast enables us

to ask if the object pointed to is an instance of the destination type, with

the restriction that both types must be in the same hierarchy of polymorphic

classes. There are two restrictions on origin and destination that severely limit

the functionality of the dynamic_cast: both must be polymorphic types, and

both must be in the same class hierarchy. The first restriction excludes not only

classes without virtual methods but also primitive types. In particular, the

void* pointer cannot be used, eliminating the possibility of using the dynamic

cast as a general instanceof operator as in Java. If the second restriction

were lifted, we could at least use this operator to introspect all polymorphic

classes but, unfortunately, this is not the case. A more subtle limitation of

this operator is that the declaration of both types must be visible at the same

source location where it is used.

Another form of rtti is the typeid operator. This operator returns a

reference to an object of the standard class type_info. Basically, the only

thing that can be done with this object is to compare it for equality with

other objects of this class. The standard library defines a special opera-

tor== to compare two references to type_info. If this comparison operator

returns true, both type_infos refer to the same type. The typeid opera-

tor is applicable to all types, making it possible to formulate expressions like

typeid(double) == typeid(std::string). In addition to its universal ap-

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

Chapter 4. Reflection 54

plicability, this operator also gives us an opaque reference to type-dependent

information. It is possible to compare type_info object even if the types

they represent are not known at compile type. The greatest disadvantage

of this operator is that it is agnostic to class hierarchies. For this reason,

typeid(A) == typeid(B) evaluates to false even if B inherits A. Most of the

functionality of this operator can be simulated using templates that imple-

ment a polymorphic base class with a custom equality operator that internally

performs a dynamic_cast, as demonstrated in Listing 4.2.1. The reverse is not

possible.

1 struct sim_type_info {

2 virtual bool operator==(const sim_type_info& other) const = 0;

3 };

4

5 template<typename T>

6 struct sim_type_info_impl: public sim_type_info {

7 bool operator==(const sim_type_info& other) const {

8 return dynamic_cast<const sim_type_info_impl*>(&other) != 0;

9 }

10 };

11

12 template<typename T>

13 const sim_type_info& sim_typeid() {

14 static sim_type_info_impl<T> inst;

15 return inst;

16 }

17

18 template<typename T>

19 const sim_type_info& sim_typeid(const T& exprResult) {

20 return sim_typeid<T>();

21 }

Listing 4.2.1: Simulating typeid with templates and dynamic cast

The last form of rtti is never mentioned in C++ programming manuals,

which is surprising, as it is really the most powerful one. Because in C++ any

value, object or reference can be used as operand of the throw operator,

the exception handling machinery must include the type information of the

thrown entity to guarantee that the correct catch statement is called. Listing

4.2.2 shows how a dynamic_cast operator can be implemented with exception

handling.

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

Chapter 4. Reflection 55

1 template<typename Orig, typename Dest>

2 Dest* dyn_cast(Orig* o) {

3 try {

4 throw o;

5 } catch (Dest* d) {

6 return d;

7 } catch (...) {

8 return nullptr;

9 }

10 }

Listing 4.2.2: A cast implementation using exception handling

Actually, the above dyn_cast in some aspects is more powerful than the

dynamic_cast because Orig and Dest do not need to be in an inheritance

relation, they can even be primitive types. Not all traversals of an inheritance

hierarchy graph are supported but the conversion of a more concrete type to

a more abstract type is guaranteed to work. Of course, this is an abuse of

exception handling for a totally different purpose, so we cannot expect it to be

as efficient as the other forms of rtti. The advantage of this mechanism is that

the code that throws can be defined in one translation unit and the catching

code in another. Better yet is the fact that the catching code does not need

the declaration of type that is effectively thrown and, conversely, the throwing

code does not need to know the types that appear in the catch statement.

Before we continue with the next topic, we wish to point out that

the examples in this section not only demonstrate the relationship between

the different forms of runtime introspection in C++, but also illustrate the

interesting interactions with templates, a compile-time feature.

Compile-time introspection

Compile time introspection in C++ is a side-effect of templates. Templates

are a form to declare classes and functions that are parameterized by types or

integer constants. This makes it possible, for example, to write a linked list

data structure for any type without resorting to void* pointers as is common

in C. With the intention of allowing reusable data structures and algorithms,

the designers of C++ introduced a Turing-complete compile-time language.

This has originated a number of interesting techniques called template meta-

programming, that were exploited to generate optimal linear algebra code[97],

create concrete products out of product lines[28] and implement object-

oriented design patterns efficiently [2]. The introduction of templates that

accept a variable number of arguments in C++11, known as variadic templates,

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

Chapter 4. Reflection 56

has greatly improved the programming style for an unknown number of

arguments.

The basis for template meta-programming is template specialization that

can be used as a compile-time if-then-else statement, as seen in Listing 4.2.3

1 template<bool B, typename U, typename V>

2 struct Select {

3 typedef V type;

4 };

5

6 template<typename U, typename V>

7 struct Select<true, U, V>

8 {

9 typedef U type;

10 };

Listing 4.2.3: Static if-then-else

1 template<int N>

2 struct fact {

3 enum { value = N*fact<N-1>::value };

4 }

5

6 template<>

7 struct fact<0> {

8 enum { value = 1 };

9 }

Listing 4.2.4: Static recursion

And since integer constants may be used as template arguments, we have

recursion as well, as shown in Listing 4.2.4 The most impressive consequence of

template specialization, however, is the compile-time introspection that results.

For example, Listing 4.2.5 shows how we can determine if a given type is a

pointer using specialization.

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

Chapter 4. Reflection 57

1 template<class T>

2 struct is_a_pointer {

3 enum { value = false };

4 }

5

6 template<class T>

7 struct is_a_pointer<T*> {

8 enum { value = true };

9 }

Listing 4.2.5: Compile-time introspection

An even more impressive use of templates is a technique called Substi-

tution Failure Is Not An Error (SFINAE). The code in Listing 4.2.6 employs

this technique to test if a type supports the equality operator.

1 namespace comparable_impl {

2

3 typedef char no;

4 typedef char yes[2];

5

6 template<class T>

7 no operator==(T const&, T const&);

8

9 yes& test_eq(bool);

10 no test_eq(no);

11

12 template<typename T>

13 struct test {

14 static T const& t1;

15 static T const& t2;

16 static bool const value = sizeof(test_eq(t1 == t2)) == sizeof(yes);

17 };

18

19 }

20

21 template<typename T>

22 struct comparable {

23 enum { value = comparable_impl::test<T>::value };

24 };

Listing 4.2.6: SFINAE: Determine if a type supports comparison

In generic programming it is often the case that a type template pa-

rameter does not provide enough information for the implementation of a

data structure of algorithm. In these cases it is common practice to use as

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

Chapter 4. Reflection 58

argument structs that contain additional information in the form of type-

defs and integer constant definitions. These structs are known as type traits,

their most prominent use being the standard std::string class that is actu-

ally a template instantiation that takes as argument a char_traits<char>.

Due to the widespread use of traits, the C++11 standard introduced a new

standard header file, <type_traits> that contains useful templates such as

std::is_arithmetic<T> and many others that provide a lot of introspective

information for generic template programming.

Needless to say, because it was not their original purpose, meta-

programming with templates is unwieldy and requires a lot of trickery. But

the greatest limitation of these techniques is that they can only answer yes-no

questions about types. There is no way to iterate over the existing types and

list their methods and attributes.

4.3
The SelfPortrait extension

We have designed a runtime introspection extension for C++11 called

SelfPortrait. We chose this name because a self-portrait is a necessarily

simplified representation of oneself. Also, a painting is meant only for contem-

plation but not for modification. In the same spirit, this extension provides

an abstract representation of C++, in C++, but has no complete meta-object

protocol that would allow runtime modification of a program. It is an exten-

sion in the sense that the compilation model is extended, although no proper

language modification is required.

As advocated by Maes [63] and followed in previous approaches, our

extension provides a meta-model layer that is strictly separate from the

application domain model. The skeleton of our meta-model is basically the

same as Java’s but was adapted to C++’s characteristics where needed. In

comparison to the meta-models of previous introspection proposals for C++,

such as SEAL reflex [80], ours is somewhat simpler because we are only

concerned with the introspection of runtime entities.

What distinguishes the SelfPortrait extension from previous works is

that we address the following key issues:

1. Opaque and uniform handling of types without loss of type information

2. Function, method and constructor invocations without restriction on the

number and types of arguments

3. Dynamic proxies

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

Chapter 4. Reflection 59

Opaque handling of types goes hand-in-hand with generic function

invocations as it allows to manipulate arguments and return values of unknown

types. The unrestricted invocation of functions through introspection is an

essential feature without which the applicability of introspection is limited to

a few special cases. And finally, as argued in our survey of Java’s introspection,

dynamic proxies are a very powerful construct that can be used for the

transparent interception of method calls or for mechanical implementations

of interfaces.

Our implementation is guided by the following requirements:

1. All type conversions should be checked at runtime, there should be no

conversions to and from void*.

2. No changes should required of introspected code. We must not impose

the inheritance of a common base class to introspected classes.

3. The usage of meta-classes should be as natural as possible. Where needed

we should add syntactic sugar to help the programmer.

4. It should be portable to any C++11 conforming compiler.

In the remainder of this section we will first present how we want the

introspection API to look like and then explain how this goal is attained.

4.3.1
Proposed reflection API

In short, we want the programmer to be able to perform the following

operations:

1. Listing of reflected classes and functions

2. Listing of the relevant characteristics of classes: accessible attributes,

methods, constructors and super classes

3. Invocation of functions, methods and constructors.

4. Handling of types whose declarations were not available at compile-time

5. Dynamic implementation of interfaces

In Listing 4.3.1 we present a simplified view of the API we want to

implement. We have omitted many methods and the classes for attributes and

functions, but the essential parts are there. Basically, the user can obtain a

Class meta-data object by name (line 7) and, from there, locate its methods

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

Chapter 4. Reflection 60

and attributes. The Method class at line 11 gives basic informations about the

corresponding method including name, number of parameters and their types,

among other features. The sequences of three dots are part of C++11’s notation

for templates that accept an unknown number of arguments.

The VariantValue type that appears in their signature is the opaque

wrapper class for unknown types that will be described in section 4.3.2. The

template method call is only provided as syntactic sugar that captures the

arguments, wraps them in variants and calls callArgArray.

1 class Class {

2 string name();

3 Class superclasses();

4 MethodList methods();

5 AttributesList attributes();

6 ConstructorList constructors();

7 static Class forName(string name);

8 bool isInterface();

9 };

10

11 class Method {

12 string name();

13 string returnTypeSpelling();

14 list<string> returnArgumentSpellings();

15

16 template<class... Args>

17 VariantValue call(VariantValue& object, Args... args) { /*impl*/ }

18 VariantValue callArgArray(VariantValue& object, vector<VariantValue>& args);

19 };

Listing 4.3.1: The simplified interface for Class and Method introspection

objects

Instead of showing the API for dynamic proxies, Listing 4.3.2 shows an

example usage because it might not be immediately apparent how these are

used from the API alone. In line 1, we obtain a meta-object for a class called

“Foo”. Then, in line 3, we search for a method named“method1”. After that, we

instantiate a proxy object, in line 5, passing the class meta-object as argument.

Proxies can be constructed for one or more classes. The only restriction is that

these classes should be interfaces. We will explain this concept later in this

section. Then, in line 7, we add an implementation for a method in the form of

a C++11 lambda, but functions and any object with an operator() can be used

as well. To specify for which method we are providing an implementation, we

use the method meta-object that was retrieved earlier. Finally, the remainder

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

Chapter 4. Reflection 61

of this listing shows how we can obtain a reference to the implemented object

using the specified base class.

