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Prof. David Sotelo Pinheiro da Silva
Departamento de Informática — PUC-Rio
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Abstract

Bardales Roncalla, Wilfredo; Laber, Eduardo Sany (Advisor). On the
Lower Bound for the Maximum Consecutive Sub-Sums Pro-
blem. Rio de Janeiro, 2013. 60p. MSc. Dissertation — Departamento de
Informática, Pontif́ıcia Universidade Católica do Rio de Janeiro.

The Maximum Consecutive Subsums Problem (MCSP) arises in

scenarios of both theoretical and practical interest, for example, approximate

pattern matching, protein identification and analysis of statistical data to cite

a few. Given a sequence of n non-negative real numbers, The MCSP asks

for the computation of the maximum consecutive sums of lengths 1 through

n. Since trivial implementations allow to compute the maximum for a fixed

length value, it follows that there exists a naive quadratic procedure to solve

the MCSP. Notwithstanding the effort devoted to the problem, no algorithm

is known which is significantly better than the naive solution. Therefore, a

natural question is whether there exists a superlinear lower bound for the

MCSP. In this work we report our research in the direction of proving such a

lower bound.

Keywords
Algorithms; Approximate Pattern Matching; Jumbled Pattern

Matching; Parikh Vectors; Maximum Subsequence Sum; Maximum Sums.
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Resumo

Bardales Roncalla, Wilfredo; Laber, Eduardo Sany. Sobre o Limite In-
ferior para o Problema das Sub-Somas Consecutivas Máximas.
Rio de Janeiro, 2013. 60p. Dissertação de Mestrado — Departamento de
Informática, Pontif́ıcia Universidade Católica do Rio de Janeiro.

O Problema das Sub-somas Consecutivas Máximas (MCSP)

surge em cenários de interesse teórico e prático, por exemplo, no casamento

aproximado de padrões, identificação de protéınas e análise de dados

estat́ısticos apenas para nomear alguns. Dada uma sequência de n números

reais não negativos, O MCSP consiste em calcular as somas consecutivas

máximas de tamanho 1 até n. Como existem implementações triviais

que permitem encontrar o máximo para um comprimento fixo, existe um

procedimento quadrático simples que permite resolver o MCSP. Apesar

dos esforços dedicados ao problema, não é conhecido nenhum algoritmo

significativamente melhor que a solução simples. Portanto, uma pergunta

natural é se existe um limite inferior superlinear para o MCSP. Neste trabalho

reportamos nossas pesquisas no sentido de provar tal limite.

Palavras–chave
Algoritmos; Casamento Aproximado de Padrões; Casamento de

Padrões Misturados; Vetores de Parikh; Subsequência de Soma Máxima;

Somas Máximas.
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Deus, Deus meus es tu, ad te de luce vigilo.
Sitivit in te anima mea, te desideravit caro
mea. In terra deserta et arida et inaquosa,[...]
Quoniam melior est misericordia tua super
vitas, labia mea laudabunt te. Sic benedicam
te in vita mea[...] quia fuisti adiutor meus, et
in velamento alarum tuarum exsultabo[...]

Psalmus 63 (62)
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1
Introduction

The term “Approximate Pattern Matching” comprises several matching

models (39, 20); one of them is the Jumbled Pattern Matching (20, 23), also

referred to as Permutation Matching or Abelian Pattern Matching (18). It

consists (in its decision version) in telling if any permutation of a pattern p

exists in a given text T (assuming a finite alphabet for both strings).

This jumbled pattern matching is equivalent to the Parikh vector pattern

matching. Consider a finite ordered alphabet Σ = {a1, a2, . . . , aσ}, a1 < a2 <

. . . < aσ, the Parikh vector of a string s ∈ Σ∗, s = s1, s2, . . . , sn is defined

as p(s) = (p1, p2, . . . , pσ), where p(s) is the Parikh vector that defines the

multiplicities of the characters in s, i.e. pi = |{j| sj = ai}|, for i = 1, 2, . . . , σ.

