
Aline Medeiros Saettler

On the Simultaneous Minimization of Worst
Testing Cost and Expected Testing Cost with

Decision Trees

DISSERTAÇÃO DE MESTRADO

Dissertation presented to the Programa de Pós-Graduação em
Informática of the Departamento de Informática, PUC–Rio as
partial fulfillment of the requirements for the degree of Mestre
em Informática

Advisor: Prof. Eduardo Sany Laber

Rio de Janeiro
August 2013

DBD
PUC-Rio - Certificação Digital Nº 1121785/CA

Aline Medeiros Saettler

On the Simultaneous Minimization of Worst
Testing Cost and Expected Testing Cost with

Decision Trees

Dissertation presented to the Programa de Pós-Graduação em
Informática of the Departamento de Informática do Centro
Técnico Científico da PUC-Rio, as partial fulfillment of the
requirements for the degree of Mestre.

Prof. Eduardo Sany Laber
Advisor

Departamento de Informática — PUC–Rio

Prof. Hélio Côrtes Vieira Lopes
Departamento de Informática — PUC-Rio

Prof. Ruy Luiz Milidiú
Departamento de Informática — PUC-Rio

Prof. José Eugenio Leal
Coordinator of the Centro Técnico Científico — PUC–Rio

Rio de Janeiro, August 23th, 2013

DBD
PUC-Rio - Certificação Digital Nº 1121785/CA

All rights reserved.

Aline Medeiros Saettler

Aline Medeiros Saettler obtained a bachelor’s degree in Com-
puter Science from the Federal University of Espírito Santo
(Vitória, Brazil). During her undergraduate years she held a
scholarship from the university to study interactive applicati-
ons for digital television. She also earned a scholarship from
CAPES to do her masters at PUC-Rio.

Bibliographic data

Saettler, Aline Medeiros

On the Simultaneous Minimization of Worst Testing Cost
and Expected Testing Cost with Decision Trees / Aline
Medeiros Saettler ; advisor: Eduardo Sany Laber. — 2013.

51 f. : il. ; 30 cm

Dissertação (Mestrado em Informática)-Pontifícia Univer-
sidade Católica do Rio de Janeiro, Rio de Janeiro, 2013.

Inclui bibliografia

1. Informática – Teses. 2. Análise de algoritmos;. 3. otimi-
zação combinatória;. 4. algoritmos de aproximação;. 5. árvores
de decisão.. I. Laber, Eduardo Sany. II. Pontifícia Universidade
Católica do Rio de Janeiro. Departamento de Informática. III.
Título.

CDD: 004

DBD
PUC-Rio - Certificação Digital Nº 1121785/CA

Acknowledgments

To my family, who is always with me, even from afar.
To my advisor, Eduardo Laber, for the guidance and support, and for

being a source of inspiration to me.
To my friends: those from PUC-Rio, who accompanied me during these

two years, and those from Vitória, who helped me to get where I am today.

DBD
PUC-Rio - Certificação Digital Nº 1121785/CA

Abstract

Saettler, Aline Medeiros; Laber, Eduardo Sany (Advisor). On the Si-
multaneous Minimization of Worst Testing Cost and Expected
Testing Cost with Decision Trees . Rio de Janeiro, 2013. 51p. MSc
Dissertation — Departamento de Informática, Pontifícia Universidade
Católica do Rio de Janeiro.

The problem of minimizing the cost of evaluating a discrete function
by sequentially reading its variables is a problem that arises in several
applications, among them automatic diagnosis design and active learning. In
this problem, each variable of the function is associated with a cost, that we
have to pay in order to check its value. In addition, there may exist a probability
distribution associated with the points where the function is defined. Most of
the work in the area has focussed either on the minimization of the maximum
cost or on the minimization of the expected cost spent to evaluate the function.
In this dissertation, we show how to obtain an O(log n) approximation with
respect to the worst case minimization (the best possible approximation under
the assumption that P 6= NP). We also show a polynomial time procedure
for evaluate a function that simultaneously optimizes both the worst and the
expected costs.

Keywords
Analysis of Algorithms; combinatorial optimization; approximation

algorithms; decision trees.

DBD
PUC-Rio - Certificação Digital Nº 1121785/CA

Resumo

Saettler, Aline Medeiros; Laber, Eduardo Sany. Minimização Simul-
tânea do Pior Custo e do Custo Médio em Árvores de Decisão.
Rio de Janeiro, 2013. 51p. Dissertação de Mestrado — Departamento de
Informática, Pontifícia Universidade Católica do Rio de Janeiro.

O problema de minimizar o custo de avaliar uma função discreta lendo
sequencialmente as suas variáveis é um problema que surge em diversas
aplicações, entre elas sistemas de diagnóstico automático e aprendizado ativo.
Neste problema, cada variável da função está associada a um custo, que se deve
pagar para checar o seu valor. Além disso, pode existir uma distribuição de
probabilidades associadas aos pontos onde a função está definida. A maioria dos
trabalhos nesta área se concentra ou na minimização do custo máximo ou na
minimização do custo esperado gasto para avaliar a função. Nesta dissertação,
mostramos como obter uma O(log n)-aproximação em relação à minimização
do pior custo (a melhor aproximação possível assumindo que P 6= NP). Nós
também mostramos um procedimento polinomial para avaliar uma função
otimizando simultaneamente o pior custo e o custo esperado.

Palavras–chave
Análise de algoritmos; otimização combinatória; algoritmos de apro-

ximação; árvores de decisão.

DBD
PUC-Rio - Certificação Digital Nº 1121785/CA

Contents

1 Introduction 8
1.1 Problem Definition 10
1.2 Our Results 12
1.3 Related Work 13
1.4 Thesis Organization 14

2 Basic Concepts 15
2.1 Optimal Algorithms to build Decision Trees 15
2.2 Approximation Algorithms 15

3 An Approximation for the Worst Case and a Bicriteria Approximation 17
3.1 A Logarithmic Approximation for the Worst Testing Cost 17
3.2 A Bicriteria Approximation 24

4 Experimental Results 29
4.1 Input Data 30
4.2 DividePairs Algorithm 31
4.3 The CombineTrees and the CombineTreesDP Procedures 32

5 Conclusions and Future Works 38

A Performance of CombineTrees and CombineTreesDP 39

Bibliography 49

DBD
PUC-Rio - Certificação Digital Nº 1121785/CA

1
Introduction

In this thesis, we study the Discrete Function Evaluation Problem
(DFEP): given a discrete function, we have to determine the value of the func-
tion on a given point by sequentially reading the values of its variables. This
problem also appears in the literature as the problem of identifying the class
(5) (or group (14)) to which an object belongs by asking questions about the
object. The questions and answers correspond to the variables and its values,
and the classes correspond to function values.

Each variable of the function is associated with a known cost, that we
have to pay in order to check its value. In addition, there may exist a probability
distribution associated with the points where the function is defined. Typically
it’s not necessary to check all the variables to evaluate the function (in the same
manner that we don’t need to answer all possible questions about an unknown
object to get some information about it). Consider, for instance, the following
boolean function:

f(x1, x2, x3) = x2 ∨ (x1 ∧ x2 ∧ x3) ∨ (x1 ∧ x2 ∧ x3)

Suppose that the cost to evaluate each variable is equal to 1 and we first
choose x1 to check. If x1 = 1, then f(x1, x2, x3) = 1 and we don’t need to read
any other variable. However, if x1 = 0, we can evaluate x2 and get the final
result: the value of the function is 1 if and only if x2 = 1. In the worst case, we
will pay a total cost at most 2. On the other hand, suppose that we choose x2

to evaluate first and get x2 = 0. Then, we choose x3 as the second variable to
read. In this case, we will pay a cost of 3 to evaluate the function, regardless
of the value of x3.

Thus, we can consider two different problems: in which order shall we
choose the variables to achieve our goal either paying the minimum total cost
or the minimum expected cost?

Decision versions of these two problems are known to be NP-Complete
problems (21). In this dissertation, our goal is to study and find approximation
algorithms to solve these questions. The total cost and the expected cost are
known as, respectively, worst testing cost, and expected testing cost, and will

DBD
PUC-Rio - Certificação Digital Nº 1121785/CA

Chapter 1. Introduction 9

be properly defined in the next section.
We first consider the problem of approximating the worst testing cost.

Next, we study the issue regarding the existence of a trade-off between the
approximation of the worst testing cost and the approximation of the expected
testing cost.

The DFEP arises in several applications, such as automatic diagnosis
design and active learning. Consider, for example, an automatic trading agent
implementing a high frequency trading strategy. In order to decide the next
action to be performed, as sending or canceling a buy/sell order, the agent takes
into account market variables as well as private variables (28). Among relevant
market variables we may have the stock price, traded volume, volatility, order
books distributions as well as complex functions involving these variables.
Depending on the scenario given by the values of the market variables, the
agent does not need to read all the available variables to decide its next action.
As an example, if the price of a stock falls below some threshold, the agent buys
the stock regardless of the other variables’ values. In a competitive market,
where market conditions change in a millisecond basis, being able to react
very quickly to a new scenario may be the difference between a profitable and
a loosing strategy. The problem faced by the agent is how to evaluate as quick
as possible a function that maps the set of scenarios into the action to be
performed.

Another situation where the DFEP emerges is in active learning. Assume
that we are given a set of hypothesis {H1, ..., Hm}, a set E of unlabeled
examples and we are asked to select the hypothesis that is coherent with all
examples. An hypothesis H is a map from the set of examples to the set of
labels. To achieve the goal we apply the following steps: (i) pick an example
e ∈ E; (ii) label e; (iii) discard all hypothesis that are not coherent with the
label of e. These steps are repeated until only one hypothesis remains. Since
the process of labeling an example may be expensive either in terms of time
or money, we are interested to identify the coherent hypothesis spending as
little as possible. In this case, selecting the next example to label corresponds
to deciding the next variable to read.

Finally, consider the scenario where a person has an unknown disease
and he (she) needs to identify it through a series of medical tests, each of
them associated with a price. The result of an specific test can eliminate the
possibility of some diseases, and therefore some other tests become unnecessary.
However, the person obviously cannot know the result without taking the test.
Thus, the doctor has to choose a sequence of tests in order to minimize the
total price that can be paid to identify the disease. If all tests have the same

DBD
PUC-Rio - Certificação Digital Nº 1121785/CA

Chapter 1. Introduction 10

price, for example, is desirable to take, in the worst of the cases, as few tests
as possible.

1.1
Problem Definition

We define the input of the DFEP as a quintuple (S,C, T,p, c), where
S = {s1, . . . , sn} is a set of n objects, C = {C1, C2, . . . , Ck} is a partition
of S into k classes, T = {t1, . . . , tm} is a set of m tests, p is a probability
distribution over the objects of S and c is a cost function assigning to each
test t a cost ct ∈ Q+, the set of non-negative rational numbers. A test t ∈ T ,
when applied to an object in S, incurs a cost ct and outputs a number in the
set {1, . . . , `}. When ` > 2, we have a multiway test. One of the objects in
S is marked and its identity is hidden; the probability of s being the marked
object is ps. An example is shown in Table 3ftab:objects. In this example, we
have S = {s1, s2, s3, s4, s5}, C = {C1, C2, C3}, T = {t1, t2, t3} and ` = 2.