1 Class foo = Class::lookup("Foo");

2

3 Method m = foo.findMethod([](const Method& m){

4 return m.name() == "method1";

5 });

6

7 Proxy proxy(foo);

8 proxy.addImplementation(m, [](const std::vector<VariantValue>& args){

9 int first = args[0].value<int>();

10 int second = args[1].value<int>();

11 return VariantValue(first*second);

12 });

13

14 VariantValue handle = proxy.reference(foo);

15 Foo& stub = handle.convertTo<Foo&>();

16

17 int result = stub.method1(3,5);

Listing 4.3.2: A sample usage of proxies

Because we want the API to be as natural and as easy to use as possible

for C++ programmers, we want the arguments to be converted implicitly and

safely to the types that the method requires. For example, if a parameter is

passed by reference we want to get a reference to the value passed as argument.

On the other hand, if the parameter is passed by value we want a copy of the

value. The best place to implement these conversion is the VariantValue class.

We can see some of the conversions that we would like to support in Listing

4.3.3.

1 VariantValue v("5"); // initialize

2 std::string s = v.convertTo<std::string>(); // copy

3 std::string& sr = v.convertTo<std::string&>(); // get reference

4 std::string* sp = v.convertTo<std::string*>(); // get pointer

5 int n = v.convertTo<int>(); // convert to to integer

Listing 4.3.3: Requirements for VariantValue

4.3.2
Opaque handling of types

Perhaps the most important feature of an introspection library for a

statically typed language is to support the invocation of methods without

requiring their definitions to be available at compile-time. As in Java, this

functionality is supplied by adding a special method to the Method meta-object

that forwards its arguments to the method that this object represents. Because

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

Chapter 4. Reflection 62

of the language’s static typing, we can define this method only once and this

definition must work with all possible method signatures. This entails that the

formal parameters of this generic method must be able to bind to all possible

types. In previous introspection proposals this was handled using arrays of

void* pointers because. This approach presents several serious problems. First

of all, the conversion to void* pointer inevitably leads to a complete loss of type

informations, so the implementation of the generic call for a specific method

has no choice other than blindly casting this pointer to one of the desired type.

If the user by mistake passed a pointer to an object of another type there will

be no way of detecting this situation and all kinds of memory corruption could

follow. The second problem is that of usability. Because it is not possible to

take the address of a temporary, all arguments must be explicitly allocated

on the stack or on the heap. Furthermore, in C++ if we pass an integer to a

function that expects a double, the compiler will make the conversion without

complaining. Using void* pointers the programmer cannot simply pass the

address of an int to a function that expects a double, because this would lead

to an erroneous memory access. In addition, with raw pointers in C++ it is often

difficult to decide who should free the pointee if it was dynamically allocated.

What is required is an opaque handle that hides all type information but

makes it possible to verify if the hidden type correspond to an expected type

and to extract the hidden value using this type. To fulfill this requirement we

can use a special type of container commonly known as variant.

Variants are like void* pointers enhanced with type information and

life-cycle management. Most variants are implemented either using unions,

as described by Alexandrescu[3], or usings template class implementing an

abstract interface, a technique called type erasure [7] described by Henney[47].

boost::any and boost::variant[11] are good examples of both alternatives. The

problem of the union approach is that the variant is restricted to a finite

set of types, so our variant implementation follows the type erasure approach

due to its greater flexibility. The improvement of our variant over existing

implementations is that even types without default or copy constructor can

be used. Indeed, any constructor can be used. In addition to values, our

variant can also contain references, a capability that is essential to avoid the

introduction of copies when a parameter is passed by reference. The object held

can be accessed by copy, by reference or by pointer. Most importantly objects

can be accessed by references and pointers to base classes. Additionally, it is

detected at compile time if the type is convertible to std::string or arithmetic

types. If this is the case, conversions to any arithmetic type or std::string are

automatically implemented. The arithmetic type conversion is very convenient

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

Chapter 4. Reflection 63

because it allows us to pass a variant containing a char where an int is expected,

just like the compiler would accept for temporary values. The philosophy of

our variant in this respect is like Qt’s QVariant’s[78]: what matters most is not

the real type hidden inside the variant, but the types it can be converted to.

This frees us from painstakingly constructing variants of an exact type.

1 class VariantValue

2 unique_ptr<IValueHolder> m_impl;

3

4 template<class ValueType>

5 typename normalize_type<ValueType>::ptr_type

6 isA_priv() const {

7 try {

8 m_impl->throwCast();

9 } catch(typename normalize_type<ValueType>::ptr_type ptr) {

10 return ptr;

11 } catch (...) {

12 return nullptr;

13 }

14 }

15

16 public:

17 template<class ValueType>

18 ValueType value() const {

19 auto ptr = isA_priv< ValueType >();

20 if (ptr == nullptr) {

21 // throw (error handling omitted)

22 }

23 return *ptr;

24 }

25 // other methods...

26 };

27

28 template<class ValueType>

29 class ValueHolder: public IValueHolder {

30 ValueHolder m_value;

31 public:

32 virtual void throwCast() const {

33 throw &m_value;

34 }

35 private:

36 };

Listing 4.3.4: Conversion of variants

In Listing 4.3.4 we can see the essential aspects of our Variant implemen-

tation. We have a front-end called VariantValue (line 1) with value-semantics

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

Chapter 4. Reflection 64

that holds a pointer to the abstract base class IValueHolder which in turn is

implemented by the class template ValueHolder (line 28). (The abstract base

class has been omitted to avoid redundancy)

As the reader might have noticed we use the flexibility of the rtti func-

tionalities derived from exception handling. At line 33 in method throwCast,

where the type of the contained value is known, we throw a pointer to it. At

line 8 we call the throwCast method and an line 9 we try to catch a pointer

to a type provided by the user. If the catch is successful we return the pointer,

else we return a null pointer.

4.3.3
Call Forwarding

As previously mentioned, to provide a generic method call mechanism

we must define a method that takes all possible combinations of arguments. At

some point these arguments must be extracted to the types a specific method

expect and then the actual method call must be performed. Therefore, for each

method we generate an adapter that on one side binds to the generic interface

and on the other side to the actual method. Because we want the SelfPortrait

extension to be portable to all compilers, we don’t want to impose the use

of any specific parser to generate these adapters. Instead, our approach is to

use templates to make the compiler generate these adapters taking as input a

declarative specification of the method’s signature.

The tools we use are variants and pointers-to-methods. The main idea

is to capture the parameters into a vector of variants and unpack the variant

into the argument list of the function call expression. The first thing is to take

a variable number of arguments, pack each of them in a variant, and place it

in a vector. We can use variadic templates to do this:

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

Chapter 4. Reflection 65

1 inline void emplace(std::vector<VariantValue>& v) { }

2

3 template<class T, class... U>

4 inline void emplace(std::vector<VariantValue>& v, T&& t, U&&... u)

5 {

6 v.emplace_back(t);

7 emplace(v, u...);

8 }

9

10 class Method {

11 public:

12 template<class... Args>

13 VariantValue call(VariantValue& object, Args&&... args) const {

14 ::std::vector<VariantValue> vargs;

15 emplace(vargs, args...);

16 return callArgArray(object, vargs);

17 }

18 // other methods and attributes...

19 }

Listing 4.3.5: Packing of parameters

In Listing 4.3.5 at line 17 callArgArray forwards the two parameters

to the call method of MethodImpl, seen in Listing 4.3.6 at line 9.

1 typedef VariantValue (*boundmethod)(

2 const volatile VariantValue&, const vector<VariantValue>& args);

3

4 class MethodImpl {

5 boundmethod m_method;

6 public:

7

8 VariantValue call(VariantValue& object, const vector<VariantValue>& args)

9 {

10 if (args.size() < m_numArgs) {

11 // throw exception

12 }

13 return m_method(object, args); // call function pointer

14 }

15 // other methods and attributes...

16 };

Listing 4.3.6: Dispatching the parameters

The m_method attribute at line 5 is simply a pointer to a function

that is used to normalize a pointer to method. Its type is declared at line 1.

Because the type of a method pointer depends on the entire signature, it would

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

Chapter 4. Reflection 66

be impossible for a non-templated class to have such a pointer as member.

However, in addition to types and integer constants, pointers to functions and

methods can be used as template arguments. We can use this to capture each

pointer to method as a template parameter of a function template with a

uniform signature.

The next step is to implement this function template that does the real

method invocation. It has to know the number of arguments and their types, as

well as the return type (there are other subtleties as well, such as the constness

of a method, but for the sake of simplicity we will ignore them for now). Again,

we use variadic templates to pass these types to the call function.

It is difficult to manipulate unexpanded parameter packs and pass them

as arguments to other templates, but we can employ a helper template called

Typelist, due to Alexandrescu[2]. Basically, Typelists use a head and tail

structure to encode a sequence of types as a type. They are very useful to group

together a list of unrelated types, such as the argument types of a function.

Alexandrescu showed how to implemented algorithms to find types in typelists,

insert new types, query types by position and sort them from the most abstract

to the most derived. The only drawback in his implementation was that C++98

did not support variadic templates or at least variadic macros, which made its

use somewhat cumbersome. Using the new variadic templates, we designed a

more natural Typelist that is used to implement the functions that forward

the arguments vector of variants. We use it to compute to which type each

argument in the variant vector should be converted.

With the vector of wrapped arguments and the Typelist containing

the expected types we have all the information that is necessary to invoke

a method. The next problem to be addressed is how to expand the arguments

inside the parentheses of the call expression. We cannot use iteration inside

the parentheses. We could somehow capture the arguments to the typelist as

an unexpandend parameter, and pack and re-expand them. However, types

cannot be used to index the elements of a vector. The answer is to use a helper

template call Indices, an idea by Preney[76] to handle the problem of passing

the content of an std::tuple as parameters to a function call. Indices are just a

way to encode a sequence of numbers as a type. Because integers can be used

to implement compile-time recursion, we are able to generate a type containing

the numbers from 0 to N. If we capture the unexpanded pack of integers, we

can use it to generates indices for the typelist and the vector at the same time.

We use the expansion of an expression containing the indices to emplace the

arguments at the correct place. The simplified templates can be seen in Listing

4.3.7

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

Chapter 4. Reflection 67

1 template<class _Method>

2 struct method_type;

3

4 // We use specialization to capture the

5 // parameter pack inside a method pointer declaration

6

7 template<class _Clazz, class _Result, class... Args>

8 struct method_type<_Result(_Clazz::*)(Args...)> {

9

10 typedef _Result (_Clazz::*ptr_to_method)(Args...);

11 typedef TypeList<Args...> Arguments;

12

13 static VariantValue

14 bindcall(VariantValue& object, const vector<VariantValue>& args)

15 {

16 return call_helper<typename make_indices<sizeof...(Args)>::type,

17 Result>::call(ref, ptr, args);

18 }

19

20 template<class Ind, class RType>

21 struct call_helper;

22

23 template< size_t... I, template< size_t...> class Ind, class RType>

24 struct call_helper<Ind<I...>, RType> {

25 static VariantValue call(ClazzRef object,

26 ptr_to_method ptr,

27 const vector<VariantValue>& args)

28 {

29 // This is where the magic happens

30 return (object.*ptr)(args[I].

31 moveValue<typename type_at<Arguments, I>::type>()...);

32 }

33 };

34

35 };

Listing 4.3.7: Dispatching the parameters

Forwarding functions and constructor calls is simpler but uses the same

mechanism, so for the sake of brevity we will not discuss them. In reality, the

method_type template has more specializations to detect if a method is const-

qualified, volatile-qualified or static. The result of all this work is that we can

call methods of objects of unknown types in a very natural way. An example

usage can be seen in Listing 4.3.8.

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

Chapter 4. Reflection 68

1 Class a = Class::forname("A");

2 Constructor c = a.constructors().front();

3 VariantValue instance = c.call("test", 1);

4 Method m = a.methods().front();

5 VariantValue result = m.call(instance, 4, 6);

Listing 4.3.8: Example usage

Listing 4.3.9 presents an equivalent sequence of calls for Java’s

java.lang.reflect API.