For example, for the alphabet Σ = {a, b, c} the string s = abaccbabaaa has

Parikh vector p(s) = (6a, 3b, 2c). In the Parikh vector pattern matching, given

a string T (the text) and a pattern Parikh vector q = (q1, q2, . . . , qσ), we

are interested in finding all occurrences of q in T , that is, all substrings

t ∈ T such that p(t) = q. In its decision version (membership queries) we are

only interested in knowing whether or not q occurs in T . Using the previous

example, the Parikh vector q = (2a, 1b, 1c) appears only once in s (abac).

Most typically, applications for the Parikh vector pattern matching, are

found in computational biology and regard the identification of compounds

of complex molecules whose presence can be characterized by the presence of

certain substructures and their occurrence within a relatively short distance,

whilst the exact location of such substructures within the molecule is not

significant (2, 11, 30, 57).

Indeed, like the classical pattern matching, a Parikh vector matching can

be found in O(n) time. However, while the classical pattern matching requires

clever ideas like the Knuth-Morris-Pratt algorithm (46) or the Boyer-Moore

algorithm (13), Parikh vector matching can be easily solved in O(n) time

with a simple sliding window based algorithm (23). The difficulty in Parikh

vector matching is for the indexing problem (i.e., preprocess a text to efficiently

answer Parikh vector queries). For indexing, the classical pattern matching,

the text can be preprocessed in O(n) time to produce a data structure of size
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On the Lower Bound for the Maximum Consecutive Sub-Sums Problem 10

O(n), such as a suffix tree (52, 68, 69), that can answer queries efficiently.

In contrast, for Parikh vector matching we do not currently have any o(n2)

size data structure for answering queries in time linear in the pattern’s size.

This motivates the interest in indexes for membership queries which, given

several queries over the same string, allows to at least filter out the “no”

instances, before, eventually applying the trivial O(n) procedure only to the

“yes” instances.

In binary alphabets, it turns out that there is a simple data structure

for membership queries that requires only O(n) space to answers queries in

O(1) time. This data structure is exactly what the Maximum Consecutive

Subsums Problem (MCSP) computes.

Given a sequence of n non-negative numbers, The MCSP asks for the

computation of the maximum consecutive sums of lengths 1 through n. This

problem has recently generated much interest (16, 17, 18, 23, 24, 55, 56). In

particular, for a binary string s of size n, knowing for each ` = 1, 2, . . . , n the

minimum and maximum number of 1’s found in a substring of s of length `, we

can answer membership queries in constant time. More precisely the connection

between the MCSP and the Parikh vector membership query problem is given

by the following (interval) lemma:

Lemma 1 (Burcsi et al. (17)). Let s be a binary string over the binary alphabet

Σ = {0, 1}, and let µmin
` , µmax

` denote the minimum and maximum number of

ones in a substring of s of length `. Then, there exists a substring in s with

Parikh vector p = (x0, x1) if and only if µmin
x0+x1

≤ x1 ≤ µmax
x0+x1

It follows that, after constructing the tables of µmin’s and µmax’s (which is

equivalent to solving two instances of the MCSP) we can answer in constant

time Parikh vector membership queries, i.e., questions asking: “Is there an

occurrence of the Parikh vector (x0, x1) in s?”.

For example, let s = 001010110001100111 and the tables of µmin’s and

µmax’s as shown in Table 1.1. Then the Parikh vector p(000000111111) = (6, 6)

is present in s while p(000011111111) = (4, 8) is not.

` 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

µmin 0 0 0 1 2 2 2 3 4 4 4 5 6 6 6 7 8 9
µmax 1 2 3 3 3 4 5 5 5 5 6 7 7 8 8 9 9 9

Table 1.1: µmin and µmax tables for s = 001010110001100111

Since trivial implementations allow to compute the maximum for a fixed

length value, it follows that there exists a naive quadratic procedure to solve
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On the Lower Bound for the Maximum Consecutive Sub-Sums Problem 11

the MCSP. Notwithstanding the effort devoted to the problem, no algorithm

is known which is significantly better than the naive solution. Therefore, a

natural question is whether there exists a (non-trivial) superlinear lower bound

for the MCSP. In this work we report our research in the direction of proving

such a lower bound.