Object t1 t2 t3 Class Probability
s1 1 1 2 C1 0.1
s2 1 2 1 C1 0.2
s3 2 2 1 C2 0.4
s4 1 2 2 C3 0.25
s5 2 2 2 C3 0.05

Cost 2 1 3

Table 1.1: An input with 5 objects, 3 tests, 3 classes and ` = 2. Suppose that
the costs of the tests are ct1 = 2, ct2 = 1 and ct3 = 3.

We can also view S as a subset of Z |T |, where Z = {1, . . . , `} and S is
mapped to a class by a function f : S 7→ C. The range of the function is a class
between C1 and Ck and the values of the |T | coordinates of an element in S

are the answers for the tests. Table 1.2 shows this correspondence for objects
of Table 1.1.

Point Coordinates Image of f Probability
s1 (1, 1, 2) C1 0.1
s2 (1, 2, 1) C1 0.2
s3 (2, 2, 1) C2 0.4
s4 (1, 2, 2) C3 0.25
s5 (2, 2, 2) C3 0.05

Table 1.2: Points corresponding to objects in table 1.1.

We assume that the set of tests is complete, that is, for every si and
sj belonging to different classes, there is at least one test in T that outputs

DBD
PUC-Rio - Certificação Digital Nº 1121785/CA

Chapter 1. Introduction 11

different values for si and sj. A testing procedure that reveals the class of the
marked object can be represented by a decision tree, which is a tree where
every node is associated with a test and every leaf is associated with a class.

More formally, a decision tree D for (S,C, T,p, c) is a leaf associated
with class i if every object of S belongs to the same class i. Otherwise, the
root r of D is associated with some test t ∈ T and the children of r are decision
trees for the sets {S1

t , S
2
t , ..., S

`
t}, where Si

t , for i = 1, . . . , `, is the subset of S
that outputs i for test t.

Consider the example given in Table 1.1. Figure 1.1 shows a decision tree
for these objects:

..
t2

.

C1

s1

.

1

.

t3

.

t1

.

C1

s2

.

1

.

C2

s3

.

2

.

1

.

C3

s4, s5

.

2

.

2

Figure 1.1: Decision Tree for objects of Table 1.1. Squares indicate leaf nodes,
that can be associated with more than one object (note that objects s4 and s5

are associated with the same leaf).

Note that we can have more than one leaf associated with an specific
class. In Figure 1.1 there are two leaves associated with class C1.

The cost of a root-to-leaf path in a decision tree is defined as the sum of
the costs of the tests associated with the nodes in the path. We use Cost(D, s)

to denote the cost of a path from the root of D to the leaf where object s is
located. Then, we can define the worst testing cost of D as:

CostW (D) = max
s∈S
{Cost(D, s)} (1-1)

And the expected testing cost of D is given by:

CostE(D) =
∑
s∈S

Cost(D, s)ps (1-2)

DBD
PUC-Rio - Certificação Digital Nº 1121785/CA

Chapter 1. Introduction 12

The worst testing cost of the decision tree in Figure 1.1 is max{1, (1 +
3 + 2), (1 + 3 + 2), (1 + 3)} = 6, and the expected testing cost is (1 × 0.1) +

(6× 0.2) + (6× 0.4) + (4× 0.3) = 4.9.
Now we can formulate the problems aforementioned more precisely:

1. What is the decision tree with minimum worst testing cost for a given
quintuple (S,C, T,p, c)?

2. What is the decision tree with minimum expected testing cost for a given
quintuple (S,C, T,p, c)?

Even in the simplest case where all testing costs and probabilities are
uniform, with ` = 2, these two problems are known to be NP-Complete
problems (21). In fact, they are also hard to approximate: an o(log(n))-
approximation implies that P = NP (7, 23).

1.2
Our Results

Our first result is an algorithm for the DFEP that approximates the worst
testing cost in the general case, where the testing costs can be uniform or not.
Other approximations for the worst testing cost are not known in the literature,
even for uniform costs. The algorithm, called DividePairs, produces a tree
whose worst testing cost is at most O(ln(n)) times the worst testing cost of
the optimal decision tree. This is the best possible result under the assumption
that NP does not admit a polynomial time algorithm.

Our second contribution is a polynomial time procedure called Combin-

eTrees, that given a parameter ρ > 0 and two decision trees DW and DE,
the former with worst testing cost W and the latter with expected testing cost
E, it produces a decision tree D with worst testing cost at most (1+ ρ)W and
expected testing cost at most (1 + 1/ρ)E.

Finally, some experiments were done in order to analyse the performance
of the proposed algorithms in practice. We compared the DividePairs to other
algorithms available in literature, and used these algorithms to create decision
trees which were used to measure the performance of CombineTrees. We
used both real and synthetic data to run the experiments. The final results show
that DividePairs builds trees with a low worst cost. Our second algorithm
(CombineTrees), with the proper modifications, also presented good results.

DBD
PUC-Rio - Certificação Digital Nº 1121785/CA

Chapter 1. Introduction 13

1.3
Related Work

The DFEP has been recently studied under the names of class equivalence
problem (14) and group identification problem (5). We shall mention, however,
that this problem had been defined much before as described in the excellent
survey by Moret (6). Both (14) and (5) give O(log(1/pmin)) approximation
algorithms for the version of the DFEP, where the expected testing cost has
to be minimized and both the probabilities and the testing costs are non-
uniform. In addition, when the testing costs are uniform both algorithms can
be converted into a O(log n) approximation algorithm via Kosaraju approach
(22). The algorithm in (14) is more general because it addresses multiway tests
rather than binary ones.

The particular version of the DFEP where each object belongs to a
different class is known as the identification problem and it has a vast literature.
This problem was first studied by Garey (12) who proposed an exponential
algorithm based on dynamic programming. Both the worst testing cost and
the expected testing cost minimization are known to be NP-complete (21),
even when the tests are binary and the testing costs are uniform. In fact,
both minimization goals do not admit a sublogarithmic approximation unless
P = NP as proved by (23) and (7).

For the expected testing cost, Kosaraju et. al. (22) presents a O(log n)

approximation for binary tests and uniform costs. Adler et. al. (2) presents a
O(log n) approximation for binary tests, uniform probabilities and non-uniform
costs. In (7), Chakaravarthy et. al. started the study of multiway tests. They
present an O(log2 n) approximation for uniform testing costs. In (8), a log n

factor is cut for instances with uniform probabilities. For the most general case
with multiway tests, non uniform probabilities and non uniform testing costs,
an O(log(1/pmin)) approximation is given in (15).

Most of the strategies mentioned so far fit into a general framework
commonly referred to as Generalized Binary Search (GBS). Algorithms based
on this approach greedily select a test t that minimizes the ratio between
the testing cost and the balance of the partition induced by t on the set of
objects. However, the best known result to minimize the expected testing cost
for the identification problem, due to Gupta et al. (18), cannot be seen, at least
directly, as a GBS. It achieves a O(log n) approximation for the most general
case, with multiway tests and non-uniform testing costs and probabilities.

The minimization of the worst testing cost for the identification problem
has received less attention. In (3), Arkin et. al. presents a log n approximation
algorithm for binary tests and uniform costs. A logarithmic approximation

DBD
PUC-Rio - Certificação Digital Nº 1121785/CA

Chapter 1. Introduction 14

for the general problem with mutliway test and non-uniform testing costs is
given by Hanneke (19). Results regarding the minimization of the worst testing
cost are also presented in (16, 17). We are aware of only a few results that
discuss trade-offs between the minimization of the expected testing cost and
the worst testing cost for DFEP. In (9), Cicalese et. al. observed that a GBS
based algorithm guarantees an O(log n) approximation for both criteria for
the restricted version of the identification problem where the probabilities are
uniform.

There are also results of this flavor for the problem of constructing an
optimal prefix code, a problem that can be viewed as a very restricted version
of the identification problem. In this problem, all tests have unitary costs and
the set of tests is in one to one correspondence with the set of all binary strings
of length n. The test corresponding to a binary string b outputs 0 (1) for object
si if and only if the ith bit of b is 0 (1). The goal is to construct a tree with
optimal expected testing cost, which can be solved by Huffman’s algorithm
(11). The references (13), (20), (25) and (24) present algorithms for a more
restricted case of this problem where the worst cost of the tree cannot exceed
a given constant L.

Another special case of the identification problem occurs when the
elements of S form a partially ordered set. A Hasse diagram is a graph where
an edge (A,B) from a node A to a node B indicates that A > B and there
is no C such that A > C > B. Hasse diagrams can be represented by several
decision trees, whose leaves are its nodes. This version of the problem was
defined by (26) and studied by (23).

1.4
Thesis Organization

This work is organized as follows: Chapter 2 presents basic concepts
about approximation algorithms; Chapter 3 shows a new algorithm that
approximates the worst testing cost and the procedure to minimize both the
worst and the expected costs of a tree. In Chapter 4 some experimental results
related to chapter 3 are presented; finally, Chapter 5, discusses conclusions and
future directions of this work.

DBD
PUC-Rio - Certificação Digital Nº 1121785/CA

2
Basic Concepts

In this Chapter, we introduce some basic concepts needed to the un-
derstanding of this dissertation. We present the definition of an algorithm to
build a decision tree with optimal expected testing cost and the definition of
approximation algorithms.

2.1
Optimal Algorithms to build Decision Trees

A dynamic programming method can be used to compute optimal
decision trees and was described by (4), (29) and (27). Consider, for example,
the algorithm to construct an optimal decision tree with respect to the expected
testing cost (the optimal algorithm w. r. t. the worst cost is similar). The idea
is to build successively larger optimal subtrees from smaller optimal subtrees.
The algorithm can be represented by the following recurrence relation:

OPT (f) =

 0 if f is constant

min
t∈T

(
ctπf +

∑̀
i=1

OPT (f |A(t)=i)

)
otherwise

(2-1)

where f |A(t)=i is the same function, but taking into account only the points
for which t outputs i, and πf is the sum of the probabilities associated with
the points where f is defined. We can use memoization (11) to avoid repeated
calculations, but the number of restrictions can be as large as (`+ 1)m, where
m = |T |. The optimal algorithms (for both the worst and the expected costs)
were implemented for comparison purposes.

2.2
Approximation Algorithms

Since the DFEP is NP-Complete, no polynomial algorithm to find
optimal decision trees with respect to the worst and expected costs is known.
However, in many situations we can be interested in a solution that is not
necessarily optimal, but is “good enough”. An approximation algorithm is an
algorithm that finds a solution which is always within a factor of the optimal

DBD
PUC-Rio - Certificação Digital Nº 1121785/CA

Chapter 2. Basic Concepts 16

one. As defined in (10), an algorithm for a minimization problem with input
of size n has a ratio bound of ρ(n) if:

C(I)

C∗(I)
≤ ρ(n),

for every instance I of the problem, where C(I) is the cost of the solution
produced by the algorithm and C∗(I) is the cost of the optimal solution. We
say that an algorithm with this property has a ρ(n)-approximation.