1 Class a = Class.forName("A");

2 Constructor c = a.getDeclaredConstructors()[0];

3 Object instance = c.newInstance("test", 1);

4 Method m = a.getDeclaredMethods()[0];

5 Object result = m.invoke(instance, 4, 6);

Listing 4.3.9: Equivalent Java reflection usage

As the reader might have noticed we have chosen to use a function

template for each method call instead of having a template MethodImpl

implementing a AbstractMethodIml abstract base class. We will explain the

reason why in the evaluation section.

There is one important detail that we have omitted so far: perfect

forwarding of generic call parameters. In C++98 we would have three options

for passing parameters of unknown types: by value, by reference or by const

reference. Passing parameters by value we would introduce an artificial copy

that would render the generic call useless for methods that have references as

formal parameters. With references we would be unable to pass temporaries of

non-const variables as actual parameters. And finally with const references it

would be impossible to call methods that have references as parameters in a

clean way. With rvalue references C++11 introduced a special rule for function

template argument deductions. A formal argument that is declared as a rvalue

reference to a template parameter is automatically resolved to a reference of

the correct type. Actual const values cause the argument type to be a const

reference, temporaries are passed by rvalue reference and other values are

passed by reference. This new rule is being called perfect forwarding, and it

enables us to provide a generic call API that is not overly cumbersome to use.

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

Chapter 4. Reflection 69

4.3.4
Dynamic proxies

Fundamental for dynamic proxies is the concept of interface inheritance.

Interfaces specify the signatures of a set of polymorphic methods without

providing an implementation. Interfaces are like contracts because any object

that implements an interface must have an implementation for each method. In

Java interfaces are explicitly represented in the language and multiple interface

inheritance is allowed whereas multiple implementation inheritance is not. In

C++ they can be represented as abstract base classes but depend on programmer

discipline. For our purposes we consider a C++ class an interface if:

1. It has no attributes

2. It has only public pure virtual methods

3. It has a public default constructor

4. It has a public virtual destructor

5. It has no inner classes

6. It inherits only from interfaces

The implementation of dynamic proxies is mostly straightforward. For

each interface we use declarative meta-data to generate an implementation

stub. When a stub is created, it internally receives a reference to an object

of the internal class ProxyImpl. Each method of this stub has a generated

implementation that builds an array of variants when called. This array is

then passed to a method of the ProxyImpl object together with an unique

identifier for the current methods. The result of this call is a variant from

which the stub extracts the return value with the expected type.

Because we want to use the proxy as if it were a normal instance of the

interface class, the Proxy class provides a method that given an class meta-

object, returns a reference to the corresponding internal stub using a variant.

This variant can then be used in reflective method calls, or a reference or

pointer to the interface can be extracted. To make the use of dynamic proxies

easier, the internal ProxyImpl object is reference counted. The references that

are tracked are the Proxy object and the variants that contain the stubs. This

makes it possible to use the Proxy object only for the construction of a dynamic

proxy.

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

Chapter 4. Reflection 70

4.3.5
Meta-data Declarations

As stated by Smith’s [85] sixth property, reflection cannot be pro-

grammed “from the inside”. This implies that in our case all introspection

meta-data has to be supplied to the program during compilation. SelfPor-

trait relies upon declarative input of meta-data in the form of C++ code,

that must be compiled by a C++ compiler. For each meta-object a correspond-

ing meta-data definition is needed. However, because these definitions can be

fairly complex expressions, we provide macros that can be used to write meta-

data in declarative form. Internally these macros are expanded to template

instantiations that generate all method call code and handle the registration

of methods, attributes, constructors, functions and classes. As long as these

macros are used, the meta-data generation is platform-independent and can be

used with any complying C++ compiler. These macros also allow us to decouple

the implementation of meta-data code from the obtention of this data. Unfor-

tunately, due to limitations in C++ macros, we cannot generate proxy stubs

directly from class meta-data declarations. Instead we must declare the stubs

explicitly. Listing 4.3.10 shows a typical declaration of meta-data.

1 BEGIN_CLASS(TextFile)

2 SUPERCLASS(File)

3 METHOD(write, int, const std::string&)

4 CONST_METHOD(size, int)

5 END_CLASS

6

7 REFL_BEGIN_STUB(ProxyTest::Test, TestStub)

8 REFL_STUB_METHOD(ProxyTest::Test, method1, int, int, int)

9 REFL_END_STUB

10

11 REFL_BEGIN_CLASS(ProxyTest::Test)

12 REFL_DEFAULT_CONSTRUCTOR()

13 REFL_METHOD(method1, int, int, int)

14 REFL_STUB(TestStub)

15 REFL_END_CLASS

Listing 4.3.10: Meta-data input

When many classes and method declarations must be defined, writing all

these declarations can be a very labour-intensive and error-prone task. Because

of this, we have built a program that parses C++ header files and produces the

meta-data for all usable declarations. This program is built around clang’s

parser libraries [21]. Basically, clang parses the files and returns an abstract

syntax tree (AST). Since we are only interested in the interface of C++ entities,

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

Chapter 4. Reflection 71

we only read public declarations. The private sections and function bodies are

ignored. We also ignore definitions that generate no symbols, such as global

static functions and everything inside private namespaces. In C++, classes can

be forward-declared if they are used only as parameter types, return types,

pointers and references. However, in order to generate the method call code,

our reflection system needs the full declaration of all types used in parameter

or return types. When a declaration is not available, our parser prints a

warning and ignores the entity that depended on it. In clang, there is an

interaction between the ”forward declarable” and the template instantiation

rules. Whenever a template instance name is used where a forward declaration

is sufficient, clang does not generate the AST nodes for it. If we want to

generate meta-data for this template class instance, we need this piece of the

AST and, therefore, we force its instantiation, effectively modifying the AST.

The output of the parser is a C++ code file containing all meta-data that must

be compiled by a C++11 conforming compiler. The meta-data code can be

compiled into a separate dynamic library that can be shipped separately and

loaded only if needed.

4.4
Evaluation

Inevitably the meta-data introduces a memory usage overhead. A quite

reasonable way to calculate this overhead is to look at the size of the compiled

translation unit containing the meta-data, but keeping in mind that the

operating systems may never load the unused parts into working memory. As

an example, we have generated the meta-data for qtextedit.h, a file shipped

with Qt’s C++ SDK, once with forced template instantiation and once without.

We have selectively suppressed the generation of certain kinds of meta-data to

see how each one contributes on terms of space usage. The result can be seen

table 5.1. In both tables, classes, methods, attributes and functions refer to

the number of reflected entities of each kind.

From the numbers, the information that stands out the most is the

percentage of space dedicated to method call forwarding. Because of the

way C++ method pointers work, for each combination of class, return type,

parameter types and qualifiers, the whole method procedure call must be

generated again. The size of a single method call function is below 1K, which is

acceptable if we consider how much work is involved in converting every variant

to the correct type. But, because it is very difficult to share the same code for

different methods, we have no choice but repeating it for every method. That

is not to say that there is no difference in the code generated for a method

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

Chapter 4. Reflection 72

Table 4.1: Resulting compiled meta-data object file size

Mesurement qtextedit.h with templates qtextedit.h without templates

object file size 2.9MB 200KB
classes 71 3
public methods 3262 154
public attributes 2 2
functions 0 0
rtti 486KB (16.5%) 25KB (12.6%)
method call code 1.2MB (42.8%) 101KB (42.8%)
code per method 395 bytes 675 bytes
type spellings 9KB (0.32%) 1KB (0.54%)

with three parameters and one with four, but, for example, there should be

no difference in the machine code generated for two methods of the same class

with almost the same signature, differing only in constness. Experience with

existing compilers suggests that one could cast a method pointer to another

one of a similar type [25] and call it without problems if certain restrictions

are observed. The casting of method pointers could be used to reduce the

repetition of equal code, but we would no longer be standards-conforming, as

the standard states that calling a converted method pointer results in undefined

behavior.

Another relevant observation is the percentage of space used for

type_info data. SelfPortrait can be compiled with the -fno-rtti compiler

switch that omits this data if the user does not need it, but some optimizations

that improve method call speed are disabled. For example, if the API is used

through a binding for another language such as Lua, the type_info rtti is

useless. The type spellings, that is the textual representation of parameter and

return types, take a negligible amount of space, but are very useful for language

bindings because the code in another language can make textual comparisons

to check the parameter types of a method.

We can see that there is a great difference both in the number of code

entities as in translation unit size when all templates are instantiated. We

remind the reader that, in C++, a template method that is not used does not

generate code. However, taking the address of a template’s method, forces

the compiler to fully instantiate that code. Additionally, as at this stage the

compiler has no clue whether the template classes are already defined in other

translation units or not, it has no choice but generating all their code into the

current one. This certainly accounts for some of the size of the resulting file, but

it is difficult to measure exactly how much. The template instances included

in this example are instances of QList<class T>, QList<class T>::iterator and

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

Chapter 4. Reflection 73

QList<class T>::const iterator.

Finally, we note that the amount of the code generated per method call

is smaller for the file with more methods. We can only speculate about why

this happens, but perhaps the compiler is more likely to reuse the same piece

of code for different methods.

Having this discussion in mind, we can explain why we did not use the

type erasure technique for the meta-data classes. In fact, this was our first

approach, but the result was not very encouraging. With the type erasure

approach, the compiler had to generate a new class for each method, which

means a new vtable, a new set of methods, etc. With all this unnecessary code,

the object file for qtextedit.h’s meta-data surpassed the size of 30MB, a clearly

unacceptable size.

Apart from the space overhead, another relevant measure is the cost of

generic function calls compared to the cost of direct calls. Because our library

has to perform many verifications at runtime that the compiler is able to do

at compile time, inevitably there will be a considerable overhead in CPU cycles.

The most important source of overhead is the extraction of values from the

variant to pass to the function being called. This step involves verifying if the

value contained in the variant is an instance of the expected type and, if not,

checking if the contained type is convertible to the expected type. As mentioned

above, the most general procedure to do the type verification and extraction

is also the most expensive one. In most cases we can use C++’s type_info

class to do the type verification step, but when class hierarchy downcast is

required, we have to use the exception catching mechanism. To avoid always

incurring in the cost of the general case, we adopted an incremental procedure

where the cheapest type verifications are performed first and resort to the

most expensive on only when needed. Additionally we memoize the result of

the more expensive conversion achieving a considerable speed-up. The general

case is shown in Listing 4.3.4 but we have omitted the complete code with

optimizations due its length.

As the compiler and our library may apply different optimizations

depending on the types that are involved, the cost of extracting a value from

a variant may vary. For this reason we measured the performance of generic

function calls not only varying the number of parameters, but also the their

types. Our tests consisted of the following cases

1. A call with no argument

2. Calls passing a primitive type directly by copy

3. Calls passing a primitive type where a different primitive type is expected

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

Chapter 4. Reflection 74

4. Calls passing a struct directly by copy

5. Calls passing a struct directly by reference

6. Calls passing passing as actual argument a type derived from type of the

formal argument, by reference

Our tests where run on an AMD Phenom II X6 1075T processor and the

costs were measured using the standard POSIX function clock. As we only

want to measure the cost of the call, the test functions do nothing except

incrementing a global counter just to be sure that the calls where actually

made. All calls where executed 1000000000 times. The numbers in the result

table 4.2 are the result of dividing the clock count of the generic call by the

clock count of the direct call.