1.1
Problem Definition

Given a sequence of n non-negative reals A[1, . . . , n] = 〈a1, a2, . . . , an〉,
the Maximum Consecutive Subsums Problem asks to find the consecut-

ive subsequence A[i∗, j∗] = 〈ai∗ , ai+1, . . . , aj∗〉 of size ` = j∗− i∗+ 1 whose sum∑j∗

k=i∗ A[k] is the maximum, for all ` = 1, 2, . . . , n.

For example, consider the following input sequence:

A = 4 4 0 2 5 2

Then, the solution for this MCSP input are the maximum consecutive subsums

shown in Table 1.2.

Length Substring Sum

1 A[5] 5
2 A[1, 2] 8
3 A[4 . . . 6] 9
4 A[2 . . . 5] 11
5 A[1 . . . 5] 15
6 A[1 . . . 6] 17

Table 1.2: Maximum consecutive subsums for the sequence A = [4, 4, 0, 2, 5, 2]

Algorithm 1.1 Naive-MCSP(A[1, . . . , n])

1: for i← 1 to n do
2: sum[i]← 0
3: max[i]← −∞
4: end for
5: for i← 1 to n do
6: for j ← n down to i do
7: sum[j]← sum[j] + A[j − i+ 1]
8: if sum[j] > max[i] then
9: max[i]← sum[j]

10: end if
11: end for
12: end for
13: return max
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It’s not difficult to come up with simple Θ(n2) algorithms, the Naive-

MCSP method is an example of such an algorithm, and despite the interest

generated by this problem (16, 17, 18, 23, 24, 55, 56) does not exists a better

than O(n2/ log2 n) algorithm in the literature. Then, a natural question to ask

is whether there exists a non-trivial lower bound for the MCSP. In this thesis

we attack that problem.

1.2
Related Works

The classical Maximum Sum Subsequence Problem has been gener-

ally used for pedagogical purposes to illustrate design techniques and algorith-

mical thinking.

Given a sequence of n real numbers A[1, . . . , n] = 〈a1, a2, . . . , an〉, where

the segment A[i, j] = 〈ai, ai+1, . . . , aj〉 is a consecutive subsequence of A, the

problem asks to find the segment A[i∗, j∗] = 〈ai∗ , ai∗+1, . . . , aj∗〉 whose sum∑j∗

k=i∗ A[k] is the maximum among all possible segments. The problem was

introduced by Grenader (12) as a special one-dimensional version of its two-

dimensional counterpart, the Maximum Sum Subarray Problem. It finds

applications in pattern matching (37, 58), biological sequence analysis (1),

and data mining (33). The Maximum Sum Subsequence Problem can be

solved in linear time using Kadane’s algorithm (12), and sometimes it’s also

called the Maximum Sum Segment.

The Maximum Sum Subarray Problem asks to find the submatrix

of a given m×n, m ≤ n, matrix of real numbers, whose sum is the maximum

among all the O(m2n2) submatrices. The first sub-cubic algorithm was given by

Tamaki and Tokuyama (65), and later Takaoka (64) gave a simplified version

of sub-cubic time as well.

A natural generalization is the k Maximum Sum Segments that, given

a sequence A[1, . . . , n] and a positive number k, consist in locate the k segments

whose sum are the k largest among all possible sums. The k Maximum Sum

Segments was first presented by Bae and Takaoka (5) and, after different

solutions emerged (5, 6, 7, 10, 22, 50), was optimally solved by Brodal and

Jørgensen (15) in O(n+ k)

Ruzzo and Tompa (62) considered the All Maximum Sum Disjoint

Segments that finds all the disjoint segments of maximum sum, and presented

an O(n) algorithm.

The Lengh-Constrained Maximum Sum Segment, given a se-

quence A[1, . . . , n] and two integers L,U with 1 ≤ L ≤ U ≤ n, finds the

maximum sum segment among all segments of A of lengths in the interval
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[L,U ]. The Lengh-Constrained Maximum Sum Segment was formulated

by Huang (38) and was solved optimally in O(n) (31, 50).