2.2.1
Example: an Approximation Algorithm for Vertex Cover

As an example, consider the following definition: given an undirected
graph G = (V,E), a subset V ′ ⊆ V is a cover for G if for every edge (u, v) ∈ E

we have that u ∈ V ′ or v ∈ V ′. We say that each vertex of V ′ covers its
incident edges. The problem of finding the smallest subset V ′ that covers G is
called the minimum vertex cover problem and it’s NP-Complete. Consider the
solution provided by algorithm 1, presented in (10):

Approx-Vertex-Cover(G)1

C = ∅2

E ′ = E3

while E ′ 6= ∅ do4

Let (u, v) be an arbitrary edge of G;5

C = C ∪ {u, v}6

remove from E ′ every edge incident on either u or v7

end8

return C9

Algorithm 1: Approx-Vertex-Cover

Note that the solution C returned by Algorithm 1 is not only a cover, but
is also a 2-approximation, since no two edges selected by Approx-Vertex-

Cover in line 5 share an endpoint, and all selected edges have to be covered
by an optimal solution.

That is:

1

2
C(I) ≤ C∗(I)

and so:

C(I)

C∗(I)
≤ 2

DBD
PUC-Rio - Certificação Digital Nº 1121785/CA

3
An Approximation for the Worst Case and a Bicriteria
Approximation

In this Chapter, we first show an algorithm for the DFEP that attains an
approximation of O(log n) w. r. t. the worst cost. We consider the most general
case of non-uniform costs and multiway tests. We also show a polynomial time
procedure that simultaneously approximates both the worst and the expected
testing costs.

3.1
A Logarithmic Approximation for the Worst Testing Cost

Let (S,C, T,p, c) be an instance of DFEP and let S ′ be a subset of
S. In addition, let C ′ and p′ be, respectively, the restrictions of C and p to
the set S ′. For example, for the subset S ′ = {s1, s2, s3} in Table 3.1 we have
C ′ = {C1, C2}, and objects s1, s2 and s3 are mapped to the same classes for
which they were mapped in C.

Our first observation is that every decision tree D for (S,C, T,p, c) is
also a decision tree for (S ′, C ′, T,p′, c). The following proposition is a direct
consequence of this observation.

Proposition 1. Let (S,C, T,p, c) be an instance of the DFEP and let S ′ be a
subset of S. Then, OPTE(S

′) ≤ OPTE(S) and OPTW (S ′) ≤ OPTW (S).

We say that a pair of objects (si, sj) from a set S is separable if si and sj

belong to different classes. For a set of objects G we use P (G) to denote the
number of separable pairs in G. In formulae,

P (G) =
k−1∑
i=1

k∑
j=i+1

ninj, (3-1)

where ni is the number of objects in G that belong to class i. The set given in
Table 3.1 has (2× 1) + (2× 2) + (1× 2) = 8 separable pairs.

We also have the following proposition:

Proposition 2. For any group of objects G, we have that P (G) < n2, where
n = |G|.

DBD
PUC-Rio - Certificação Digital Nº 1121785/CA

Chapter 3. An Approximation for the Worst Case and a Bicriteria
Approximation 18

In the worst case, where the number of objects is equal to the number of
classes, we have P (G) = (n− 1) + (n− 2) + . . .+ 1 = n(n− 1)/2 < n2.

Object t1 t2 t3 Class Probability
s1 1 1 2 C1 0.1
s2 1 2 1 C1 0.2
s3 2 2 1 C2 0.4
s4 1 2 2 C3 0.25
s5 2 2 2 C3 0.05

Table 3.1: ct1 = 2, ct2 = 2 and ct3 = 3

We say that a test t separates a separable pair (si, sj) if t outputs different
values when applied to si and sj. We shall observe that if D is a decision tree
for S then the set of tests associated with the nodes of D separate all separable
pairs in S. A good test shall be able to split the set of objects into a partition
such that none of the sets in the partition has a large number of objects to be
separated. The ability of a test to achieve such a goal has been used in (14)
for the minimization of the expected testing cost and it will also be used in
the algorithm described below.
The DividePairs algorithm. When a test t is applied to every object in a
set S it splits S into ` different subsets {S1

t , S
2
t , ..., S

`
t}. We use S∗

t to denote
the subset with the largest number of separable pairs, that is, S∗

t = Sj
t such

that P (Sj
t) = max{P (S1

t), . . . , P (S`
t)}. Our algorithm, called DividePairs,

chooses the test ∈ T that minimizes ct/(P (S) − P (S∗
t)). Then the objects in

S are splitted according to the values of t for each object, and DividePairs

is recursively called for each new set of objects. When all objects in a set are
from the same class, a leaf is created. This procedure is shown in Algorithm 2.

DBD
PUC-Rio - Certificação Digital Nº 1121785/CA

Chapter 3. An Approximation for the Worst Case and a Bicriteria
Approximation 19

DividePairs(S)1

if all objects in S belong to the same class k then2

return a leaf node with label k3

else4

choose the test t that minimizes ct/(P (S)− P (S∗
t))5

create a node v associated with t6

for i = 1 to ` do7

create a node vi as a child of v8

vi ← DividePairs(Si
t)9

end10

return v11

end12

Algorithm 2: DividePairs Algorithm

As an example, consider what happens when DividePairs is executed
over the instance in Table 3.1. Consider ct1 = 2, ct2 = 2 and ct3 = 3.
Applying test t1 will split S in S1

t1
= {s1, s2, s4} and S2

t1
= {s3, s5}. In

the new group S1
t1
, we have two separable pairs: (s1,s4) and (s2, s4). On

the other hand, (s1, s2) is not a separable pair because both are from class
C1. Thus, P (S1

t1
) = 2. In group S2

t1
, we know that s3 and s5 belong to

distinct classes, constituting a separable pair. Therefore, P (S2
t1
) = 1 and

P (S∗
t1
) = max{P (S1

t1
), P (S2

t1
)} = max{2, 1} = 2. Test t2 splits the objects

in S1
t2
= {s1} (a group without pairs) and S2

t2
= {s2, s3, s4, s5} (a group with 5

pairs), and test t3 divides S in S1
t3
= {s2, s3} (1 pair) and S2

t3
= {s1, s4, s5} (2

pairs). Thus, we have that P (S∗
t1
) = 2, P (S∗

t2
) = 5 and P (S∗

t3
) = 2. We have

that:

ct1
(P (S)− P (S∗

t1))
=

2

(8− 2)
=

1

3
(3-2)

ct2
(P (S)− P (S∗

t2))
=

2

(8− 5)
=

2

3
(3-3)

ct3
(P (S)− P (S∗

t3))
=

3

(8− 2)
=

1

2
(3-4)

Thus, DividePairs chooses test t1 as the root of the tree. Then, we have
the new groups S1

t1
= {s1, s2, s4} and S2

t1
= {s3, s5}, presented in Tables 3.2

and 3.3. DividePairs is recursively called for these groups and we only have
to choose between t2 and t3.

To simplify the notation, let A = S1
t1

and B = S2
t1
. We have that

P (A) = 2, P (A1
t2
) = 0 and P (A2

t2
) = 1. Test t3 produces P (A1

t3
) = 0 and

P (A2
t3
) = 1. Therefore:

DBD
PUC-Rio - Certificação Digital Nº 1121785/CA

Chapter 3. An Approximation for the Worst Case and a Bicriteria
Approximation 20

Object t2 t3 Class Probability
s1 1 2 C1 0.1
s2 2 1 C1 0.2
s4 2 2 C3 0.25

Table 3.2: Objects in group S1
t1

(ct2 = 2 and ct3 = 3)

Object t2 t3 Class Probability
s3 2 1 C2 0.4
s5 2 2 C3 0.05

Table 3.3: Objects in group S2
t1

(ct2 = 2 and ct3 = 3)

ct2
(P (A)− P (A∗

t2))
=

2

(2−max{0, 1})
= 2 (3-5)

ct3
(P (A)− P (A∗

t3))
=

3

(2−max{0, 1})
= 3 (3-6)

and the algorithm chooses test t2 at this step. Figure 3.1 shows its complete
execution.

DBD
PUC-Rio - Certificação Digital Nº 1121785/CA

Chapter 3. An Approximation for the Worst Case and a Bicriteria
Approximation 21

..

t1

.

s1, s2
s4 .

1

.

s3, s5

.

2

.

(a) Test t1 is chosen and splits
S in S1

t1
= {s1, s2, s4} and

S2
t1
= {s3, s5}

.

t1

.

t2

.
s1

.
1

.

s2, s4

.
2

.

1

.

s3, s5

.

2

.

(b) The algorithm is called for group
S1
t1

and chooses test t2

.

t1

.

t2

.

s1

.

1

.

t3

.

s2

.

1

.

s4

.

2

.

2

.

1

.

s3, s5

.

2

.

(c) The algorithm chooses the only
available test, t3, which separates s2

and s4

.

t1

.

t2

.

s1

.

1

.

t3

.

s2

.

1

.

s4

.

2

.

2

.

1

.

t3

.

s3

.

1

.

s5

.

2

.

2

.

(d) At this point, note that test t2
doesn’t separate any pair in Table 3.3
(i. e., B = B∗

t2
). In this case the algorithm

doesn’t need to check t2 and chooses test t3,
which separates objects s4 and s5.

Figure 3.1: Execution of DividePairs for objects in table 3.1.

We note that it’s possible to calculate the value of P (S)−P (S∗
t) for any

test t in O(k`) time. We have that:

DBD
PUC-Rio - Certificação Digital Nº 1121785/CA

Chapter 3. An Approximation for the Worst Case and a Bicriteria
Approximation 22

P (S) =
k−1∑
i=1

k∑
j=i+1

n
Ci
n

Cj
=

(n
C1

+ n
C2

+ . . .+ n
Ck
)2 − (n

C1

2 + n
C2

2 + . . .+ n
Ck

2)

2
.

(3-7)
We can use the same idea to compute the value of P (S∗

t) for a given test
t. A matrix with k rows and ` columns can store in aij the number of objects
of class i which have answer j for test t. Then, we can traverse a column c as
in 3-7 and compute P (Sc

t). The value of P (S∗
t) is obtained in k` time.

3.1.1
Approximation Analysis.

In order to analyze the algorithm, we use CostW (S) to denote the cost
of the decision tree that DividePairs constructs for a set of objects S. Let τ be
the first test selected by DividePairs. We can bound the ratio between the
worst testing cost of the decision tree generated by DividePairs and the cost
of the decision tree with minimum worst testing cost as

CostW (S)

OPTW (S)
=

cτ +max1≤i≤`{CostW (Si
τ)}

OPTW (S)
≤ cτ

OPTW (S)
+max

1≤i≤`

{
CostW (Si

τ)

OPTW (Si
τ)

}
,

(3-8)
where the last inequality follows from Proposition 1.