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

Chapter 4. Reflection 75

T
ab

le
4.
2:

C
al
l
ov
er
h
ea
d
ra
ti
o
(R

efl
ec
ti
on

C
P
U

cy
cl
es
/N

at
iv
e
C
P
U

cy
cl
es
)

#
A
rg
u
m
en
ts
/T

es
t

0
1

2
3

4
5

6
7

8
9

N
o
ar
gu

m
en
ts

7.
4

P
ri
m
it
iv
e
ty
p
e

12
.7

18
.5

26
.3

35
.2

40
.7

48
.9

52
.0

58
.9

61
.7

P
ri
m
it
iv
e
ty
p
e
co
n
ve
rs
io
n

12
.5
3

S
tr
u
ct

b
y
co
p
y

13
.5

20
.6

28
.1

29
.3

34
.5

33
.9

33
.5

33
.5

29
.6

S
tr
u
ct

b
y
re
fe
re
n
ce

13
.5

20
.2

27
.5

34
.3

40
.4

48
.0

38
.3

50
.1

59
.7

O
b
je
ct

d
ow

n
ca
st

75
.8

13
9.
0

20
6.
5

30
4.
7

36
6.
3

40
8.
8

48
2.
6

47
8.
1

53
2.
9

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

Chapter 4. Reflection 76

As we can see from the results, in most cases the generic call is one

order of magnitude slower than the direct call, which is a fairly good result

if we consider how many operations are involved. The worst case is the one

involving a downcast of an object reference. This is precisely the case where

the most expensive tests are performed and, as a result, the call can be two

orders of magnitude slower. A fact not shown in this table is that the time

required for direct calls does not change significantly when more parameters

are added, while in the generic call case we can see a constant increment for

each added parameter.

The cost of these method calls is a direct consequence of the cost of

dynamic type conversions in C++. Gibbs and Stroustrup propose a solution

that greatly improves the performance of the dynamic_cast operator [39].

However their solution requires that all types must be known to the compiler

and is therefore not directly applicable for applications where new classes can

be loaded at runtime. This is not a problem for their problem domain, which

is embedded systems, but in our case this is too restrictive.

While this overhead can be prohibitive for calling small functions in tight

inner loops, it should be acceptable for the configuration and composition of

components as these are typically done only once at start-up.

For a more qualitative analysis we can adopt the following design

principles for a reflection API by Bracha and Ungar [13]:

1. Encapsulation Meta-level facilities must encapsulate their implemen-

tation

2. Stratification Meta-level facilities must be separated from base-level

functionality

3. Ontological Correspondence The ontology of meta-level facilities

should correspond to the ontology of the language they manipulate

The encapsulation principle requires that the reflection API should not

be tied to any particular implementation. It should be possible to use several

plugable sources of reflection data. For example, it should be possible to use

a remote meta-data source for remote objects. Although SelfPortrait at the

present time only uses one back-end for meta-data obtention, its API is in not

tied to it. All API classes are just handle that contain opaque pointers to the

actual meta-data classes. In principle, this allows to change the back-end or

even support plugable back-ends without requiring any change to user code.

The stratification principles dictates that the access to meta-data should

be kept separate from a language’s basic constructs. The reasoning behind this

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

Chapter 4. Reflection 77

is that it should be possible to safely discard meta-data if it isn’t used by an

application, reducing it’s memory footprint. Bracha and Ungar point out that

this is difficult in Java because the access to meta-data is given by a method of

the java.lang.Object universal base class. Proving that a program written

in Java does not need the meta-data would require static analysis to prove

that this method is never invoked. In our approach all access to meta-data

requires the inclusion of the reflection.h header file and the invocation of

static member functions of the Class and Function meta-classes, making it

easy to determine whether this functionality is used or not. In addition, the

meta-data for a module can be kept in a separate module and linked only if

required by an application. And finally, because SelfPortrait is implemented

as a library, it can be left out completely.

Ontological correspondence requires that the entire language be re-

flected, including not only classes and method but also source-code entities

such as statements and expressions. Although in many cases it would be useful

to have such a complete reflection of the language, for our purposes we are only

interested in reflecting the kind of entities that can be manipulated at runtime.

Furthermore, the development effort of reflecting a such a complex language as

C++ in its entirety would hardly be justified in our case. Nonetheless, reflecting

the whole language at compile-time and runtime levels could be an interesting

prospect.

4.5
Conclusion

We have presented a type introspection API for C++, similar to Java’s,

but respecting the characteristics of the language. The reflection API makes

heavy use of some features new to C++11, so compiler support may be an

issue. We have successfully compiled the code with g++ 4.7 and clang++ 3.1.

We also made a binding for Lua that enables us to instantiate and use C++

objects. The usage in C++ is very natural as it requires no manual boxing of

parameter types into variants in method calls. No modifications of existing

code are required and the meta-data can be compiled separately. The most

serious problem is the space overhead incurred by the method call code if we

consider that, in most situations, probably less than 10% of these methods will

be called. We believe that we have gone as far in reducing its size as possible

in a standards conforming way. However, it might be interesting to investigate

the possibility of generating the required code on demand at runtime for a

standard ABI such as the Itanium ABI used by gcc and clang, among other

compilers. Possibilities include JIT compilation using clang or creating the

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

Chapter 4. Reflection 78

call frames with libffi. One of the greatest sources of code bloat is that we

use template classes that implement polymorphic interfaces. This forces the

compiler to generate vtables and code for each one of these classes. Nicart

proposes a solution to reduce vtable overhead that simulates polymorphism

[68]. However, his solution requires all derived classes to be known and in our

system this set of classes is open-ended.

The entire source code can be found at https://github.com/

maxdebayser/SelfPortrait

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

5
Service Component Architecture

5.1
The Model

In Chapter 2, we have described how effective components based on

services can be, as they need to be deployed only once and can be used by

many loosely-coupled clients. However, the usual service oriented middleware

approach has several disadvantages. The problem is that large systems tend to

grow organically over time. Several small systems are first built to handle

specific needs, but, over time, these have to be integrated into the larger

system. At this point, nevertheless, difficulties tend to arise because those

services may have been built using different and incompatible technologies.

The integration is difficult due to two factors. The first one is that Service

Oriented Architecture (SOA) technologies are not directly interoperable. The

second factor is that many SOA technologies force a programming style that

unnecessarily tangles integration code with business logic, which prevents one

from porting existing services to a new implementation technology. Pichler and

colleagues [72] identified several problems with the EJB component model that

do apply to other models, like CCM. They identified the following problems:

Lack of Tailorability.. The EJB specification does not define a way to

extend container with new services, or configure existing ones. This forces

component developers to address crosscutting concerns in the component

implementation leading to application code that is unnecessarily tangled with

infrastructure code. In addition, it is not possible to remove unneeded service

from the EJB container, forcing the deployment of the entire EJB environment.

Lack of checking and enforcement. The EJB specification expects

the programmer to follow several programming rules and idioms that cannot

be enforced by the compiler. In addition, common use of EJB’s API involves

loss of static type safety.

Insufficiency. It is not possible to host ordinary Java classes in an

EJB container. To be supported by the container, classes must be developed

especially for EJB.

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

Chapter 5. Service Component Architecture 80

The Service Component Architecture (SCA) standard is an attempt

to improve this situation. It specifies a framework where many different

communication and component implementation technologies can be integrated.

It achieves this with a modular design that decouples components from the

underlying infrastructure. At the same time, it allows interoperability with

legacy services also avoiding unnecessary coupling to any communication

protocol. New technologies and languages are supported with extensions to

the core runtime.

In SCA, components are loosely coupled to the infrastructure because

it abstracts away the communication protocol and enforces a declarative

handling of component dependencies. A component, when initialized, never

searches actively for other services it depends on. Instead, references to the

required services are injected by the framework during the initialization of

a component. In other words, the core runtime uses a dependency injection

model to configure and connect components. However, how the dependency

injection manifests itself at the component implementation level depends on the

implementation language and on the design decisions taken for that particular

language extension. As discussed below, the Java language binding supports

dependency injection at the implementation level and, therefore, properties and

references are represented as class fields. The C++ language binding, however,

does not, and the components are forced to look up property values and

references using the binding’s API.

In SCA, composition is directed by a declarative configuration file. This

configuration file, also called composite file, is written in a XML language

specified by the SCA standard. This language is meant to be extensible to give

the necessary freedom to add new elements and attributes to the extension

developer. This is possible because SCA validates the composite files using a

composition of XSD schemas.

5.1.1
Components

The most important elements of SCA are, of course, components. They

provide services and can have configuration properties and dependencies on

other services. Components can be implemented in any language if there is an

extension for it. A component implementation extension is basically a plug-in

that is responsible for loading a component in a language-specific way, applying

the configuration and intercepting requests from and to the component and

expressing them in a language-specific way like method calls, for example.

Listing 5.1.1 shows a simple example of a component written in Java. The

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

Chapter 5. Service Component Architecture 81

component is an instance of the CalculatorServiceImpl class. It provides a

single service that follows the contract represented by the CalculatorService

interface. It has one configuration property, coefficient, that is configured by

the runtime using setter injection. This component also depends on an external

service that follows the contract represented by the DivideService interface.

The service is represented as a Java object that implements this interface, and

its reference is also provided to the component by the way of setter injection.

1 @Remotable

2 public interface CalculatorService {

3 public double divide(double n1, double n2);

4 }

5

6 public class CalculatorServiceImpl implements CalculatorService {

7

8 private DivideService divideService;

9

10 private double coefficient;

11

12 @Property

13 public void setCoefficient(double c) {

14 this.coefficient = c;

15 }

16

17 @Reference

18 public void setDivideService(DivideService dS) {

19 this.divideService = dS;

20 }

21

22 public double divide(double n1, double n2) {

23 return divideService.divide(n1, n2);

24 }

25 }

Listing 5.1.1: A simple component

1 <composite xmlns="http://www.osoa.org/xmlns/sca/1.0" name="CalculatorComposite">

2

3 <component name="DivideComponent">

4 <implementation.java class="org.example.DivideServiceImpl" />

5 </component>

6

7 <component name="CalculatorComponent">

8 <implementation.java class="org.example.CalculatorServiceImpl" />

9 <property name="coefficient">3.14</property>

10 <reference name="divideService" target="DivideComponent" />

11 </component>

12

13 </composite>

Listing 5.1.2: A sample configuration file

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

Chapter 5. Service Component Architecture 82

Listing 5.1.2 shows a simple configuration file for the calculator com-

ponent of Listing 5.1.1. We use the XML element component to instantiate a

component. In this example, we instantiate two components: DivideCompo-

nent and CalculatorComponent

Components in SCA are stateless by default and can be instantiated and

destroyed on demand by the runtime. Furthermore, the SCA runtime guarantees

that no instance will receive concurrent method calls. If there is more than one

incoming call, the runtime creates a separate instance for each one. It is also

possible to create components that maintain state and persist for the lifetime

of the parent composite. In this case, it is up to the component developer to

make sure that it is thread-safe.

Composition in SCA is recursive, one can use a composite as a single

component. The SCA runtime provides a special implementation type that loads

a composite XML files, performs all the connections, and treats the results as

a component. As shown in Listing 5.1.3, at line 9, all there is to do is to use

the <implementation.composite> element to instruct the runtime to load a

composite.

1 <composite xmlns="http://www.osoa.org/xmlns/sca/1.0" name="StoreComposite">

2

3 <component name="StoreComponent">

4 <implementation.java class="org.example.DivideServiceImpl" />

5 <reference name="calculatorService" target="CalculatorComponent" />

6 </component>

7

8 <component name="CalculatorComponent">

9 <implementation.composite name="CalculatorComposite" />

10 </component>

11

12 </composite>

Listing 5.1.3: Composite implementation type

As services and references of a composite component, we can use selected

services and references of internal components that were left unconnected.

To instruct the runtime to expose a service for composition outside of the

containing composite, we promote as shown in Listing 5.1.4, line 3.

1 <composite xmlns="http://www.osoa.org/xmlns/sca/1.0"

2 name="CalculatorComposite">

3 ...