For the Parikh vector pattern matching the best constructions for the bin-

ary sequences are as follows: Bursci et al. (16, 17, 18) showed an O(n2/ log n)-

time algorithms based on the O(n2/ log n) algorithm of Bremner et al. (14, 21)

for computing a (min,+)-convolution, independently Moosa and Rahman (55)

obtained the same result by a different use of (min,+)-convolution, then Mossa

and Rahman (56) further improved it to O(n2/ log2 n) in the RAM model.

Currently faster algorithms than O(n2/ log2 n) exist only when the string

compresses well using the run-length encoding (4, 35) or when an approximate

index, with a running time of O(n1+ε) and the probability of an incorrect

answer depending of the choice of ε, is allowed (24).

1.3
Our Contributions

This thesis describes an attempt to prove a superlinear lower bound for

the MCSP in the decision tree model.

First we show that a lower bound on the MCSP can be proved by showing

a lower bound on a minimum set of outputs that any algorithm that solves the

MCSP must know how to distinguish from. This set must be large enough such

that a non-trivial lower bound may be derived using a decision tree model of

computation. This technique in principle can be applied to any kind of problem

for which a set like that exists.

Then, we show an algebraic way to explore this set. We describe some

characteristics about its elements, and we prove that its size is at least

exponential.

Finally we give some empirical evidence, using deterministic and prob-

abilistic methods, to show that the size of the aforementioned set is Ω(
√
n!)

which implies a superexponential size and a corresponding superlinear lower

bound. We discuss some ways to improve our results pointing out the main

limitations of our current approach.

1.4
Organization

The organization of this work is as follows:

Chapter 2 gives a brief overview about the most common techniques or

arguments used to determine lower bounds, exemplifying each of the techniques

with known lower bounds.
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Chapter 3 shows the approach used to give evidences about the lower

bound for the MCSP. We define the concept of configuration and feasibility

in order to show approximations for the number of feasible configurations, that

allow us to infer a lower bound.

Chapter 4 explains the deterministic and probabilistic methods and

shows the main empirical results of this work.

To finalize, Chapter 5 summarizes the results found, conjectures the lower

bound for the MCSP and discusses future directions for the research of the

problem.
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2
Basic Concepts

A very important aspect in the study of algorithms is to know about

the algorithmic limitations. This limitations are generally expressed as two

“opposite” views: when a computational problem can not be solved efficiently

(or at least it’s not known if it can) and when it is solved optimally. In other

words, intractability and lower bounds.

Intractability dates back to the classical undecidable results obtained

by Alan Turing and his famous Halting Problem (67), and has given the

major unsolved problem in computer science and one of the most important

problems in contemporary mathematics, whether P 6= NP . For a very nice

guide to intractability, NP-completeness theory and discussions about NP-

complete problems we refer the reader to the book by Garey and Johnson (34).

On the other hand, given that there are some problems that admit

efficient solutions, a natural question arises: What is the best possible way

to solve that particular problem? Equivalently we could ask: What is the

minimum amount of work that we need to do in order to solve a particular

problem? Regardless of how clever any algorithm can possibly be, a lower

bound places a limit on how fast a particular problem can be solved. Thus,

a lower bound indicates the minimum amount of resources (space and time

primarily) required to solve a computational problem.

In this chapter we describe some techniques and examples about how to

prove the existence of lower bounds.

2.1
Lower Bounds

The question about lower bounds has been around for a long time, in

fact, even without any computer Charles Babbage stated:

As soon as an Analytical Engine exists, it will necessarily guide the

future course of the science. Whenever any result is sought by its

aid, the question will then arise — by what course of calculation

can these results be arrived at by the machine in the shortest time?1

1BABBAGE, C. 1864 Passages from the Life of a Philosopher, ch. 8 p. 137.
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In that sense, given that we know how to solve a problem efficiently, a

prime goal is to determine if we are solving the problem “optimally”. In the

analysis of algorithms, the running time is generally measured as a function

of the worst-case input data (66) i.e. the number of (machine independent)

basic computer steps counted as a function of the size of the input (26). Thus,

it’s said that an algorithm is efficient if it has a polynomial running time with