The following lemma shows that OPTW (S) is at least cτP (S)/(P (S) −
P (S∗

τ)).

Lemma 1. cτP (S)/(P (S)−P (S∗
τ)) is a lower bound on the worst testing cost

of the optimal tree.

Proof: Let v be an arbitrarily chosen node in a decision tree with
minimum worst testing cost, let γ be the test associated with v and let R

be the set of objects associated with the leaves of the subtree rooted at v. In
order to establish the result, it will be useful to show that

cτ
P (S)− P (S∗

τ)
≤ cγ

P (S)− P (S∗
γ)
≤ cγ

P (R)− P (R∗
γ)
. (3-9)

The leftmost inequality holds due to the greedy choice. Then, it suffices
to show that the rightmost inequality holds or, equivalently, P (S)− P (S∗

γ) ≥
P (R) − P (R∗

γ). Recall that a test t splits a set G ⊆ S of objects into
{G1

t , G
2
t , ..., G

`
t}. Let Si

γ and Rj
γ be such that Si

γ = S∗
γ and Rj

γ = R∗
γ. Let

rRγ (resp. rSγ) be the the number of separable pairs separated by test γ when
it is applied on set R (resp. S). Since R ⊆ S we have that rRγ ≤ rSγ and
P (Rk

γ) ≤ P (Sk
γ) for k = 1, . . . , `. Hence,

DBD
PUC-Rio - Certificação Digital Nº 1121785/CA

Chapter 3. An Approximation for the Worst Case and a Bicriteria
Approximation 23

P (S)− P (S∗
γ) = rSγ +

∑
k 6=i

P (Sk
γ) ≥ rRγ +

∑
k 6=i

P (Rk
γ) ≥ rRγ +

∑
k 6=j

P (Rk
γ) (3-10)

= P (R)− P (R∗
γ), (3-11)

where the first inequality follows because rRγ ≤ rSγ and P (Rk
γ) ≤ P (Sk

γ), for
k = 1, . . . , `, and the second one holds because P (Rj

γ) ≥ P (Ri
γ). Thus, we have

the following lemma:

Lemma 2. P (S)− P (S∗
γ) ≥ P (R)− P (R∗

γ)

and can conclude that inequality (3-9) holds.
Let v1, v2, . . . , vp be a root-to-leaf path on the optimal tree defined as

follows: v1 is the root of the tree, and for each i = 1, . . . , p − 2 the node vi+1

is a child of vi with the largest number of separable pairs. The last node of
the path, vp, is any of the children of vp−1, which are all leaves. Let ti be the
test associated with vi and let Si be the set of objects that are associated with
the leaves in the subtree rooted at vi. Note that, by definition, S1 = S and
Si+1 = G∗

ti
, where G = Si. It follows from inequality 3-9 that

(P (Si)− P (Si+1))cτ
P (S)− P (S∗

τ)
≤ cti (3-12)

for i = 1, . . . , p− 1. Since the cost of the path from v1 to vp is not larger than
the worst testing cost of the optimal decision tree, we have that

OPTW (S) ≥
p−1∑
i=1

cti ≥
cτ

P (S)− P (S∗
τ)

p−1∑
i=1

(P (Si)− P (Si+1)) =
cτP (S)

P (S)− P (S∗
τ)
,

where the second inequality follows from (3-12) and the last identity holds
because S1 = S and P (Sp) = 0.

As a result, the ratio given by equation (3-8) is:

CostW (S)

OPTW (S)
≤ P (S)− P (S∗

τ)

P (S)
+ max

1≤i≤`

{
CostW (Si

τ)

OPTW (Si
τ)

}
. (3-13)

Note that:

P (S)− P (S∗
τ)

P (S)
=

P (S)−P (S∗
τ)∑

i=1

(
1

P (S)

)
≤

P (S)−P (S∗
τ)∑

i=1

(
1

P (S∗
τ) + i

)
. (3-14)

DBD
PUC-Rio - Certificação Digital Nº 1121785/CA

Chapter 3. An Approximation for the Worst Case and a Bicriteria
Approximation 24

By induction in the number of separable pairs, we assume that for each

G ⊂ S, CostW (G)/OPTW (G) ≤ H(P (G)), where H(n) =
n∑

i=1

1/i. Since

P (Si
τ) ≤ P (S∗

τ) it follows that H(P (Si
τ)) ≤ H(P (S∗

τ)). From (3-13) and (3-14)
we have that

CostW (S)

OPTW (S)
≤

P (S)−P (S∗
τ)∑

i=1

(
1

P (S∗
τ) + i

)
+H(P (S∗

τ)) = H(P (S)) ≤ 2 ln(n).

Thus, we have the following theorem.

Theorem 1. The DividePairs algorithm achieves an O(ln(n))-
approximation for minimizing the worst testing cost of the DFEP.

3.2
A Bicriteria Approximation

In this section, we present an algorithm that provides a simultaneous
approximation for the minimization of expected testing cost and worst testing
cost. Before presenting the algorithm, let us consider an instance of the DFEP
that motivates the search for this simultaneous optimization.

The instance is indeed an instance of the problem of constructing a binary
tree corresponding to an optimal prefix code, described in Chapter 1. Recall
that in this problem all tests have unitary costs and the set of tests is in one
to one correspondence with the set of all binary strings of length n. The test
corresponding to a binary string b outputs 0 (1) for object si if and only if the
ith bit of b is 0 (1).

The probability distribution is given by pi = 2−i for each object si, for
i = 1, . . . , n − 1 and pn = 2−(n−1). Table 3.4 show an example for n = 4, and
Figure 3.2 shows an optimal decision tree for this example.

Object t1 t2 t3 · · · t14 t15 t16 Class Probability
s1 0 0 0

· · ·

1 1 1 C1 0.5
s2 0 0 0 1 1 1 C2 0.25
s3 0 0 1 0 1 1 C3 0.125
s4 0 1 0 1 0 1 C4 0.125

Table 3.4: Example for n = 4.

Let D∗
E and D∗

W be, respectively, the decision trees with minimum ex-
pected cost and minimum worst testing cost for the instance. By follow-
ing the execution of Huffman’s algorithm, it is not difficult to verify that
CostE(D

∗
E) ≤ 3 and CostW (D∗

E) = n − 1. In addition, we have that

DBD
PUC-Rio - Certificação Digital Nº 1121785/CA

Chapter 3. An Approximation for the Worst Case and a Bicriteria
Approximation 25

..
t8

.

s1

.

0

.

t4

.

s2

.

0

.

t2

.

s3

.

0

.

s4

.

1

.

1

.

1

Figure 3.2: An optimal decision tree for objects of Table 3.4, produced by
Huffman’s algorithm.

CostE(D
∗
W) = CostW (D∗

W) = log n. This example shows that the minimiz-
ation of the expected testing cost may produce a decision tree with high worst
testing cost as well as the minimization of the worst testing cost may produce
a decision tree with high expected testing cost. Therefore, it makes sense to
look for a trade-off between minimizing the expected testing cost and the worst
testing cost.

Given a positive number ρ, two decision trees DE and DW for the instance
(S,C, T,p, c) of the DFEP, the former with expected testing cost E and the
latter with worst testing cost W , we devise a polynomial time procedure to
construct a new decision tree D, from DE and DW , with expected cost at most
(1 + 1/ρ)E and worst testing cost at most (1 + ρ)W . The procedure is very
simple:

DBD
PUC-Rio - Certificação Digital Nº 1121785/CA

Chapter 3. An Approximation for the Worst Case and a Bicriteria
Approximation 26

CombineTrees(DE,DW ,ρ)1

D = DE2

Define a node v from D as replaceable if the cost of the path from3

the root of D to v (including v) is at least ρW and the cost of the
path from the root of D to the parent of v is smaller than ρW . At
this step we traverse D to find the set R of the replaceable nodes.
for every node v ∈ R do4

Let S(v) be the set of objects associated with leaves located at5

the subtree rooted at v in D. In addition, let D
S(v)
W be a decision

tree for S(v) obtained by disassociating every object in S − S(v)

from DW .
Replace the subtree of D rooted at v with the decision tree D

S(v)
W .6

end7

Return D8

Algorithm 3: The CombineTrees procedure

Figures from 3.3 to 3.6 show the execution of CombineTrees.

..
A

.

B

.

D

.

s1

.

s2

.

s3

.

C

.

s4

.

s5

.
E

.

s1, s3

.

F

.

s2,s4

.

s5

.DE

. DW

Figure 3.3: First, CombineTrees receives two trees: DE, (with replaceable
nodes marked in gray), and DW . Suppose that s1 and s3 belong to class C1,
s2 and s4 to class C2 and s5 to class C3. The replaceable nodes are B and C,
which means that the cost associated with node A is less than ρW , but the
costs associated with the paths from A to B and from A to C are greater or
equal than ρW .

DBD
PUC-Rio - Certificação Digital Nº 1121785/CA

Chapter 3. An Approximation for the Worst Case and a Bicriteria
Approximation 27

..
E
.

s1, s3

.

s2

Figure 3.4: We have to replace the subtree rooted at B with the tree DW

without objects s4 and s5, which is shown above. Note that if we discard s4

and s5 from DW , the only object below F is s2. Therefore, we can replace this
node with a leaf node with object s2.

..
E
.

F

.

s4

.

s5

Figure 3.5: The next step is to replace the subtree rooted at C with the tree DW

associated with s4 and s5. This step involves removing the leaf node associated
with s1 and s3. Note that since s4 and s5 belong to different classes, we can’t
replace E or F in DW with a leaf node at first.

..
A
.

E

.

s1, s3

.

s2

.

E

.

F

.

s4

.

s5

Figure 3.6: The final tree.

Theorem 2. The decision tree D has expected testing cost at most (1+1/ρ)E

and worst testing cost at most (1 + ρ)W .

DBD
PUC-Rio - Certificação Digital Nº 1121785/CA

Chapter 3. An Approximation for the Worst Case and a Bicriteria
Approximation 28

Proof. First we argue that the worst testing cost of D is at most (1 + ρ)W .
Let s be an object in S. If s is not a descendant of a replaceable node in DE

then the cost of the path from the root of DE to s is at most ρW . Since this
path remains the same in D, we have that the cost to reach s in D is at most
ρW . On the other hand, if s is a descendant of a replaceable node v in DE,
then the cost to reach s in D is at most (1+ ρ)W because the cost of the path
from the root of D to the parent of v is at most ρW and the cost to reach s

from the root of the tree D
S(v)
W is at most W .

Now, we prove that the expected testing cost of D is at most (1+1/ρ)E.
For that it is enough to show that for every object s ∈ S, the cost to reach
s in D is at most (1 + 1/ρ) times the cost of reaching s in DE. We split the
analysis into two cases:

Case 1. s is not a descendant of a replaceable node in DE. In this case,
the cost to reach s in DE is equal to the cost of reaching s in D.