4 <service name="CalculatorService"

5 promote="CalculatorComponent/CalculatorService" />

6 </composite>

Listing 5.1.4: Service Promotion

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

Chapter 5. Service Component Architecture 83

A connection between components is called a wire in SCA. A single

reference can be wired to several services but it can get unwieldy to list several

connections inside the <reference> element. To improve the readability

of XML configuration files, one can use the <wire> element to connect

components, as shown in Listing 5.1.5

1 <composite xmlns="http://www.osoa.org/xmlns/sca/1.0"

2 name="CalculatorComposite">

3

4 <component name="DivideComponent">

5 <implementation.java class="org.example.DivideServiceImpl" />

6 </component>

7

8 <component name="CalculatorComponent">

9 <implementation.java class="org.example.CalculatorServiceImpl" />

10 <property name="coefficient">3.14</property>

11 </component>

12

13 <wire source="CalculaterService/divideService"

14 target="DivideComponent" />

15

16 </composite>

Listing 5.1.5: A sample configuration file

5.1.2
Bindings

In many cases, an enterprise system will depend on existing external

services that are not running on a SCA infrastructure. Conversely, it might be

necessary to expose a component’s services to the outside world, without re-

quiring external clients to run on SCA. Instead of leaving component developers

on their own to solve this issue, SCA specifies a transparent way of connect-

ing components to external entities. From the component’s developer point of

view, it makes no difference if the component is connected to an external ser-

vice or to another component. These external references or service connections

are called bindings.

When a binding is declared, details such as the address and the com-

munication protocol must be known. For example, if we wanted to expose the

CalculaterService as a web service we could do as shown in Listing 5.1.6.

Services can be made available through several bindings at the same

time. All it takes is adding more binding configurations inside the <service>

element.

The configuration for reference bindings is very similar to the one for

services. Listing 5.1.7 continues with the CalculatorService example, but

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

Chapter 5. Service Component Architecture 84

1 <composite xmlns="http://www.osoa.org/xmlns/sca/1.0"

2 name="CalculatorComposite">

3 ...

4 <service name="CalculatorService"

5 promote="CalculatorComponent/CalculatorService">

6 <binding.ws uri="http://math.com/services/calculator" />

7 </service>

8 </composite>

Listing 5.1.6: Service bindings

this time the calculator component uses an external service instead of the

local DivideComponent.

1 <composite xmlns="http://www.osoa.org/xmlns/sca/1.0"

2 name="CalculatorComposite">

3

4 <component name="CalculatorComponent">

5 <implementation.java class="org.example.CalculatorServiceImpl" />

6 <property name="coefficient">3.14</property>

7 </component>

8

9 <reference name="divideService"

10 promote="CalculatorComponent/divideService">

11 <binding.ws uri="http://math.com/services/divide" />

12 </reference>

13

14 </composite>

Listing 5.1.7: Reference bindings

As with component implementations, SCA can support any communica-

tion protocol as long as there is a plug-in for it.

In reality, even internal connections always go through a binding. In

the absence of an explicit instruction, components are connected using the SCA

default binding. This can be made explicit using the <binding.sca> element.

The default binding can be overridden in the configuration file. For example,

we can instruct the SCA runtime to connect to components using Java RMI, as

shown in 5.1.8

It is not generally recommended to override the default binding in

connections between components because it restricts the runtime’s freedom to

choose the most appropriate binding. For instance, the runtime could choose

to use direct method calls for components in the same address space.

5.1.3
Interfaces

In SCA, service contracts can be seen as object-oriented interfaces: a

named set of methods. In most object-oriented programming languages and

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

Chapter 5. Service Component Architecture 85

1 <composite xmlns="http://www.osoa.org/xmlns/sca/1.0"

2 name="CalculatorComposite">

3

4 <component name="DivideComponent">

5 <implementation.java class="org.example.DivideServiceImpl" />

6 </component>

7

8 <component name="CalculatorComponent">

9 <implementation.java class="org.example.CalculatorServiceImpl" />

10 <property name="coefficient">3.14</property>

11 <reference name="divideService" target="DivideComponent">

12 <binding.rmi />

13 <reference>

14 </component>

15

16 </composite>

Listing 5.1.8: A sample configuration file

middleware platforms, interfaces are either directly supported, as in Java or

CORBA, or simulated using well-known conventions, as in C++. Although this

concept is natural in object-oriented programming, it does not necessarily map

in the same way on every language and, thus, it can be challenging to make

components written in different languages interoperable.

Older object-oriented middleware platforms tried to address this problem

by requiring interfaces to be written in a interface description language (IDL).

These interfaces would then be processed by a tool to generate abstract base

classes which implementation classes would inherit from. The problem with

this approach is that it encourages a strong coupling of components to that

particular middleware, thereby reducing its portability.

As SCA tries to avoid platform lock-in, it has taken an entirely differ-

ent approach. Instead of requiring the use of a implementation, language-

independent IDL components can use interfaces written in the implementation

language. The only requirement is that the interface on the client side must

be a subset of the one at the server side, and that argument types can be

mapped cleanly from one language to the other. The difference between the

two approaches is similar to the difference between static typing and structural

typing in programming languages.

A target service interface is considered compatible with the reference

interface if it defines the same set, or a superset, of operations. The operation

names must be the same, as well as the parameter types, the parameter

ordering and the return type. In some cases when creating a service binding,

the SCA runtime can create a Web Service Definition Language (WSDL) interface

description from the Java interface.

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

Chapter 5. Service Component Architecture 86

5.2
SCA and dependency injection

SCA was proposed at a time when the Java enterprise developer commu-

nity had already experienced the complexity of component platforms such as

EJB, and moved on to simpler lightweight dependency injection containers like

Spring. For this reason, SCA tries to follow the same principles to avoid issues

such as container coupling, lack of portability, and interoperability. In a sense,

everything up to the communication stack is injected rather than hard-coded.

The core runtime does its part to allow components to be configured

using dependency injection. At start-up, it reads the composite assembly file,

locates the required implementation, interface and binding extensions, and

configures them according to the user’s instructions. From this point on, it is

up to the implementation extension to provide an environment suitable for the

development of components that are configured externally.

The Open Service Oriented Architecture Group (OSOA) also has stan-

dards for implementation extensions for Java and C++ [83]. While Java’s bind-

ing fully supports dependency injection, C++’s standard does not. The reason,

as explained in chapter 3, is that runtime introspection is necessary to im-

plement a generic container that can handle objects of classes unknown at

compile-time. While Java has built-in introspection support, C++ does not.

For this reason, the SCA C++ standard requires components to use an SCA-

specific API to retrieve configuration values and service references as needed.

This leads to an unfortunate situation where C++ components are almost in-

dependent on the underlying infrastructure, but not enough to be reused in

other contexts.

The dependency on an API also implies a dependency at the module

level between the components module and the API’s module. So even if the

API is only an abstract facade that could allow several implementations, the

component’s module can not be deployed without the API’s module.

Actually there is an SCA C++ container, Trentino [93], that supports

a limited form of inversion of control as it is built on top of PocoCapsule

[75]. However, as discussed in chapter 3, PocoCapsule uses a configuration

file, in this case the composite file, as input to the injection code generator

and consequently this adapter code must be recompiled every time there is a

significant change in the configuration file. Nonetheless, this scheme allows to

make minor changes to configurations such as changing a configuration value.

An additional shortcoming of this scheme is that it is impossible to introspect

interfaces at runtime to generate representations in another language such as

WSDL and CORBA IDL.

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

Chapter 5. Service Component Architecture 87

5.3
Tuscany native

Apache Tuscany is a project hosted by the Apache Foundation [95], [59].

It includes one implementation written in Java that supports components

written in Java, BPEL, Python and many messaging protocols such as RMI,

CORBA, SOAP and JMS. This project also includes a more limited SCA runtime

written entirely in C++, which includes a C++ implementation extension.

However, this extension does not support dependency injection. As described

in the previous section, components have to use SCA’s API to retrieve the

configuration properties and service references.

Apache Tuscany has a modular architecture, reflecting SCA’s extensible

model. Because SCA is designed to support many different implementation

languages and messaging protocols, it is designed as a small runtime core with

plug-in extensions.

Tuscany has a registry for each kind of extension. During the runtime’s

initialization, it searches the filesystem for extensions. Basically an extension

is deployed in a fixed directory structure at a given path and must contain a

shared library file containing the extension’s implementation and a XSD Schema

file to verify extension-specific syntax. When an extension is loaded, an entry

point function of the shared library is called to register the extension in the

appropriate registry.

Because different extensions might require different configurations,

SCA’s XML assembly language is designed to be extensible. For example,

the <implementation.java> element has a different syntax than the

<implementation.cpp> due to differences between the two languages. In

Tuscany, composite files are verified using an XSD schema. This schema is

composed of a main file for the core syntax, and each extension provides an

additional file that determines its specific syntax. There can be extensions for

implementations, interfaces, data bindings, messaging protocols and policies.

When the composite file is read, the core runtime builds a graph of

classes that roughly corresponds to the declarative structure of the XML file.

This graph is then handed to the implementation extension which uses it to

load and configure the components accordingly.

The interaction between the core runtime and an extension happens

through a set of abstract base classes. For example, the implementation registry

consists of pointers to objects that implement the ImplementationExtension

base class. ImplementationExtensions are builder objects that construct

objects that implement the ComponentType interface.

ComponentType objects are responsible for taking the declarative model

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

Chapter 5. Service Component Architecture 88

of a composition and returning a configured instance. This configured instance

is composed of a collection of endpoints that implement interfaces such as

ServiceBinding, ReferenceBinding, ServiceProxy and ServiceWrapper.

The runtime then uses these endpoints to compose components and relay

request messages between them.

The ServiceWrapper is an interface for objects that receive serialized

parameter packs and relay them to a service. These serialized messages

are instances of the Operation class. Both implementation extension and

binding extensions implement this interface. In the case of an implementation

extension, the parameters are de-serialized and the component’s method is

invoked. In the case of a binding extension, the parameters are converted to a

wire format and sent to a remote component.

The ServiceProxy is an interface for objects that receive a method in-

vocation, serializing it and calling a service wrapper. In the case of implemen-

tation extension, the source of the invocation can be a direct method call by

a component’s implementation. In the case of a binding extension, the proxy

object might listen for requests coming in from a network interface.

A ServiceBinding represents a service endpoint of a component. It has

a reference to a ServiceWrapper object that is used to effectively invoke a

component’s method.

A ReferenceBinding represents a reference endpoint of a component.

It has a method to make the connection between components that receives as

parameter a ServiceBinding. This method must then create a service proxy

to invoke the ServiceWrapper that is held by the ServiceBinding.

5.4
Proposed changes and implementation

As previously discussed, Tuscany’s C++ implementation extension does

not support dependency injection. Our proposal is to create another C++

extension that uses the SelfPortrait library presented in Chapter 4 in order

to support dependency injection.

Naturally, our extension is a modified version of the existing one. We

will first describe how the original extension works and then proceed to the

changes that were necessary.

Most of the classes that are part of an implementation extension have a

structural purpose so we will not discuss them in detail. The real functionality

of handling requests and responses is implemented in the ServiceWrapper and

ServiceProxy classes.

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

Chapter 5. Service Component Architecture 89

In Tuscany’s C++ extension, service wrappers are a three-level class

hierachy. At the most abstract level is the ServiceWrapper interface that

contains the declaration of the invoke method. At the intermediate level

of this class hierarchy is the CPPServiceWrapper class that contains code

that is common to all wrappers. At the most concrete level is a class that is

generated by a tool that the component developer must run before compiling

the component. This tool takes as input the name of the implementation

class and the header file containing the abstract base class representing the

service interface. The class that is generated by this tool contains code to

invoke the methods of the implementation class and to create and destroy

new instances. The method invocation happens in the implementation of the

abstract invoke method, which does the invocations based on the method

names. The generated source file also contains a global function whose name

is based on the name of the component. When the shared library containing

the component implementation is loaded by the C++ extension, this function

is called to create new instances of the service wrapper class.

Service proxies are also based on code generation. A tool is used

to generate a class that implements a service interface and provides an

implementation for each method that serializes the arguments to an Operation

object to invoke a service wrapper. The same scheme of a global function with

a predefined name is used to instantiate the proxies.