respect to its input size (41). Such an algorithm will be optimal if a matching

lower bound can be proved on the worst-case performance of any algorithm for

the same problem. That is, to prove the computational limit that any efficient

algorithm will have in order to solve that particular problem. We also say

that a lower bound is tight if such an algorithm exists (49). The term theory

of algorithms is often used to refer to this type of worst-case performance

analysis (63), and its prime goal is to classify algorithms according to their

performance characteristics. A convenient mathematical tool to describe that

classification is the asymptotic notation that was re-introduced, advocated and

popularized by Knuth (43); nowadays it’s a common standard in algorithm

theory textbooks (25, 26, 36, 41, 49, 51, 63, 66). This kind of notation is often

used in computer science to express upper bounds (O-notation), lower bounds

(Ω-notation) and matching lower and upper bounds (Θ-notation); which are

defined as follows (43):

Definition 1. Given a function f(n)

O(f(n)) denotes the set of all g(n) such that there exists positive constants C

and n0 with |g(n)| ≤ Cf(n) for all n ≥ n0.

Ω(f(n)) denotes the set of all g(n) such that there exists positive constants C

and n0 with g(n) ≥ Cf(n) for all n ≥ n0.

Θ(f(n)) denotes the set of all g(n) such that there exists positive constants

C,C ′ and n0 with Cf(n) ≤ g(n) ≤ C ′f(n) for all n ≥ n0

Where O(f(n)) can be read as “order at most f(n)”; Ω(f(n)) as “order

at least f(n)” and Θ(f(n)) as “order exactly f(n)”.

2.2
Lower Bounds Techniques

We now present some examples of lower bounds and the arguments or

techniques used to prove them.
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2.2.1
Trivial Lower Bounds

The most general method to obtain a lower bound is based on counting

the number of items in the problem’s input that must be processed and the

number of output items that need to be produced (49). For example, any

algorithm to perform a n × n matrix multiplication must perform at least

Ω(n2) operations because it has to read 2n2 input values and output n2 values,

but we don’t know if this lower bound is tight. So far the best asymptotic

running time, at the time of writing this dissertation, is O(n2.3727) (71).

Sometimes these trivial lower bounds are tight, for example to generate

all the permutations of n distinct numbers any algorithm must be Ω(n!)

because the output size is n!, and it’s tight because there exist algorithms

that spend a constant time generating each permutation (45).

At other times they are too loose to be useful. For example, for the

Traveling Salesman Problem: given n cities and pairwise distances

between them, find a tour that passes through each city once, returns to the

starting point, and has minimum total length (48, 66); a lower bound is Ω(n2)

because its input is n(n−1)/2 intercity distances and the output is a sequence

of n + 1 cities for an optimal tour (49). This is too loose because it is not

known if a polynomial-time algorithm exists to solve this problem. It was

even conjectured by Edmonds in 1967 (29) that there is no polynomial-time

algorithm to solve it.

Next we present other techniques or arguments that are often used to

show non-trivial lower bounds.

2.2.2
Information Theoretic Lower Bound

This technique seeks to establish a lower bound based on the amount

of information that an algorithm must produce in order to solve a particular

problem (49). To know the amount of “bits of information” acquired during

a particular algorithmic process, it’s used a comparison model or decision

tree model (25). In the decision tree or comparison tree, the leaves represent

the solutions for a particular problem, and the internal nodes represent

the non-redundant comparisons needed to reach a solution, such that each

comparison yields 1 bit of information (44). Let S(n) be the minimum number

of comparisons needed to reach any leaf node in the decision tree; that is,

the height of the comparison tree constructed optimally without redundant

comparisons. Because all comparisons are binary ({0, 1}) the comparison tree

is a binary tree and the number of leaf nodes in the tree is at most 2S(n). Thus,
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let N be the number of leaf nodes in the comparison tree, the number of bits of

information acquired during a root to leaf traversal is dlgNe, which establishes

the lower bound of Ω(lgN).