Case 2. s is a descendant of a replaceable node v in DE. Let K be the
cost of the path from the root of DE to v. Then, the cost to reach s in DE

is at least K. In addition, since v is replaceable we have that K ≥ ρW . On
the other hand, the cost to reach s in D is at most ρW +W . Since K ≥ ρW

we have that the cost to reach s in D is at most (1 + 1/ρ) times the cost of
reaching s in DE.

DBD
PUC-Rio - Certificação Digital Nº 1121785/CA

4
Experimental Results

In this chapter, the performance of algorithms proposed in Chapters 3.1
and 3.2 is analysed through a set of experiments.

The experiments were done in a computer with the following configura-
tion:

– Ubuntu Release 12.04 64-bit

– Kernel Linux 3.2.0-23-generic

– Memory: 7.7 GB

– Processor: Intel R©CoreTMi7 CPU 870 @ 2.93GHz × 8

The following algorithms were implemented:

– DividePairs: described in Chapter 3.1

– EC2: an algorithm that approximates the expected testing cost proposed
by (14)

– OPTWC: an exponential time algorithm that produces the optimal
decision tree with respect to the worst testing cost for a given instance

– OPTEC: an exponential time algorithm that produces the optimal
decision tree with respect to the expected testing cost for a given instance

– CombineTrees: procedure described in Chapter 3.2

– CombineTreesDP: the CombineTrees procedure with some modi-
fications

Algorithms EC2, OPTWC and OPTEC were used in order to analyse
the results obtained by algorithm DividePairs. The algorithm by Golovin
(EC2) was also used to generate trees for CombineTrees and CombineT-

reesDP procedures. This dissertation will focus in algorithm DividePairs

and in procedure CombineTrees, which were our contributions, as well as in
procedure CombineTreesDP, a modification of CombineTrees which will
be described in next sections.

DBD
PUC-Rio - Certificação Digital Nº 1121785/CA

Chapter 4. Experimental Results 30

..
3 8 2 2
0 0 0 0 1
0 0 1 0 1
0 1 0 1 3
0 1 1 1 2
1 0 0 0 5
1 0 1 0 1
1 1 0 0 2
1 1 1 1 3

Figure 4.1: Example of input data

4.1
Input Data

We created an experimental environment where the user defines the
maximum number of classes, the maximum number of outcomes of a test, the
number of objects and the number of tests of the input data, as well as whether
the probabilities are uniform or not. A source file written in C programming
language generates the instance based on this information. Another C source
file reads the data generated and run the algorithms.

Figure 4.1 shows the structure of an instance generated.
The first line of each instance consists of four numbers: the number of

tests, the number of objects, the maximum number of classes and the maximum
number of outcomes for a test, respectively. If the number of classes is equal
to X, then the classes can vary from 0 to X − 1, and the same occurs with
the number of outcomes for a test. In Figure 4.1, there are 3 tests, 8 objects,
2 classes and 2 possible outcomes for each test. The other lines represent the
objects: the first numbers in a line are the outcomes for the tests, and the last
two numbers represent the class and the frequency associated with the object.
In the figure above, there are 5 objects belonging to class 0 and 3 objects
belonging to class 1.

The answers for each test and the classes of the objects are gener-
ated in the same way: a random number between 0 and the number of
outcomes is chosen, as well as a random number between 0 and the num-
ber of classes, by calling (rand() mod number_of_outcomes) and (rand()

mod number_of_classes). The frequency is generated by calling (rand()

mod 10007+1), (10007 is a large prime number that gives an upper bound for
the frequency), generating an uniform probability distribution.

The file is processed to eliminate objects from different classes that have
the same answer for all tests and to normalize the frequencies (a probability
distribution is generated according to the frequencies). Table 4.1 shows the

DBD
PUC-Rio - Certificação Digital Nº 1121785/CA

Chapter 4. Experimental Results 31

number of objects, the number of tests, the number of classes and the number
of outcomes for a test for each one of the postprocessed instances used in
the experiments. The last column of the table is in the form aCbP , where
a, b ∈ {u, n} indicates whether the costs and probabilities are uniform or not
(u for uniform and n for non-uniform).

Instance Objects Tests Classes Outcomes Type
Instance1 100 12 3 2 nCnP
Instance2 200 10 3 3 nCnP
Instance3 299 10 3 3 nCnP
Instance4 5000 100 5 3 nCnP
Instance5 20000 50 5 2 nCnP
Instance6 20000 40 8 2 nCnP
Instance7 20000 90 30 2 nCnP
Instance8 20000 40 5 2 uCuP
Instance9 39086 48 7 2 uCnP
Instance10 39086 48 7 2 nCnP

Table 4.1: Instances used in the experiments

Instance Instance10 is the same instance as Instance09, except by
the costs of the tests. These instances were obtained from a High Frequency
Trading application. The estimation of the probabilities was obtained by
normalizing the frequency of appearance of each scenario (object) during the
execution of the trading strategy in a simulation on real market data.

All instances of types nCnP and nCuP have their testing costs as
random numbers in the range [1, 10]. Instances with uniform costs have all
costs equal to 1.

4.2
DividePairs Algorithm

The first algorithm implemented was DividePairs.
In order to choose which test to perform next, first an array with positions

corresponding to classes was created. The position i of the array stores the
number of objects of class i. Then, in a single pass, we can compute the
total number of pairs of objects. Recall that P (S∗

t) = max{P (S1
t), . . . , P (S`

t)},
where Si

t is the subset of S that outputs i for test t. If there are k classes, a
matrix with k rows and ` columns can be used to compute the value of P (S∗

t)

in O(n) time (since n >> k` for each instance in Table 4.1), for a given test t.

DBD
PUC-Rio - Certificação Digital Nº 1121785/CA

Chapter 4. Experimental Results 32

Table 4.2 shows some results for the first 3 instances. The first column
shows the ratio between the worst cost generated by DividePairs and the
optimal worst cost (computed by OPTWC) and the second column shows the
ratio between the expected testing cost and the optimal expected testing cost
(computed by OPTEC). Table 4.3 shows the same ratios for algorithm EC2.

Instance Worst Cost Expected Cost
Instance1 1.2 1.04
Instance2 1.24 1.06
Instance3 1.15 1.05

Table 4.2: DividePairs in contrast with the optimal algorithms.

Instance Worst Cost Expected Cost
Instance1 1.2 1.03
Instance2 1.37 1.05
Instance3 1.26 1.04

Table 4.3: EC2 in contrast with the optimal algorithms.

Table 4.4 shows the costs of the trees generated by the execution of
DividePairs and of EC2. Recall that DividePairs doesn’t take into account
the probability distribution of the objects to build the tree. As expected, in
general DividePairs achieved a smaller worst cost than EC2. The algorithm
by Golovin, on the other hand, attained a better expected testing cost —
which was also expected. For all instances, there were no significant differences
between the execution times of the two algorithms. Although the worst costs
achieved by EC2 were greater or equal than the worst costs achieved by
DividePairs for these instances, this is not always the case. During the
experiments we found some instances for which the worst cost achieved by
EC2 was smaller than the worst cost achieved by DividePairs.

4.3
The CombineTrees and the CombineTreesDP Procedures

The procedure CombineTrees, described in Chapter 3.2, was imple-
mented with the first parameter being a tree DE produced by EC2, the second
parameter being a tree DW produced by DividePairs and different values of
ρ.

Note that the final tree produced by CombineTrees can have paths
with repeated tests, since a test t can be associated with a node in DW and
can also be associated with a node that is an ancestor of a replaceable node r

DBD
PUC-Rio - Certificação Digital Nº 1121785/CA

Chapter 4. Experimental Results 33

Instance WCDP ECDP WCEC2 ECEC2 Time DP Time EC2

Instance1 18 11.62 18 11.55 0 0
Instance2 36 22.97 40 22.83 0 0
Instance3 22 14.01 24 13.90 0 0
Instance4 12 8.20 12 8.08 0.06 0.05
Instance5 36 28.23 39 27.82 0.2 0.19
Instance6 42 31.91 51 31.15 0.18 0.18
Instance7 29 22.71 33 22.40 0.65 0.49
Instance8 15 13.52 15 13.25 0.15 0.14
Instance9 18 11.41 19 9.51 0.31 0.3
Instance10 103 41.58 104 38.22 0.34 0.34

Table 4.4: Execution of DividePairs and EC2. Columns WCDP and ECDP

present the worst and the expected testing costs achieved by DividePairs,
and columns WCEC2 and ECEC2 present the worst and the expected testing
costs achieved by EC2 algorithm. Finally, columns Time DP and Time EC2

show the running time (in seconds) of DividePairs and EC2.

in DE. Therefore, all nodes with only one child were removed from the final
tree (the running time of CombineTrees includes the time spent in these
modifications). In almost all executions of the procedure, for small values of ρ
both worst and expected costs of the modified tree were equal to the costs of
DW (because the root was replaceable), and for large values of ρ the costs of
the modified tree were similar to the costs of DE.

The second column of Table 4.5 presents the result of the execution of
CombineTrees over instance 6 for different values of ρ. It shows the first of
the two interesting situations that were observed in the experiments running
CombineTrees. Note that as ρ increases the worst cost also increases, until
it reaches the worst cost of DE for large values of ρ. However, the values of
the expected testing cost of the modified tree for intermediate values of ρ were
greater than the values of the expected testing cost of DW and of DE, which
is not desirable.

The second situation, that was observed in other instances, was that for
intermediate values of ρ this problem happened with the worst cost too (i. e.,
the worst cost of the modified tree was greater than the worst costs of DW and
of DE). This situation is presented in the second column of Table 4.6. Actually,
except for instances 2, 3, 7 and 10, we observed that if the costs of the trees
produced by DividePairs and EC2 are given by, respectively, (WCDP , ECDP)

and (WCEC2 , ECEC2), where (a, b) indicates that a is the worst cost and b is
the expected cost, the worst and expected costs (WCCT , ECCT) obtained by
CombineTrees satisfied, for all values of ρ,

– WCCT ≥ WCDP and ECCT ≥ ECDP

DBD
PUC-Rio - Certificação Digital Nº 1121785/CA

Chapter 4. Experimental Results 34

ρ CombineTrees CombineTreesDP
0.05 (42, 31.91) (42, 31.91)
0.1 (42, 31.91) (42, 31.91)
0.15 (42, 31.91) (42, 31.91)
0.2 (42, 31.91) (42, 31.91)
0.25 (42, 31.91) (42, 31.91)
0.3 (42, 31.91) (42, 31.91)
0.35 (42, 31.91) (42, 31.91)
0.4 (45, 31.92) (42, 31.91)
0.45 (45, 31.92) (42, 31.90)
0.5 (46, 31.98) (42, 31.89)
0.55 (46, 31.99) (43, 31.80)
0.6 (47, 31.99) (46, 31.59)
0.65 (49, 31.92) (46, 31.52)
0.7 (49, 31.92) (46, 31.52)
0.75 (51, 31.40) (47, 31.23)
0.8 (51, 31.38) (47, 31.23)
0.85 (51, 31.21) (47, 31.17)
0.9 (51, 31.17) (47, 31.15)
0.95 (51, 31.17) (47, 31.15)
1 (51, 31.15) (51, 31.15)
∞ (42, 31.91) (51, 31.15)

Table 4.5: Results of CombineTreesDP procedure and CombineTrees
procedure for Instance6. The row with ρ = ∞, shows the costs obtained
by DividePairs (second column) and EC2. (third column). The costs are in
the form (a, b), where a is the worst cost and b is the expected cost

or

– WCCT ≥ WCEC2 and ECCT ≥ ECEC2 .