This scheme is very simple and effective but it has the shortcoming

that no dependency injection is possible and therefore components must use

a special API provided by this implementation to retrieve configuration values

and service references. In addition the API and the generated proxy and

wrapper classes use unsafe type conversions possibly leading to invalid memory

accesses.

To extend this same basic scheme to support dependency injection

would require parsing the implementation classes as well and reifying this type

information. Basically, the result would be close to a introspection support and

there would be no reason not to generalize it to a general-purpose introspection

framework.

Our extension is based on SelfPortrait, a general-purpose C++ intro-

spection library that is capable of instantiating objects, reading and writing

attributes and calling methods. It also supports dynamic proxies similar to

those supported by Java.

The structural classes in our extension are very similar to the ones of the

existing extension. It is in the implementation of proxies and wrappers that

our extension diverges.

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

Chapter 5. Service Component Architecture 90

Our implementation of the ServiceWrapper class, IoCServiceWrapper,

loads the shared library that contains a component and tries to locate the

meta-object that describes the implementation class using the reflection API.

This meta-object is then used to create an instance of that class using the

default constructor. We could have implemented constructor injection, but

that would require changing the XML language supported by Tuscany native.

The next step is to inject configuration values from the composite file based

in the property names. Attribute and setter injection are supported. The final

step of the initialization phase is to inject the service references. These can

also be injected directly into public attributes or setter methods. The injection

is done locating the corresponding attribute or method meta-objects based on

the property names. When the service wrapper receives a request, it tries to

find a meta-object for a method that has the same name as the operation and

that has an appropriate signature. It then invokes this method using the meta

object.

Our implementation of the ServiceProxy class, IoCServiceProxy, relies

on dynamic proxies to provide implementations of service interfaces. During

the initialization phase, this class locates the class meta-object that describes

the interface class and creates a proxy for it. For each method, this proxy

is configured to serialize its arguments to an Operation object that is then

handed to a service wrapper.

In addition to dependency injection, our scheme has the advantage

that pre-compiled shared libraries can be loaded without modifications. The

introspection meta-data can be compiled to a second shared library and

loaded separately. The possibility of separating component shared libraries

and reflection shared libraries is a trait we share with Trentino.

5.5
Results

To demonstrate the difference in component development using the

existing C++ extension and our new extension, we will use a sample component

present in Tuscany native’s distribution. Listing 5.5.1 shows a calculator

service that depends on an external service to perform divisions. In this

example, we can see that the component has to include an external SCA

header file. This include is necessary to get access to a ComponentContext

object that is then used to retrieve a reference to the division service. The

ComponentContext context acts as a key-value collection where the keys are

the property names given in the composite file. It is worthwhile to note that

the ComponentContext::getService method returns a void* pointer that

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

Chapter 5. Service Component Architecture 91

must be cast to the expected interface type. This cast can fail for two reasons,

both with catastrophic consequences. The first and most obvious reason for

the conversion from void* to Divide* to fail is that the pointer may actually

point to something else. This cast can also fail in a more subtle way if the

API implementation is not careful. If the API implementation puts a pointer

to the implementation class in the key-value storage instead of a pointer to

the interface, the conversion can fail. If the implementation class happens to

implement several interfaces, pointers to the same object but with different

types can actually point to memory locations that are a few words apart. This

problem can be avoided if the runtime uses a static_cast to convert the

implementation class pointer to the interface pointer prior to its insertion in

the ComponentContext.

1 #include "Divide.h"

2 #include "Calculator.h"

3 #include "osoa/sca/ComponentContext.h"

4

5 class CalculatorImpl : public Calculator

6 {

7 public:

8 CalculatorImpl() {}

9 virtual ~CalculatorImpl() {}

10

11 virtual float add(float arg1, float arg2) { return arg1 + arg2; }

12 virtual float sub(float arg1, float arg2) { return arg1 - arg2; }

13 virtual float mul(float arg1, float arg2) { return arg1 * arg2; }

14 virtual float div(float arg1, float arg2) {

15 float result = 0;

16

17 osoa::sca::ComponentContext myContext =

18 osoa::sca::ComponentContext::getCurrent();

19

20 Divide* divideService = reinterpret_cast<Divide*>(

21 myContext.getService("divideService")

22);

23

24 return divideService->divide(arg1, arg2);

25 }

26 };

Listing 5.5.1: A tuscany native component

Listing 5.5.2 shows the composite file for this component. Note

that the original C++ implementation extension is selected using the

<implementation.cpp> element. Also notice that the name given in the

<reference> element is used by the runtime as a key in the Component-

Context

Tuscany native also requires a componentType file for each component

instantiated in the composite file. This file contains a description of the compo-

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

Chapter 5. Service Component Architecture 92

1 <composite xmlns="http://www.osoa.org/xmlns/sca/1.0"

2 name="sample.calculator">

3 <component name="CalculatorComponent">

4 <implementation.cpp library="Calculator" header="CalculatorImpl.h"/>

5 <reference name="divideService">

6 DivideComponent/DivideService

7 </reference>

8 </component>

9

10 <component name="DivideComponent">

11 <implementation.cpp library="Calculator" header="DivideImpl.h"/>

12 </component>

13 </composite>

Listing 5.5.2: The old composite file

nent’s services and references and their interface. Listing 5.5.3 shows the com-

ponentType file for the calculator component. Notice the <interface.cpp>

element selecting the original C++ interface extension.

1 <componentType xmlns="http://www.osoa.org/xmlns/sca/1.0">

2

3 <service name="CalculatorService">

4 <interface.cpp header="Calculator.h"/>

5 </service>

6

7 <reference name="divideService">

8 <interface.cpp header="Divide.h"/>

9 </reference>

10 </componentType>

Listing 5.5.3: The old component type file

Having seen the original component sample, let us now turn our attention

to the component developed for our C++ implementation extension. Listing

5.5.4 shows the same component with a few modifications. The only header

file inclusions left are for application- specific header files. We have added a

pointer attribute to a Divide* object and a setter method. These two elements

can be referenced in the configuration file to configure the divideService and

pi attributes using setter injection and attribute injection respectively. The

division method now simply uses this pointer to call the division service. When

this component is created, the implementation extension takes the reference

name and tries to find an attribute with the same name or a setter method

whose name follows Java’s setter names rule. In this example, it will use

the setDivideService method for setter injection. We have also added a

public attribute for a property just to demonstrate attribute injection. An

important difference is that the runtime is now responsible for checking that

properties and references are of the correct type. In our implementation, this

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

Chapter 5. Service Component Architecture 93

is done at runtime. If the types do not match, an exception is thrown and

the configuration phase is aborted. We have omitted the source listings for the

Divide interface and a possible implementation because they are trivial.

1 #include "Divide.h"

2 #include "Calculator.h"

3

4 class CalculatorImpl : public Calculator

5 {

6 public:

7 CalculatorImpl() {}

8 virtual ~CalculatorImpl() {}

9

10 virtual float add(float arg1, float arg2) { return arg1 + arg2; }

11 virtual float sub(float arg1, float arg2) { return arg1 - arg2; }

12 virtual float mul(float arg1, float arg2) { return arg1 * arg2; }

13 virtual float div(float arg1, float arg2) {

14 return divideService->divide(arg1, arg2);

15 }

16 virtual float circleArea(float radius) {

17 return pi*(radius*radius);

18 }

19

20 // setter injection

21 void setDivideService(Divide* d) { divideService = d; }

22

23 // attribute injection

24 float pi = 3.14;

25 private:

26 Divide* divideService;

27 };

Listing 5.5.4: A tuscany native component with dependency injection

Listing 5.5.5 shows the modified composite file. The main difference is

the use of the <implementation.ioc> element to select our extension. The

attributes of this elements are the same except for the addition of the class

attribute that must contain the name of the implementation class that will be

used to locate the class using the SelfPortrait reflection API.

The component type file also suffered a few modifications, as shown

in Listing 5.5.6. The primary difference is the use of the <interface.ioc>

element to select our interface extension. The <class> attribute contains the

name of the interface class that is used to locate the meta-object that represents

it. This meta-object is used to build the dynamic proxies that are injected into

component references. Also, the optional metadata attribute is used to load a

separate shared library that contains the compiled meta-data.

The difference at the physical level can be seen by the output of a

command like Linux’s ldd, that lists dependencies on shared objects as shown

in Listing 5.5.7. From this listing, we can see that the original component

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

Chapter 5. Service Component Architecture 94

1 <composite xmlns="http://www.osoa.org/xmlns/sca/1.0"

2 name="sample.calculator">

3

4 <component name="CalculatorComponent">

5 <implementation.ioc library="Calculator" metadata="Calculator-md"

6 header="CalculatorImpl.h" class="CalculatorImpl"/>

7 <reference name="divideService">DivideComponent/DivideService</reference>

8 <property name="pi">5</property>

9 </component>

10

11 <component name="DivideComponent">

12 <implementation.ioc library="Calculator" metadata="Calculator-md"

13 header="DivideImpl.h" class="DivideImpl"/>

14 </component>

15

16 </composite>

Listing 5.5.5: The new composite file

1 <componentType xmlns="http://www.osoa.org/xmlns/sca/1.0"

2 xmlns:xs="http://www.w3.org/2001/XMLSchema">

3

4 <service name="CalculatorService">

5 <interface.ioc header="Calculator.h" class="Calculator"/>

6 </service>

7

8 <reference name="divideService">

9 <interface.ioc header="Divide.h" class="Divide"/>

10 </reference>

11

12 <property name="pi" type="xs:integer">3</property>

13 </componentType>

Listing 5.5.6: The new component type file

depends on several of Tuscany’s libraries while the new component depends

solely on a few system libraries. The meta-data shared library depends only

on our introspection library and on the component file. It does not depend on

the Tuscany runtime so it can be reused in other contexts as well.

From a quantitative standpoint, there are two things we can compare:

the code size and the performance overhead. In table 5.1, we can see the sizes

of the original component shared library file and the new one, along with the

meta-data file. While the component file without meta-data is smaller than the

original file, the meta-data file is quite large. There are several reasons why the

meta-data files are bigger than the component file. First of all, the component

contains almost no code, so there is actually much more code to handle the

generic use of the component’s interface than in actual methods. In a real-

world application, the component code would be much bigger, leading to a

smaller overhead. Another reason for this size is that the reflection library uses

template container classes from the standard library leading to the generation

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

Chapter 5. Service Component Architecture 95

1 # Original

2 #> ldd libCalculator.so.0.0.0

3 linux-vdso.so.1

4 libtuscany_sca.so.0

5 libtuscany_sca_cpp.so.0

6 libstdc++.so.6

7 libm.so.6

8 libc.so.6

9 libgcc_s.so.1

10 libtuscany_sdo.so.0

11 libpthread.so.0

12 /usr/lib/ld-linux-x86-64.so.2

13 libxml2.so.2

14 libdl.so.2

15 libz.so.1

16 liblzma.so.5

17

18 # New component

19 #> ldd libCalculator.so

20 linux-vdso.so.1

21 libstdc++.so.6 => /usr/lib/libstdc++.so.6

22 libm.so.6 => /usr/lib/libm.so.6

23 libgcc_s.so.1 => /usr/lib/libgcc_s.so.1

24 libc.so.6 => /usr/lib/libc.so.6

25 /usr/lib/ld-linux-x86-64.so.2

26

27 # New component meta-data

28 #> ldd libCalculator-md.so

29 linux-vdso.so.1

30 libselfportrait.so

31 libCalculator.so

32 libstdc++.so.6

33 libm.so.6

34 libgcc_s.so.1

35 libc.so.6

36 /usr/lib/ld-linux-x86-64.so.2

Listing 5.5.7: Physical dependencies

of code in the meta-data shared object file. Finally, for each type of method

argument, an internal template of the VariantValue class is instantiated

leading to more code generation. However, as more interfaces and methods

are introspected, it is likely that the same type will be used many times, but

generating code only once.