For example, the lower bound for any comparison-based sorting algorithm

to sort an array A of n items is Ω(n lg n) comparisons (44). The reasoning is

as follows: in the binary tree used to represent the sequence of comparisons,

an internal node i : j represents the compare operation between the A[i] and

A[j] items. The left subtree corresponds to the case where A[i] ≤ A[j], and the

right subtree to A[i] > A[j]. A leaf node i0 i1 i2 . . . in−1 represents the order

of the sorted items: A[i0], A[i1], A[i2], . . . , A[in−1]. For example, in Figure 2.1

is represented the comparison tree for n = 3.

0 : 1

1 : 2

0 1 2 0 : 2

0 2 1 2 0 1

0 : 2

1 0 2 1 : 2

1 2 0 2 1 0

Figure 2.1: Compare tree for n = 3, where the internal nodes represent the
comparisons and the leaf nodes represent the final ordering

Since all permutations of the n elements are possible and each permuta-

tion defines a unique path from the root to a leaf node, it follows that there

are exactly n! leaf nodes in a comparison tree that sorts n elements without

redundant comparisons. Let S(n) be the minimum number of comparisons

that suffices to sort n distinct elements (the height of the comparison tree of

n elements), then we can have at most 2S(n) leaves. Consequently

n! ≤ 2S(n)

or rewriting this formula:

S(n) ≥ dlg n!e

Using the Stirling approximation to the factorial function, we have that

dlg n!e = n lg n− n/ ln 2 +
1

2
lg n+O(1)

Hence, roughly n lg n comparisons are needed to sort n elements, establishing

the lower bound of Ω(n lg n).

Ford and Johnson (32) introduced decision trees as a model to study com-

parison based sorting algorithms. Later, Rabin (60) generalized the decision
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trees to the more general class of algebraic computation-trees, and many power-

ful techniques for linear decision trees were presented (61, 27, 28). Steele and

Yao (53) extended the work of Dobkin and Lipton (28) and more generaliza-

tions of the decision-tree model were studied comprehensively by Ben-Or (9).

For further reference, a wealth of information about algebraic algorithms can

be found in the book by Bürgisser, Clausen and Shokrollahi (19).

2.2.3
Adversary Lower Bound

The next non-trivial technique defines the existence of a (pernicious but

honest) adversary that, gradually constructs a worst case (consistent) input at

the same time that a decision is made by the algorithm; such that it makes

the algorithm work as hard as possible, that is, to force the algorithm to make

as many decisions as possible (44, 49).

For example, any algorithm for finding both the smallest and the largest

of n distinct keys in an unordered list A (Min-Max Selection Problem),

requires at least
⌈
3n
2

⌉
− 2 comparisons (it can take one less in the case of n

odd). The first solution for this problem using an adversarial argument is due

to Pohl (59), where he also gave an optimal algorithm.

The reasoning is as follows (3): assuming that the n keys are distinct,

whenever a comparison of two keys is done we say that the larger key is a

winner of the comparison, and the smaller is a loser of the comparison. At any

point during the execution of the algorithm, any given key is associated to one

of the following labels:

Label Description

W The key has won at least one comparison and never lost.

L The key has lost at least one comparison and never won.

WL The key has won and lost at least one comparison.

N The key has not yet participated in a comparison.

At the beginning of the algorithm all the keys have label N , and as the

comparisons are made, the adversary will respond such that the minimum

amount of information can be acquired by the algorithm. The answers of the

adversary are defined as follows:

The adversary must keep track of the answers given to the algorithm, so

that a consistent answer can be given when both keys have a label WL. A way

to do this is to assign values to the keys, when they are asked.

It was also proved with an adversarial argument by Pohl (59) that any
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Labels of Keys
A[i] – A[j]

Adversary Answer New Labels For
A[i] – A[j]

Bits of
Information Given

N–N A[i] > A[j] W–L 2
W–N or WL–N A[i] > A[j] W–L or WL–L 1

L–N A[i] < A[j] L–W 1
W–W A[i] > A[j] W–WL 1
L–L A[i] > A[j] WL–L 1

W–L or WL–L
or W–WL

A[i] > A[j] No change 0

WL–WL Consistent with
previous answers

No change 0

Table 2.1: Answers of the adversary for the Min-Max Selection Problem

algorithm that finds the largest of n keys in an unordered list require at least

n − 1 bits of information because at least n − 1 keys must be losers in a

comparison. The intuition is that if we don’t compare at least n−1 keys, there

could exist at least one key for which we don’t know nothing and that could

be the maximum; for the minimum the reasoning is the same. Thus to find the

maximum and the minimum (independently) we need at least 2(n− 1) bits of

information.