The results obtained by running the CombineTrees procedure suggest
that, despite its theoretical guarantees, it can give a poor result in practice.
A possible explanation for this situation is that the tree DW is a tree that
approximates the worst testing cost when we consider the initial set S. Recall
that S(v) is the set of objects associated with leaves located at the subtree
rooted at v in DE, and D

S(v)
W is the tree obtained by disassociating every object

in S − S(v) from DW . For a subset S(v) ∈ S, DS(v)
W can be very unbalanced,

even with the modification done to remove repeated tests.
Given the results obtained by CombineTrees, the following modifica-

tion was implemented: for each replaceable v, instead of replacing the subtree
rooted at v with D

S(v)
W in CombineTrees, we replace this subtree with the tree

produced by DividePairs for the set S(v). We call this procedure Combin-

eTreesDP. Note that we can maintain our theoretical guarantees by running

DBD
PUC-Rio - Certificação Digital Nº 1121785/CA

Chapter 4. Experimental Results 35

ρ CombineTrees CombineTreesDP
0.05 (36, 28.23) (36, 28.23)
0.1 (36, 28.23) (36, 28.23)
0.15 (36, 28.24) (36, 28.23)
0.2 (36, 28.25) (36, 28.24)
0.25 (37, 28.26) (36, 28.23)
0.3 (37, 28.28) (36, 28.23)
0.35 (37, 28.30) (36, 28.23)
0.4 (38, 28.31) (38, 28.23)
0.45 (38, 28.32) (38, 28.23)
0.5 (38, 28.32) (38, 28.23)
0.55 (38, 28.33) (36, 28.23)
0.6 (38, 28.34) (36, 28.22)
0.65 (38, 28.33) (38, 28.15)
0.7 (38, 28.27) (38, 27.99)
0.75 (41, 28.16) (38, 27.95)
0.8 (41, 27.93) (38, 27.85)
0.85 (40, 27.88) (38, 27.83)
0.9 (39, 27.83) (38, 27.82)
0.95 (39, 27.82) (38, 27.82)
1 (39, 27.82) (39, 27.82)
∞ (36, 28.23) (39, 27.82)

Table 4.6: Results of CombineTrees procedure and CombineTreesDP
procedure for Instance5. The row with ρ = ∞, shows the costs obtained
by DividePairs (second column) and EC2. (third column). The costs are in
the form (a, b), where a is the worst cost and b is the expected cost

the two procedures and choosing the tree with the lower worst testing cost.
The third columns of Tables 4.5 and 4.6 show that the two situations observed
above for instances 5 and 6 disappeared with this modification Note that the
costs for low values of ρ were similar to the cost of DW , and the costs for high
values of ρ were similar to the cost of DE. But for intermediate values the
costs (both the worst and the expected cost) of the tree produced by Com-

bineTreesDP were values between the costs of DW and DE. For instance 6
we can note this when 0.45 ≤ ρ ≤ 0.95 in Table 4.5, and for instance 5 when
0.4 ≤ ρ ≤ 0.95 in Table 4.6.

The performance of the two procedures is presented in tables from A.1 to
A.10, in Appendix A, and Table 4.7 shows their performance for ρ = 0.5. The
lower of the two costs obtained is presented in bold font and the running time of
the procedures is presented in seconds (we use CT to denote CombineTrees

and CTDP to denote CombineTreesDP).
As in CombineTrees procedure, when ρ = 1 the costs of the tree were

the same costs of DE. The difference was for intermediate values: as ρ increased,

DBD
PUC-Rio - Certificação Digital Nº 1121785/CA

Chapter 4. Experimental Results 36

Instance CombineTrees CombineTreesDP Time CT Time CTDP
Instance1 (18, 11.59) (18, 11.60) 0 0
Instance2 (39, 23.20) (36, 22.85) 0 0
Instance3 (22, 13.92) (22, 13.94) 0 0
Instance4 (13, 8.35) (12, 8.18) 0.18 0.04
Instance5 (38, 28.32) (38, 28.23) 2.97 0.14
Instance6 (46, 31.98) (42, 31.89) 16.59 0.12
Instance7 (31, 22.87) (29, 22.69) 7.58 0.52
Instance8 (19, 14.39) (15, 13.52) 0.44 0.11
Instance9 (21, 10.46) (19, 9.81) 0.43 0.14
Instance10 (108, 38.52) (108, 38.42) 3.6 0.14

Table 4.7: Execution of CombineTrees and CombineTreesDP. The costs
are in the form (a, b), where a is the worst cost and b is the expected cost

the worst cost of the tree increased, but the expected cost decreased. As a
result, both the two costs were values between the costs of DW and DE. In
most cases, CombineTreesDP produced a tree with both the worst and the
expected costs better than the costs obtained by CombineTrees.

As already expected, the running time of the CombinetreesDP pro-
cedure was smaller than the running time of the Combinetrees procedure,
since it’s faster to run DividePairs than to rebuild the whole tree DW for a
given subset S(v) of S. Consider, for example, two objects of different classes
that are separated in the last node x of a path in DW . Then, rebuild the tree
for these objects implies that at each node of the path in DW , from the root
until x, we have to remove a considerable amount of subtrees. The final tree is
a tree with only a single path from the root to x — which is removed because
each node has only one child.

Finally, a last experiment was made with Instance10. CombineT-

reesDP was executed for this instance 100 times with ρ = 0.5, and in each
time the costs were computed as random numbers in the range [1, 10]. The res-
ults are presented in Figure 4.2. The graph on the left shows the worst testing
cost achieved by each algorithm in each execution. As somehow expected, for
most of the cases (80 %) DividePairs outperforms EC2 in terms of minim-
izing the worst testing cost. The graph on the right side shows the expected
testing cost for the 100 instances. In all cases, EC2 outperforms DividePairs

in terms of minimizing the expected testing cost. The worst testing cost of Di-

videPairs is in average 4% smaller than the worst testing cost of EC2 while
the expected testing cost achieved for EC2 is in average 10% smaller than that
achieved by DividePairs.

DBD
PUC-Rio - Certificação Digital Nº 1121785/CA

Chapter 4. Experimental Results 37

Figure 4.2: The graph on the lefthand side shows the worst testing cost
achieved by DividePairs (blue), CombineTrees (green) and EC2 (red) for
100 instances. The graph on the righthand side shows the expected testing cost
achieved by the same algorithms over the same instances.

DBD
PUC-Rio - Certificação Digital Nº 1121785/CA

5
Conclusions and Future Works

In this thesis, we introduced and discussed the DFEP and presented two
main contributions.

Our first contribution was the DividePairs, an approximation algorithm
for the worst case of the DFEP. We showed, through a simple analysis,
how it attains an O(log n)-approximation — the best possible approximation
assuming that P 6= NP . Note that we studied here the most general case of
the problem, with non-uniform costs and multiway tests. To the best of our
knowledge, this is the first algorithm to approximate the worst case when the
number of classes is not equal to the number of objects.

Finally, our second contribution was the CombineTrees procedure,
which receives as input a tree DE with expected cost at most E, a tree DW

with worst cost at most W and a parameter ρ > 0, and returns a decision
tree with worst cost at most (1 + ρ)W and expected cost at most (1 + 1/ρ)E.
This implies that there exists a decision tree that provides simultaneously an
O(log n)-approximation for both the worst testing cost and the expected cost
versions of the DFEP, since our algorithm for the worst case can be used
with the algorithms presented in (1) and (18). These two algorithms produce
decision trees with an O(log n)-approximation w. r. t. the expected testing cost
(the former for the DFEP , and the latter for the identification problem). This
is the best possible approximation for the two goals (unless P = NP).

As a future work, we can further investigate the proposed algorithms,
since the experiments reported in this thesis can be expanded. We can see
how these algorithms behave with other probability distributions, for example,
among other modifications.

DBD
PUC-Rio - Certificação Digital Nº 1121785/CA

A
Performance of CombineTrees and CombineTreesDP

Tables from A.1 to A.10 show the results obtained by the algorithms.
Again, the lower of the two costs obtained is presented in bold font and the
running time of the procedures is presented in seconds. The row with ρ =∞,
shows the costs obtained by DividePairs and EC2. The second and fourth
columns of this row present the performance of DividePairs, and the third
and last columns present the performance of EC2.

ρ CombineTrees CombineTreesDP Time CT Time CTDP
0.05 (18, 11.62) (18, 11.62) 0 0
0.1 (18, 11.62) (18, 11.62) 0 0
0.15 (18, 11.62) (18, 11.62) 0 0
0.2 (18, 11.62) (18, 11.62) 0 0
0.25 (18, 11.62) (18, 11.62) 0 0
0.3 (18, 11.62) (18, 11.62) 0 0
0.35 (18, 11.64) (18, 11.64) 0 0
0.4 (18, 11.59) (18, 11.60) 0 0
0.45 (18, 11.59) (18, 11.60) 0 0
0.5 (18, 11.59) (18, 11.60) 0 0
0.55 (18, 11.60) (18, 11.62) 0 0
0.6 (18, 11.57) (18, 11.59) 0 0
0.65 (18, 11.57) (18, 11.59) 0 0
0.7 (18, 11.57) (18, 11.59) 0 0
0.75 (18, 11.55) (18, 11.57) 0 0
0.8 (18, 11.55) (18, 11.57) 0 0
0.85 (18, 11.55) (18, 11.57) 0 0
0.9 (18, 11.55) (18, 11.55) 0 0
0.95 (18, 11.55) (18, 11.55) 0 0
1 (18, 11.55) (18, 11.55) 0 0
∞ (18, 11.62) (18, 11.55) 0 0

Table A.1: Results of CombineTreesDP procedure and CombineTrees
procedure for Instance1.