Table 5.1: Space comparison

File size

Original libCalculator.so 29752 B
New libCalculator.so 8000 B
Meta-data libCalculator-md.so 138792 B

To compare the performance of the new and the old Tuscany bindings,

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

Chapter 5. Service Component Architecture 96

we ran a test where the division method was called 10 million times for

each component version. We measured the processor use using the clock

Unix system call. In our extension, we implemented an optimization where

direct method calls are used if the two components are written in C++ and

are hosted by the same process. In table 5.2, we can see that the direct

method call is by far the fastest. In second place comes Tuscany’s original

method call mechanism. The slowest method call is using dynamic proxies. This

happens because with the dynamic proxy approach there is much more work

involved. Tuscany’s pre-compiled code just takes its arguments, constructs

an Operation object, and calls the connected ServiceWrapper. The proxy

version must find out dynamically what argument types are to construct an

operation Object. After this, our ServiceWrapper takes this serialized request

and builds an introspective call frame. What makes this inefficient is that we

must convert twice between SelfPortrait’s representation of method calls

and Tuscany’s. Changing Tuscany’s implementation, the call sequence would

require at most one introspective method call and would, therefore, be much

more efficient.

Table 5.2: Division method call
Kind of method call result (CPU cycles)

Original 15360000
New with direct method calls 50000
New with proxy method calls 160770000

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

6
Conclusion

In this work, we have shown that it is possible to develop native

components that are independent of the underlying infrastructure. We have

shown how dependency injection can be used to cut certain kinds of source-

level dependencies resulting in less physical dependencies between modules.

Native components are useful in more constrained environments, or when a

greater power efficiency is needed. In addition, a middleware, as described in

this dissertation, could ease the integration of native legacy code.

Of course, a barrier to a more widespread adoption of native components

for service-based systems is precisely the fact that they have to be compiled

for every computer architecture they will be deployed to. However, there

are some interesting developments in that direction. For example, Google’s

Portable Native Client (pNaCL) [74] allows to deploy C++ programs in the

form of LLVM’s bytecode that is the locally JIT-compiled to native code. This

technology could potentially be reused as the base of C++ application servers.

Another work in this direction is dlSBRT by Al-Gahmi and Cook [1]. They

describe a mechanism to provide low-level services to applications such as

meta-data, call-graph instrumentation, or more conventional services, such an

LDAP directory services. These services can intercept events in the application

lifetime, such as the resolution of symbols. This could be used, for example, by

a security manager service to prevent the linking to a symbol that represents

a more privileged functionality, like writing to a file. dlSBRT is built as an

extension operating the system’s dynamic linker to provide a more dynamic and

configurable environment. We see these two works and ours as complimentary

in building a more flexible environment for native services. pNaCl provides the

necessary portability required to support multiple deployment environments.

dlSBRT could be used to provide more dynamic infrastructure services. For

example, dlSBRT could be a great mechanism to load SelfPortrait meta-

data into the running application, by intercepting the references to meta-data

symbols, only the meta-data that is actually used would be loaded, reducing

the meta-data memory footprint. Conversely, our work in dependency injection

could be used to inject dlSBRT services into applications in a way that is more

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

Chapter 6. Conclusion 98

configurable and without source-level dependencies.

Another potentially interesting experiment would be to apply the work

of Dubey and colleagues to SCA C++ with D.I [32]. They describe the work

that was necessary to create a real-time component framework starting with

CCM and a ARINC-653, a real-time operating system. On one hand, real-time

components usually require fast and predictable response times and, therefore,

are usually developed in low-level languages. On the other hand, the use of

CCM introduces a lot of complexity and source-level dependencies. It would be

interesting to verify how far we can go with the dependency injection approach,

considering that these components have strong requirements on the quality of

the infrastructure services.

Finally, although XML is a good language for the declarative configuration

of applications, despite being overly verbose, it is too rigid when a more

dynamic behavior is required. As demonstrated by Cerqueira [15], a lightweight

scripting language with dynamic typing such as Lua [50] can be very useful

for gluing together components, even when written for different component

frameworks and in different languages. Lua supports a very clean declarative

syntax when needed, but also has support for control flow statements that

could allow to write composition files with conditional statements. For example,

instead of maintaining two composition files for slightly different environments,

as is required with SCA’s composition language, with Lua, the configuration

script could sense the environment to configure the application accordingly.

This is why we have also written a Lua binding for the SelfPortrait API.

Indeed, with this binding, we can extend Cerqueira’s approach to purely local

components written in different languages. With the LuaJ binding and ours,

Lua has access to both C++ and Java dynamic proxies and could be used to

bridge the communication between Java and C++ objects.

There is still a lot of room for improvement. Regarding the introspection

library, maybe the most important issue to be resolved is the size of reflection

meta-data. JIT compilation has the potential to reduce greatly the amount of

space used by compiling only the code that is actually required. In addition, it

could be used to produce faster method call code by eliminating run-time type

checking in situations where the arguments types are known. As for the SCA

container for C++ with dependency injection, another interesting possibility

would be building a version of the Frascati [84] component model, which is

an extension of SCA, for C++.

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

Bibliography

[1] AL-GAHMI, A.; COOK, J. A service-based runtime environment for native

applications. Softw. Pract. Exper., v.40, n.1, p. 73–100, Jan. 2010.

[2] ALEXANDRESCU, A. Modern C++ Desing. Addison-Wesley, 2001.

[3] ALEXANDRESCU, A. Discriminated unions. C/C++ Users Journal,

April 2002.

[4] ARMSTRONG, J. Generative Programming. 2003. Phd. thesis, Royal

Institute of Technology, Sweden.

[5] AYCOCK, J. A brief history of just-in-time. ACM Comput. Surv., v.35,

p. 97–113, June 2003.

[6] BAUSET, V. F.; ORDUNA, J. M. ; MORILLO, P. Performance

characterization on mobile phones for collaborative augmented

reality (car) applications. In: proceedings of the 2011 ieee/acm 15th

international symposium on distributed simulation and real time applications,

DS-RT ’11, p. 52–53, Washington, DC, USA, 2011. IEEE Computer Society.

[7] BECKER, T. On the tension between object-oriented and generic

programming in c++ and what type erasure can do about it.

http://www.artima.com/cppsource/type_erasure2.html.

[8] BENNACEUR, A.; S. BLAIR, G.; CHAUVEL, F.; GEORGANTAS, N.;

GRACE, P.; ISSARNY, V.; NUNDLOLL, V.; PAOLUCCI, M.; SAADI,

R. ; SYKES, D. Feb. 2011. Research report.

[9] BERRIS, D. M.; AUSTERN, M. ; CROWL, L. N3340 rich point-

ers. http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/

n3340.pdf, 2012.

[10] BOOCH, G. Software Component with ADA. 1st. ed., Redwood City,

CA, USA: Benjamin-Cummings Publishing Co., Inc., 1987.

[11] boost c++ libraries. http://www.boost.org/.

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

Bibliography 100

[12] BOSCH, J.; SZYPERSKI, C. A. ; WECK, W. 2nd workshop on

component-oriented programming (wcop’97). In: proceedings of the

workshops on object-oriented technology, ECOOP ’97, p. 323–326, London,

UK, UK, 1998. Springer-Verlag.

[13] BRACHA, G.; UNGAR, D. Mirrors: design principles for meta-level facilities

of object-oriented programming languages. SIGPLAN Not., v.39, n.10, p.

331–344, Oct. 2004.

[14] BROMBERG, D.; GRACE, P. ; RÉVEILLÈRE, L. Starlink: runtime

interoperability between heterogeneous middleware protocols.

In: The 31st International Conference on Distributed Computing Systems

(ICDCS 2011), Minneapolis, États-Unis, June 2011.

[15] CERQUEIRA, R. A Dynamic Composition Model for Component

Systems. 2000. Phd. thesis, Pontif́ıcia Universade Católica do Rio de Janeiro.

[16] CHIBA, S. A metaobject protocol for c++. SIGPLAN Not., v.30, n.10,

p. 285–299, Oct. 1995.

[17] CHIBA, S. Load-time structural reflection in java. In: proceedings of

the 14th european conference on object-oriented programming, ECOOP ’00,

p. 313–336, London, UK, UK, 2000. Springer-Verlag.

[18] CHIBA, S.; ISHIKAWA, R. Aspect-oriented programming beyond

dependency injection. In: proceedings of the 19th european conference

on object-oriented programming, ECOOP’05, p. 121–143, Berlin, Heidelberg,

2005. Springer-Verlag.

[19] CHOCHLIK, M. Portable reflection for c++ with mirror. Journal of

Information and Organizational Sciences, v.36, n.1, 2012.

[20] CHUANG, T.-R.; KUO, Y. S. ; WANG, C.-M. Non-intrusive object

introspection in c++: architecture and application. In: proceedings

of the 20th international conference on software engineering, ICSE ’98, p.

312–321, Washington, DC, USA, 1998. IEEE Computer Society.

[21] clang c language family frontend for llvm. http://clang.llvm.

org/.

[22] CLARKE, C. L. A.; MASON, D. V. Compacting garbage collection can be

fast and simple. Softw. Pract. Exper., v.26, n.2, p. 177–194, Feb. 1996.

[23] Cling c++ interpreter. http://root.cern.ch/drupal/content/

cling.

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

Bibliography 101

[24] Msdn: Reflection in c++. http://msdn.microsoft.com/en-us/

library/y0114hz2(v=vs.80).aspx.

[25] CLUGSTON, D. http://www.codeproject.com/articles/7150/member-

function-pointers-and-the-fastest-possible. http://clang.llvm.

org/.

[26] CORBA. http://www.omg.org/corba.

[27] COULSON, G.; BLAIR, G.; GRACE, P.; TAIANI, F.; JOOLIA, A.; LEE,

K.; UEYAMA, J. ; SIVAHARAN, T. A generic component model for

building systems software. ACM Transactions on Computer Systems,

v.26, n.1, p. 1–42, 2008.

[28] CZARNECKI, K. Generative Programming. 1998. Phd. thesis,

Technical University of Ilmenau.

[29] CZARNECKI, K.; EISENECKER, U. W. Generative program-

ming: methods, tools, and applications. New York, NY, USA: ACM

Press/Addison-Wesley Publishing Co., 2000.

[30] DEARLE, A. Software deployment, past, present and future. In:

2007 future of software engineering, FOSE ’07, p. 269–284, Washington, DC,

USA, 2007. IEEE Computer Society.

[31] DEVADITHYA, T.; CHIU, K. ; LU, W. C++ reflection for high

performance problem solving environments. In: proceedings of the

2007 spring simulation multiconference - volume 2, SpringSim ’07, p. 435–440,

San Diego, CA, USA, 2007. Society for Computer Simulation International.

[32] DUBEY, A.; KARSAI, G. ; MAHADEVAN, N. A component model for

hard real-time systems: Ccm with arinc-653. Softw. Pract. Exper., v.41,

n.12, p. 1517–1550, Nov. 2011.

[33] FLORES, C.; GRACE, P. ; BLAIR, G. S. Sedim: A middleware framework

for interoperable service discovery in heterogeneous networks. ACM Trans.

Auton. Adapt. Syst., v.6, p. 6:1–6:8, February 2011.

[34] FOUNDATION, M. XPCOM. https://developer.mozilla.org/en/

XPCOM.

[35] FOWLER, M. http://martinfowler.com/bliki/

InversionOfControl.html.

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

Bibliography 102

[36] FOWLER, M. Inversion of control containers and the dependency

injection pattern. http://martinfowler.com/articles/injection.

html.

[37] Refactoring: improving the design of existing code. Boston, MA,

USA: Addison-Wesley Longman Publishing Co., Inc., 1999.

[38] GAMMA, E.; HELM, R.; JOHNSON, R. ; VLISSIDES, J. Design

patterns: elements of reusable object-oriented software. Boston,

MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1995.

[39] GIBBS, M.; STROUSTRUP, B. Fast dynamic casting. Softw. Pract.