Assuming that n is even; to count the number of “bits of information”

acquired by the algorithm, we have that only 2 bits of information are given

when two keys with label N are compared. That can happen at most n/2

times, which means that at most 2(n/2) = n bits of information are acquired

by the algorithm. As noted before, any algorithm needs at least 2(n−1) bits of

information to find the maximum and the minimum of an unordered list of n

keys, that means that the algorithm needs to acquire at least 2n−2−n = n−2

additional bits of information. For all the other operations the adversary gives

at most 1 bit of information. Thus it needs to do at least the following number

of comparisons:

n− 2 +
n

2
=

3n

2
− 2

For the case when n is odd, the number the number of comparisons is:

n− 2 +
n− 1

2
+ 1 =

⌈
3n

2

⌉
− 2

which establishes the lower bound for the minimum number of comparisons

needed.

Asymptotically, the lower bound is Ω(n), but the use of the adversary

argument allows us to establish a true lower bound on the minimum number

of comparisons made by any algorithm for this problem. We shall note that
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by using the more general information theoretic argument (or decision tree

model), the lower bound would be of Ω(lg n), which is too loose.

2.2.4
Problem Reductions

Another commonly used technique to determine lower bounds is the

problem reduction technique. This approach, is commonly used to compare

the relative difficulty of different problems. We say that a “problem X is at

least as hard as problem Y ” if arbitrary instances of problem Y can be solved

using a polynomial number of standard computational steps, plus a polynomial

number of calls to an algorithm that solves problem X (41). To determine the

lower bounds we assume that Y has a known tight lower bound. Then, Y is

polynomial-time reducible to X (Y ≤P X), or, X is at least as hard as Y .

The consequence of this reduction is that, if Y ≤P X then any algorithm

that solves X can also be used to solve Y , thus, the lower bound is “propag-

ated” from Y to X, because otherwise there would exists a better lower bound

than the already known tight lower bound, which would be a contradiction.

For example, the Element Uniqueness Problem (given a set of n real

numbers, decide whether two of them are equal) is known to have a lower bound

of Ω(n lg n) element comparisons using the algebraic decision-tree model (9).

We can use this fact to show that the Closest Pair Problem (given a set

of n points in the plane identify the pair with minimum separation) is at least

as hard as the Element Uniqueness Problem and, therefore, has also a

lower bound of Ω(n lg n).

Let x = {x1, x2, . . . , xn} be a set of positive real numbers. Corresponding

to each number xi construct a point pi = (xi, 0) such that all the constructed

points are on the line y = 0. This construction takes O(n) time. Let A be

an algorithm that solves the closest pair problem for the constructed set and

outputs (xi, 0), (xj, 0) as the closest pair. Then, there are two equal numbers

in the original set x if and only if the distance between xi and xj is equal

to zero. Thus we have that: Element Uniqueness Problem ≤P Closest

Pair Problem.
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3
Toward a Lower Bound for the MCSP

In this chapter we describe the approach taken to try to establish a lower

bound for the Maximum Consecutive Subsums Problem. In order to do

so, let’s first define the input and the output for the problem. Let A[1 . . . n]

be the input sequence for the MCSP formed by n non-negative real numbers.

For example:

A = 4 4 0 2 5 2

Then, the output for the problem are the maximum consecutive subsums shown

in Table 3.1.

Length Substring Sum

1 A[5] 5
2 A[1, 2] 8
3 A[4 . . . 6] 9
4 A[2 . . . 5] 11
5 A[1 . . . 5] 15
6 A[1 . . . 6] 17

Table 3.1: Maximum consecutive subsums for the sequence A = [4, 4, 0, 2, 5, 2]

One way to encode this output is the following: let R = {r1, r2, . . . , rn}
be the set of substrings of A whose sum is the maximum for the lengths

1, 2, . . . , n. Thus, by letting P [i], for i = 1, 2, . . . , n, be the starting position

of the substring ri, we can uniquely map any solution for the MCSP into an

array P of starting positions, which we will call “maximums configuration” or

simply “configuration”. Sometimes we will use interchangeably P [i] and pi to

denote the starting position of the maximum of length i.