DBD
PUC-Rio - Certificação Digital Nº 1121785/CA

Appendix A. Performance of CombineTrees and CombineTreesDP 40

ρ CombineTrees CombineTreesDP Time CT Time CTDP
0.05 (36, 22.97) (36, 22.97) 0 0
0.1 (36, 22.97) (36, 22.97) 0 0
0.15 (36, 22.97) (36, 22.97) 0 0
0.2 (36, 22.97) (36, 22.97) 0 0
0.25 (36, 22.97) (36, 22.97) 0 0
0.3 (36, 22.97) (36, 22.97) 0 0
0.35 (36, 22.97) (36, 22.97) 0 0
0.4 (36, 22.97) (36, 22.97) 0 0
0.45 (36, 22.97) (36, 22.97) 0 0
0.5 (39, 23.20) (36, 22.85) 0 0
0.55 (39, 23.20) (36, 22.85) 0 0
0.6 (39, 23.20) (36, 22.85) 0 0
0.65 (42, 23.13) (33, 22.87) 0 0
0.7 (42, 23.08) (33, 22.87) 0 0
0.75 (42, 22.82) (33, 22.73) 0 0
0.8 (42, 22.82) (33, 22.73) 0 0
0.85 (40, 22.85) (40, 22.83) 0.01 0
0.9 (40, 22.85) (40, 22.83) 0 0
0.95 (40, 22.83) (40, 22.83) 0 0
1 (40, 22.83) (40, 22.83) 0 0
∞ (36, 22.97) (40, 22.83) 0 0

Table A.2: Results of CombineTreesDP procedure and CombineTrees
procedure for Instance2

DBD
PUC-Rio - Certificação Digital Nº 1121785/CA

Appendix A. Performance of CombineTrees and CombineTreesDP 41

ρ CombineTrees CombineTreesDP Time CT Time CTDP
0.05 (22, 14.01) (22, 14.01) 0 0
0.1 (22, 14.01) (22, 14.01) 0 0
0.15 (22, 14.01) (22, 14.01) 0 0
0.2 (22, 14.01) (22, 14.01) 0 0
0.25 (22, 14.01) (22, 14.01) 0 0
0.3 (22, 14.01) (22, 14.01) 0 0
0.35 (22, 14.01) (22, 14.01) 0.01 0
0.4 (22, 14.01) (22, 14.01) 0 0
0.45 (22, 13.92) (22, 13.94) 0 0
0.5 (22, 13.92) (22, 13.94) 0 0
0.55 (22, 13.95) (22, 13.96) 0.01 0
0.6 (22, 13.92) (22, 13.93) 0 0.01
0.65 (22, 13.92) (22, 13.92) 0 0
0.7 (22, 13.92) (22, 13.92) 0 0
0.75 (22, 13.92) (22, 13.92) 0 0
0.8 (26, 13.91) (24, 13.90) 0 0
0.85 (26, 13.91) (24, 13.90) 0 0
0.9 (26, 13.91) (24, 13.90) 0 0
0.95 (26, 13.91) (24, 13.90) 0 0
1 (26, 13.91) (24, 13.90) 0 0
∞ (22, 14.01) (24, 13.90) 0 0

Table A.3: Results of CombineTreesDP procedure and CombineTrees
procedure for Instance3

DBD
PUC-Rio - Certificação Digital Nº 1121785/CA

Appendix A. Performance of CombineTrees and CombineTreesDP 42

ρ CombineTrees CombineTreesDP Time CT Time CTDP
0.05 (12, 8.20) (12, 8.20) 0.01 0.07
0.1 (13, 8.25) (12, 8.19) 0.02 0.06
0.15 (13, 8.25) (12, 8.19) 0.03 0.06
0.2 (13, 8.28) (12, 8.20) 0.03 0.05
0.25 (13, 8.28) (12, 8.20) 0.02 0.06
0.3 (13, 8.31) (12, 8.19) 0.04 0.05
0.35 (13, 8.32) (12, 8.18) 0.09 0.05
0.4 (13, 8.32) (12, 8.18) 0.08 0.04
0.45 (13, 8.35) (12, 8.18) 0.18 0.04
0.5 (13, 8.35) (12, 8.18) 0.18 0.04
0.55 (13, 8.34) (12, 8.15) 0.46 0.04
0.6 (12, 8.18) (12, 8.11) 0.84 0.03
0.65 (12, 8.18) (12, 8.11) 0.84 0.03
0.7 (12, 8.12) (12, 8.10) 0.42 0.02
0.75 (12, 8.12) (12, 8.10) 0.44 0.02
0.8 (12, 8.09) (12, 8.08) 0.2 0.02
0.85 (12, 8.08) (12, 8.08) 0.04 0.01
0.9 (12, 8.08) (12, 8.08) 0.04 0.01
0.95 (12, 8.08) (12, 8.08) 0.03 0.01
1 (12, 8.08) (12, 8.08) 0.02 0.02
∞ (12, 8.20) (12, 8.08) 0.06 0.05

Table A.4: Results of CombineTreesDP procedure and CombineTrees
procedure for Instance4

DBD
PUC-Rio - Certificação Digital Nº 1121785/CA

Appendix A. Performance of CombineTrees and CombineTreesDP 43

ρ CombineTrees CombineTreesDP Time CT Time CTDP
0.05 (36, 28.23) (36, 28.23) 0.08 0.24
0.1 (36, 28.23) (36, 28.23) 0.1 0.21
0.15 (36, 28.24) (36, 28.23) 0.12 0.2
0.2 (36, 28.25) (36, 28.24) 0.17 0.18
0.25 (37, 28.26) (36, 28.23) 0.25 0.16
0.3 (37, 28.28) (36, 28.23) 0.41 0.16
0.35 (37, 28.30) (36, 28.23) 0.79 0.16
0.4 (38, 28.31) (38, 28.23) 1.66 0.14
0.45 (38, 28.32) (38, 28.23) 2.93 0.14
0.5 (38, 28.32) (38, 28.23) 2.97 0.14
0.55 (38, 28.33) (36, 28.23) 5.31 0.13
0.6 (38, 28.34) (36, 28.22) 9.96 0.13
0.65 (38, 28.33) (38, 28.15) 18.84 0.12
0.7 (38, 28.27) (38, 27.99) 23.39 0.11
0.75 (41, 28.16) (38, 27.95) 23.89 0.1
0.8 (41, 27.93) (38, 27.85) 12.83 0.09
0.85 (40, 27.88) (38, 27.83) 10.85 0.09
0.9 (39, 27.83) (38, 27.82) 2.21 0.08
0.95 (39, 27.82) (38, 27.82) 0.55 0.08
1 (39, 27.82) (39, 27.82) 0.24 0.08
∞ (36, 28.23) (39, 27.82) 0.2 0.19

Table A.5: Results of CombineTreesDP procedure and CombineTrees
procedure for Instance5

DBD
PUC-Rio - Certificação Digital Nº 1121785/CA

Appendix A. Performance of CombineTrees and CombineTreesDP 44

ρ CombineTrees CombineTreesDP Time CT Time CTDP
0.05 (42, 31.91) (42, 31.91) 0.1 0.2
0.1 (42, 31.91) (42, 31.91) 0.15 0.18
0.15 (42, 31.91) (42, 31.91) 0.34 0.15
0.2 (42, 31.91) (42, 31.91) 0.6 0.16
0.25 (42, 31.91) (42, 31.91) 1.22 0.14
0.3 (42, 31.91) (42, 31.91) 2.63 0.14
0.35 (42, 31.91) (42, 31.91) 5.13 0.13
0.4 (45, 31.92) (42, 31.91) 10.08 0.13
0.45 (45, 31.92) (42, 31.90) 10.73 0.13
0.5 (46, 31.98) (42, 31.89) 16.59 0.12
0.55 (46, 31.99) (43, 31.80) 18.44 0.12
0.6 (47, 31.99) (46, 31.59) 25.5 0.11
0.65 (49, 31.92) (46, 31.52) 24.83 0.11
0.7 (49, 31.92) (46, 31.52) 24.72 0.11
0.75 (51, 31.40) (47, 31.23) 20.39 0.09
0.8 (51, 31.38) (47, 31.23) 20.44 0.09
0.85 (51, 31.21) (47, 31.17) 7.42 0.08
0.9 (51, 31.17) (47, 31.15) 5.68 0.07
0.95 (51, 31.17) (47, 31.15) 5.75 0.08
1 (51, 31.15) (51, 31.15) 0.79 0.07
∞ (42, 31.91) (51, 31.15) 0.18 0.18

Table A.6: Results of CombineTreesDP procedure and CombineTrees
procedure for Instance6

DBD
PUC-Rio - Certificação Digital Nº 1121785/CA

Appendix A. Performance of CombineTrees and CombineTreesDP 45

ρ CombineTrees CombineTreesDP Time CT Time CTDP
0.05 (29, 22.71) (29, 22.71) 0.13 0.72
0.1 (29, 22.71) (29, 22.71) 0.16 0.67
0.15 (29, 22.71) (29, 22.71) 0.24 0.61
0.2 (29, 22.71) (29, 22.71) 0.31 0.59
0.25 (29, 22.71) (29, 22.71) 0.8 0.57
0.3 (29, 22.71) (29, 22.71) 0.88 0.57
0.35 (30, 22.76) (29, 22.70) 1.76 0.56
0.4 (31, 22.81) (29, 22.70) 3.58 0.54
0.45 (31, 22.87) (29, 22.69) 7.07 0.53
0.5 (31, 22.87) (29, 22.69) 7.58 0.52
0.55 (31, 22.89) (29, 22.68) 13.65 0.52
0.6 (31, 22.81) (30, 22.65) 27.24 0.46
0.65 (31, 22.81) (30, 22.65) 27.07 0.45
0.7 (31, 22.63) (30, 22.57) 45.27 0.36
0.75 (31, 22.63) (30, 22.57) 38.94 0.31
0.8 (31, 22.45) (30, 22.44) 26.26 0.22
0.85 (34, 22.42) (31, 22.42) 13.87 0.17
0.9 (34, 22.41) (31, 22.41) 5.04 0.13
0.95 (34, 22.41) (33, 22.41) 1.62 0.12
1 (34, 22.41) (33, 22.40) 0.51 0.12
∞ (29, 22.71) (33, 22.40) 0.65 0.49

Table A.7: Results of CombineTreesDP procedure and CombineTrees
procedure for Instance7

DBD
PUC-Rio - Certificação Digital Nº 1121785/CA

Appendix A. Performance of CombineTrees and CombineTreesDP 46

ρ CombineTrees CombineTreesDP Time CT Time CTDP
0.05 (15, 13.52) (15, 13.52) 0.01 0
0.1 (15, 13.52) (15, 13.52) 0.02 0.17
0.15 (16, 13.70) (15, 13.52) 0.03 0.15
0.2 (16, 13.70) (15, 13.52) 0.04 0.15
0.25 (16, 13.98) (15, 13.51) 0.05 0.12
0.3 (17, 14.16) (15, 13.51) 0.08 0.1
0.35 (18, 14.28) (15, 13.50) 0.13 0.1
0.4 (18, 14.28) (15, 13.50) 0.14 0.09
0.45 (18, 14.34) (15, 13.51) 0.26 0.1
0.5 (19, 14.39) (15, 13.52) 0.44 0.11
0.55 (18, 14.41) (15, 13.51) 0.74 0.13
0.6 (18, 14.41) (15, 13.51) 0.75 0.13
0.65 (18, 14.40) (15, 13.49) 1.37 0.18
0.7 (19, 14.35) (15, 13.48) 2.59 0.29
0.75 (18, 14.22) (15, 13.43) 5.06 0.52
0.8 (18, 14.22) (15, 13.43) 5.06 0.51
0.85 (17, 13.88) (15, 13.32) 9.38 1.03
0.9 (16, 13.32) (15, 13.25) 9.51 2.8
0.95 (15, 13.25) (15, 13.25) 5.09 4.73
1 (15, 13.25) (15, 13.25) 5.05 4.71
∞ (15, 13.52) (15 ,13.25) 0.15 0.14