Exper., v.36, n.2, p. 139–156, Feb. 2006.

[40] Google guice. http://code.google.com/p/google-guice/.

[41] HA, J.; CHO, K. ; YANG, H. S. Scalable recognition and tracking

for mobile augmented reality. In: proceedings of the 9th acm siggraph

conference on virtual-reality continuum and its applications in industry, VRCAI

’10, p. 155–160, New York, NY, USA, 2010. ACM.

[42] HALL, R.; PAULS, K.; MCCULLOCH, S. ; SAVAGE, D. Osgi in

Action: Creating Modular Applications in Java. 1st. ed., Greenwich,

CT, USA: Manning Publications Co., 2011.

[43] HAMILTON, J. Overall data center costs. http://perspectives.

mvdirona.com/2010/09/18/OverallDataCenterCosts.aspx.

[44] HASSOUN, Y.; JOHNSON, R. ; COUNSELL, S. Reusability, open

implementation and java’s dynamic proxies. In: proceedings of the

2nd international conference on principles and practice of programming in

java, PPPJ ’03, p. 3–6, New York, NY, USA, 2003. Computer Science Press,

Inc.

[45] HASSOUN, Y.; JOHNSON, R. ; COUNSELL, S. Applications of dynamic

proxies in distributed environments. Softw. Pract. Exper., v.35, n.1, p.

75–99, Jan. 2005.

[46] Heineman, G. T.; Councill, W. T., editors. Component-based software

engineering: putting the pieces together. Boston, MA, USA: Addison-

Wesley Longman Publishing Co., Inc., 2001.

[47] HENNEY, K. Valued conversions. C++ Report, July-August 2000.

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

Bibliography 103

[48] Hiphop. http://www.facebook.com/notes/facebook-engineering/

hiphop-for-php-more-optimizations-for-efficient-servers/

10150121348198920.

[49] HOFSTADTER, D. R. Godel, Escher, Bach: An Eternal Golden

Braid. New York, NY, USA: Basic Books, Inc., 1979.

[50] IERUSALIMSCHY, R. Programming in Lua. Lua.org, second. ed.,

2006.

[51] ISO/IEC 14882:2011. Information technology – Programming lan-

guages – C++. ISO, Geneva, Switzerland, 2011.

[52] ISSARNY, V.; BENNACEUR, A. ; BROMBERG, Y.-D. Middleware-

layer Connector Synthesis: Beyond State of the Art in Mid-

dleware Interoperability. In: Bernardo, M.; Issarny, V., editors, 11th

International School on Formal Methods for the Design of Computer, Com-

munication and Software Systems: Connectors for Eternal Networked Software

Systems, volume 6659 of Lecture notes in computer science, p. 217–

255. Springer, 2011.

[53] JUNG, J.; HONG, J.; PARK, S. ; YANG, H. S. Smartphone as

an augmented reality authoring tool via multi-touch based 3d

interaction method. In: proceedings of the 11th acm siggraph international

conference on virtual-reality continuum and its applications in industry, VRCAI

’12, p. 17–20, New York, NY, USA, 2012. ACM.

[54] KENDALL, S. C.; WALDO, J.; WOLLRATH, A. ; WYANT, G. Mountain

View, CA, USA: . 1994. Technical report.

[55] KICZALES, G.; RIVIERES, J. D. The Art of the Metaobject

Protocol. Cambridge, MA, USA: MIT Press, 1991.

[56] KNIZHNIK, K. Reflection for c++. http://www.garret.ru/

cppreflection/docs/reflect.html.

[57] KNOERNSCHILD, K. Java Application Architecture: Modularity

Patterns with Examples Using OSGi. Upper Saddle River, NJ, USA:

Prentice Hall Press, 2012.

[58] LAKOS, J. Large-scale C++ software design. Redwood City, CA,

USA: Addison Wesley Longman Publishing Co., Inc., 1996.

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

Bibliography 104

[59] LAWS, S.; COMBELLACK, M.; FENG, R.; MAHBOD, H. ; NASH, S.

Tuscany SCA in Action. Greenwich, CT, USA: Manning Publications

Co., 2011.

[60] LEE, A. H.; ZACHARY, J. L. Reflections on metaprogramming. IEEE

Trans. Softw. Eng., v.21, n.11, p. 883–893, Nov. 1995.

[61] LISKOV, B. H.; WING, J. M. A behavioral notion of subtyping. ACM

Trans. Program. Lang. Syst., v.16, n.6, p. 1811–1841, Nov. 1994.

[62] MADRILES, C.; LÓPEZ, P.; CODINA, J. M.; GIBERT, E.; LATORRE,

F.; MARTINEZ, A.; MARTINEZ, R. ; GONZALEZ, A. Boosting

single-thread performance in multi-core systems through fine-

grain multi-threading. In: proceedings of the 36th annual international

symposium on computer architecture, ISCA ’09, p. 474–483, New York, NY,

USA, 2009. ACM.

[63] MAES, P. Concepts and experiments in computational reflection. SIG-

PLAN Not., v.22, n.12, p. 147–155, Dec. 1987.

[64] MARTIN, R. C. Agile Software Development: Principles, Pat-

terns, and Practices. Upper Saddle River, NJ, USA: Prentice Hall PTR,

2003.

[65] MCILROY, M. MASS PRODUCED SOPTWARE COMPO-

NENTS. In: software engineering, report on a conference sponsored by

the nato science committee, p. 684–693. Scientific Affairs Division, NATO,

1968.

[66] Native client. https://developers.google.com/native-client/overview.

[67] NAKAZAWA, J.; TOKUDA, H.; EDWARDS, W. K. ; RAMACHAN-

DRAN, U. A bridging framework for universal interoperability in

pervasive systems. In: in pervasive systems”, icdcs 2006. IEEE Computer

Society, 2006.

[68] NICART, F. Towards scalable virtuality in c++. Softw. Pract. Exper.,

v.38, n.14, p. 1451–1473, Nov. 2008.

[69] Object Management Group, Needham, EUA. CORBA Component

Model Specification - Version 4.0, Apr. 2006. document: formal/2006-

04-01.

[70] PARNAS, D. L. On the criteria to be used in decomposing systems into

modules. Commun. ACM, v.15, n.12, p. 1053–1058, Dec. 1972.

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

Bibliography 105

[71] PETTER, M.; FRAGOSO, V.; TURK, M. ; BAUR, C. Automatic text

detection for mobile augmented reality translation. In: computer

vision workshops (iccv workshops), 2011 ieee international conference on, p.

48–55, 2011.

[72] PICHLER, R.; OSTERMANN, K. ; MEZINI, M. On aspectualizing

component models. Software: Practice and Experience, v.33, n.10,

p. 957–974, 2003.

[73] Picocontainer. http://picocontainer.codehaus.org/.

[74] Portable native client. http://www.chromium.org/nativeclient/pnacl/building-

and-testing-portable-native-client.

[75] Pococapsule. http://code.google.com/p/pococapsule/.

[76] PRENEY, P. Applying std::tuple to functors efficiently. http:

//preney.ca/paul/archives/486.

[77] PUGH, K. Interface-Oriented Design (Pragmatic Programmers).

Pragmatic Bookshelf, 2006.

[78] Qt library. http://doc.qt.nokia.com/4.7/.

[79] RAZINA, E.; JANZEN, D. Effects of dependency injection on

maintainability. In: proceedings of the 11th iasted international conference

on software engineering and applications, SEA ’07, p. 7–12, Anaheim, CA,

USA, 2007. ACTA Press.

[80] ROISER, S.; MATO, P. The seal c++ reflection system. In:

proceedings of chep’04, interlaken, switzerland, 24 sep – 1 oct 2004, cern-

2005-02, vol 1, p. 437 international standard; programming languages – c++;

iso/iec 14882:2003(e); second edition 2003-10-15; iso, ch-1211 geneva 20,

2004.

[81] ROSA, R. E. V.; LUCENA, JR., V. F. Smart composition of reusable

software components in mobile application product lines. In:

proceedings of the 2nd international workshop on product line approaches

in software engineering, PLEASE ’11, p. 45–49, New York, NY, USA, 2011.

ACM.

[82] SAMETINGER, J. Software engineering with reusable compo-

nents. New York, NY, USA: Springer-Verlag New York, Inc., 1997.

[83] Sca. http://oasis-opencsa.org/sca.

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

Bibliography 106

[84] SEINTURIER, L.; MERLE, P.; ROUVOY, R.; ROMERO, D.; SCHI-

AVONI, V. ; STEFANI, J.-B. A component-based middleware platform

for reconfigurable service-oriented architectures. Softw. Pract. Exper.,

v.42, n.5, p. 559–583, May 2012.

[85] SMITH, B. C. Procedural Reflection in Programming Languages.

2 1982. PhD thesis, Massachussetts Institute of Technology.

[86] SOAP. http://www.w3.org/TR/soap/.

[87] SOBERNIG, S.; ZDUN, U. Inversion-of-control layer. In: proceedings

of the 15th european conference on pattern languages of programs, EuroPLoP

’10, p. 21:1–21:22, New York, NY, USA, 2010. ACM.

[88] SOMMERVILLE, I. Software engineering (5th ed.). Redwood City,

CA, USA: Addison Wesley Longman Publishing Co., Inc., 1995.

[89] The spring framework for java. http://www.springsource.org/

spring-framework#documentation.

[90] SULISZ, C.; SEELING, P. An off-the-shelf wearable hud system

for support in indoor environments. In: proceedings of the 11th

international conference on mobile and ubiquitous multimedia, MUM ’12,

p. 60:1–60:4, New York, NY, USA, 2012. ACM.

[91] SUTTER, H. Why c++. http://channel9.msdn.com/posts/

C-and-Beyond-2011-Herb-Sutter-Why-C, 2011.

[92] SZYPERSKI, C. Component Software: Beyond Object-Oriented

Programming. 2nd. ed., Boston, MA, USA: Addison-Wesley Longman

Publishing Co., Inc., 2002.

[93] Trentino. http://trentino.sourceforge.net/.

[94] TRUYEN, E.; CARDOZO, N.; WALRAVEN, S.; VALLEJOS, J.; BAINO-

MUGISHA, E.; GÜNTHER, S.; D’HONDT, T. ; JOOSEN, W. Context-

oriented programming for customizable saas applications. In: pro-

ceedings of the 27th annual acm symposium on applied computing, SAC ’12,

p. 418–425, New York, NY, USA, 2012. ACM.

[95] Tuscany. http://tuscany.apache.org/.

[96] UDELL, J. Componentware. BYTE Magazine, v.19, n.5, p. 46–56, may

1994.

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

Bibliography 107

[97] VELDHUIZEN, T. Using template metaprograms. C++ Report, v.7, p.

26–3, May 1995.

[98] WALRAVEN, S.; TRUYEN, E. ; JOOSEN, W. A middleware layer

for flexible and cost-efficient multi-tenant applications. In: pro-

ceedings of the 12th acm/ifip/usenix international conference on middleware,

Middleware’11, p. 370–389, Berlin, Heidelberg, 2011. Springer-Verlag.

DBD
PUC-Rio - Certificação Digital Nº 1021799/CB

	Introduction
	Coarse-grained Units of Reuse: Modules, Libraries, Components and Services
	Modules
	Libraries
	Services
	Components
	Modularity Patterns and Packaging

	Dependency Injection
	Object oriented transients and steady state
	Dependency injection frameworks
	The benefits of dependency injection

	Reflection
	Introspection in Java
	Introspection in C++
	Existing introspective features of C++
	Runtime type introspection
	Compile-time introspection

	The SelfPortrait extension
	Proposed reflection API
	Opaque handling of types
	Call Forwarding
	Dynamic proxies
	Meta-data Declarations

	Evaluation
	Conclusion

	Service Component Architecture
	The Model
	Components
	Bindings
	Interfaces

	SCA and dependency injection
	Tuscany native
	Proposed changes and implementation
	Results

	Conclusion
	Bibliography