Table A.8: Results of CombineTreesDP procedure and CombineTrees
procedure for Instance8

DBD
PUC-Rio - Certificação Digital Nº 1121785/CA

Appendix A. Performance of CombineTrees and CombineTreesDP 47

ρ CombineTrees CombineTreesDP Time CT Time CTDP
0.05 (18, 11.41) (18, 11.41) 0.01 0
0.1 (18, 11.73) (17, 11.75) 0.04 0.38
0.15 (19, 12.10) (19, 10.87) 0.05 0.33
0.2 (20, 11.96) (18, 10.55) 0.06 0.28
0.25 (21, 11.99) (19, 10.38) 0.06 0.22
0.3 (21, 11.97) (19, 10.42) 0.1 0.19
0.35 (21, 11.50) (18, 9.98) 0.16 0.16
0.4 (21, 11.09) (20, 10.04) 0.27 0.14
0.45 (21, 10.46) (19, 9.81) 0.43 0.15
0.5 (21, 10.46) (19, 9.81) 0.43 0.14
0.55 (21, 10.13) (19, 9.67) 0.65 0.17
0.6 (21, 9.86) (19, 9.60) 0.97 0.24
0.65 (21, 9.71) (19, 9.55) 1.38 0.36
0.7 (21, 9.61) (19, 9.52) 1.78 0.53
0.75 (22, 9.55) (19, 9.52) 2.13 0.79
0.8 (21, 9.52) (19, 9.51) 2.22 1.1
0.85 (20, 9.51) (19, 9.51) 2.13 1.39
0.9 (20, 9.51) (19, 9.51) 1.97 1.6
0.95 (20, 9.51) (19, 9.51) 1.82 1.71
1 (20, 9.51) (19, 9.51) 1.83 1.7
∞ (18, 11.41) (19, 9.51) 0.31 0.3

Table A.9: Results of CombineTreesDP procedure and CombineTrees
procedure for Instance9

DBD
PUC-Rio - Certificação Digital Nº 1121785/CA

Appendix A. Performance of CombineTrees and CombineTreesDP 48

ρ CombineTrees CombineTreesDP Time CT Time CTDP
0.05 (103, 41.36) (103, 41.42) 0.18 0.28
0.1 (103, 41.39) (103, 41.47) 0.24 0.24
0.15 (103, 41.37) (103, 41.32) 0.43 0.2
0.2 (103, 41.25) (103, 41.03) 0.88 0.19
0.25 (103, 40.91) (103, 40.74) 1.6 0.18
0.3 (103, 40.45) (103, 40.24) 2.49 0.17
0.35 (103, 39.54) (103, 39.29) 3.39 0.16
0.4 (103, 39.06) (103, 38.85) 3.96 0.15
0.45 (108, 38.75) (108, 38.55) 3.79 0.14
0.5 (108, 38.52) (108, 38.42) 3.6 0.14
0.55 (108, 38.40) (108, 38.31) 3.11 0.13
0.6 (108, 38.31) (108, 38.26) 2.19 0.13
0.65 (108, 38.26) (108, 38.24) 1.54 0.13
0.7 (108, 38.23) (108, 38.22) 0.98 0.13
0.75 (108, 38.23) (108, 38.22) 0.62 0.13
0.8 (108, 38.22) (104, 38.22) 0.39 0.12
0.85 (108, 38.22) (104, 38.22) 0.24 0.13
0.9 (104, 38.22) (104, 38.22) 0.19 0.13
0.95 (104, 38.22) (104, 38.22) 0.14 0.13
1 (104, 38.22) (104, 38.22) 0.15 0.12
∞ (103, 41.58) (104, 38.22) 0.34 0.34

Table A.10: Results of CombineTreesDP procedure and CombineTrees
procedure for Instance10

DBD
PUC-Rio - Certificação Digital Nº 1121785/CA

Bibliography

[1] A logarithmic approximation algorithm for evaluating discrete functions.
submitted, journal.

[2] ADLER, M.; HEERINGA, B. Approximating optimal binary de-
cision trees. APPROX ’08 / RANDOM ’08, p. 1–9, 2008.

[3] ARKIN, E. M.; MEIJER, H.; MITCHELL, J. S. B.; RAPPAPORT, D. ;
SKIENA, S. S. Decision trees for geometric models. In: PROCEED-
INGS OF THE NINTH ANNUAL SYMPOSIUM ON COMPUTATIONAL
GEOMETRY, SCG ’93, p. 369–378, 1993.

[4] BAYES, A. J. Australian Computer Journal. A dynamic programming
algorithm to optimise decision table code, journal, v.5, n.2, p. 77–79, 1973.

[5] BELLALA, G.; BHAVNANI, S. K. ; SCOTT, C. IEEE Trans. Inf.
Theor. Group-based active query selection for rapid diagnosis in time-critical
situations, journal, v.58, n.1, p. 459–478, 2012.

[6] B.M.E. MORET. ACM Computing Surveys. Decision Trees and
Diagrams, journal, p. 593–623, 1982.

[7] CHAKARAVARTHY, V.; PANDIT, V.; ROY, S.; AWASTHI, P. ; MO-
HANIA, M. Decision trees for entity identification: Approxima-
tion algorithms and hardness results. In: PODS, p. 53–62, 2007.

[8] CHAKARAVARTHY, V. T.; PANDIT, V.; ROY, S. ; SABHARWAL, Y.
Approximating decision trees with multiway branches. In: PRO-
CEEDINGS OF THE 36TH INTERNATIONAL COLLOQUIUM ON AUTO-
MATA, LANGUAGES AND PROGRAMMING: PART I, ICALP ’09, p. 210–
221, 2009.

[9] CICALESE, F.; JACOBS, T.; LABER, E. ; MOLINARO, M. On greedy
algorithms for decision trees. In: ISAAC, 2010.

[10] CORMEN, T. H.; LEISERSON, C. E. ; RIVEST, R. L. Introduction
to Algorithms. 1st. ed., The MIT Press, 1990.

DBD
PUC-Rio - Certificação Digital Nº 1121785/CA

Bibliography 50

[11] CORMEN, T. H.; LEISERSON, C. E.; RIVEST, R. L. ; STEIN, C.
Introduction to Algorithms. Cambridge, MA: MIT Press, 2001.

[12] GAREY, M. R. SIAM Journal on Applied Mathematics. Optimal
binary identification procedures, journal, v.23, n.2, p. 173–186, Sept. 1972.

[13] GAREY, M. R. SIAM Journal on Computing. Optimal binary search
trees with restricted maximal depth, journal, v.3, n.2, p. 101–110, June 1974.

[14] GOLOVIN, D.; KRAUSE, A. ; RAY, D. Near-optimal bayesian active
learning with noisy observations. In: Lafferty, J. D.; Williams, C. K. I.;
Shawe-Taylor, J.; Zemel, R. S. ; Culotta, A., editors, NIPS, p. 766–774. Curran
Associates, Inc, 2010.

[15] GUILLORY, A.; BILMES, J. Average-case active learning with
costs. In: PROCEEDINGS OF THE 20TH INTERNATIONAL CONFER-
ENCE ON ALGORITHMIC LEARNING THEORY, ALT’09, p. 141–155, 2009.

[16] GUILLORY, A.; BILMES, J. Interactive submodular set cover. In:
Fürnkranz, J.; Joachims, T., editors, ICML, p. 415–422. Omnipress, 2010.

[17] GUILLORY, A.; BILMES, J. Simultaneous learning and covering
with adversarial noise. In: Getoor, L.; Scheffer, T., editors, ICML, p.
369–376. Omnipress, 2011.

[18] GUPTA, A.; NAGARAJAN, V. ; RAVI, R. Approximation algorithms
for optimal decision trees and adaptive tsp problems. In: PRO-
CEEDINGS OF THE 37TH INTERNATIONAL COLLOQUIUM CONFER-
ENCE ON AUTOMATA, LANGUAGES AND PROGRAMMING, ICALP’10,
p. 690–701, 2010.

[19] HANNEKE, S. unpublished. The cost complexity of interactive learning,
journal, v.http://www.stat.cmu.edu/ shanneke/docs/2006/cost-complexity-
working-notes.pdf, 2006.

[20] HU, T. C.; TAN, K. C. SIAM Journal on Applied Mathematics.
Path length of binary search trees, journal, v.22, n.2, p. 225–234, Mar. 1972.

[21] HYAFIL, L.; RIVEST, R. L. Inf. Process. Lett. Constructing optimal
binary decision trees is np-complete, journal, v.5, n.1, p. 15–17, 1976.

[22] KOSARAJU; PRZYTYCKA ; BORGSTROM. On an optimal split
tree problem. In: WADS: 6TH WORKSHOP ON ALGORITHMS AND
DATA STRUCTURES, 1999.

DBD
PUC-Rio - Certificação Digital Nº 1121785/CA

Bibliography 51

[23] LABER, E. S.; NOGUEIRA, L. T. Discrete Appl. Math. On the
hardness of the minimum height decision tree problem, journal, v.144, p.
209–212, 2004.

[24] LARMORE; HIRSCHBERG. JACM: Journal of the ACM. A fast
algorithm for optimal length-limited huffman codes, journal, v.37, 1990.

[25] LARMORE, L. L. SIAM Journal on Computing. Height restricted
optimal binary trees, journal, v.16, n.6, p. 1115–1123, Dec. 1987.

[26] LIPMAN, M. J.; ABRAHAMS, J. IEEE Transactions on Information
Theory. Minimum average cost testing for partially ordered components,
journal, v.41, n.1, p. 287–291, 1995.

[27] MARTELLI, A.; MONTANARI, U. Communications of the Asso-
ciation for Computing Machinery. Optimizing decision trees through
heuristically guided search, journal, v.21, p. 1025–1039, 1978.

[28] NEVMYVAKA, Y.; FENG, Y. ; KEARNS, M. Reinforcement learn-
ing for optimized trade execution. Technical report, In ICML ’06:
Proceedings of the 23rd international conference on Machine learning, 2006.

[29] SCHUMACHER, H.; SEVCIK, K. C. Commun. ACM. The synthetic
approach to decision table conversion, journal, v.19, n.6, p. 343–351, 1976.

DBD
PUC-Rio - Certificação Digital Nº 1121785/CA

	On the Simultaneous Minimization of Worst Testing Cost and Expected Testing Cost with Decision Trees
	Abstract
	Contents
	Introduction
	Problem Definition
	Our Results
	Related Work
	Thesis Organization

	Basic Concepts
	Optimal Algorithms to build Decision Trees
	Approximation Algorithms

	An Approximation for the Worst Case and a Bicriteria Approximation
	A Logarithmic Approximation for the Worst Testing Cost
	A Bicriteria Approximation

	Experimental Results
	Input Data
	DividePairs Algorithm
	The CombineTrees and the CombineTreesDP Procedures

	Conclusions and Future Works
	Performance of CombineTrees and CombineTreesDP
	Bibliography