For example, the corresponding maximums configuration for the input

sequence A = [3, 0, 5, 0, 2, 4] is:

P = 3 5 1 3 2 1

1 2 3 4 5 6
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In that way, the substring A[P [k] . . . P [k]+k−1] represents the maximum sum

of length k. Thus, we define the configuration P as the output for the MCSP.

The entire configuration can be visually represented by a bidimensional grid,

where the positions of each maximum segment are shadowed. By convention,

the row i, from the top to the bottom, shows the maximum sum of length i.

For example, the Figure 3.1 shows the visual representation for the previous

configuration P .

Figure 3.1: Grid representation for the configuration P = [3, 5, 1, 3, 2, 1]

We shall note that not all inputs have a unique configuration P as an

answer. For example, let A = [6, 0, 5, 0, 2, 4] be the input sequence; in this case

the maximum sum of length 2 is 6 and both substrings A[1, 2] and A[5, 6] are

valid answers. Similarly, the maximum of length 4 is 11 and both substrings

A[1 . . . 4] and A[3 . . . 6] are valid answers. Therefore, the answer could be any

of the four configurations:

P =



[1, 1, 1, 1, 1, 1]

[1, 5, 1, 1, 1, 1]

[1, 1, 1, 3, 1, 1]

[1, 5, 1, 3, 1, 1]

Let’s discuss about the implications of those multiplicities. Let’s suppose

that A = {A1, A2, . . . , Ak} is an arbitrarily chosen set of inputs for the MCSP,

and P(A) = {P | P is a configuration for some A ∈ A}. Then, any input

Ai ∈ A has at least one corresponding solution Pj ∈ P(A).
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For example, let A = {A1, A2, A3, A4} and P(A) =

{P1, P2, P3, P4, P5, P6} as shown in Table 3.2, with the following mapping:

P(A1) = {P1, P2}

P(A2) = {P3, P4, P5}

P(A3) = {P2, P3, P4, P6}

P(A4) = {P5}

Input Set A Solution Set P(A)

A1 = [2, 3, 1, 4]
P1 = [4, 3, 2, 1]
P2 = [4, 1, 2, 1]

A2 = [1, 1, 1, 0]
P3 = [1, 1, 1, 1]
P4 = [1, 2, 1, 1]
P5 = [3, 2, 1, 1]

A3 = [1, 0, 0, 1]

P2 = [4, 1, 2, 1]
P3 = [1, 1, 1, 1]
P4 = [1, 2, 1, 1]
P6 = [4, 2, 1, 1]

A4 = [5, 4, 6, 0] P5 = [3, 2, 1, 1]

Table 3.2: Arbitrary input set A and a solution set P

Given that all solutions are equally relevant, an algorithm does not need

to answer all the possible solutions (or configurations) for any input sequence

A, it is sufficient to answer only one of its solutions. For example, for the

inputs A1, A2, A3, A4 some algorithm could answer P1, P3, P6, P5, respectively.

But that’s not the only valid subset of solutions, another algorithm could

answer only P2, P5, P2, P5, respectively.

Definition 2. Given a set system (U,S) consisting of a universe U and a

collection S of subsets of U, a minimum hitting set is the smallest subset H of

U that intersects (hits) every element S ∈ S.

In that sense, the minimum hitting set of P(A1) ∪ P(A2) ∪ . . . ∪ P(Ak)

determines the minimum number of answers that any algorithm needs to dis-

tinguish in order to correctly solve instances A1, A2, . . . , Ak. This observation

motivates the Proposition 2.
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Proposition 2. If A is a subset of inputs for the MCSP and H is a minimum

hitting set of {
⋃
P(A) | A ∈ A}, then log |H| is a lower bound for the running

time of the MCSP in the decision tree model.

Proof. Using a information theoretic argument, let N = |H| be the cardinality

of the minimum hitting set H. In order to uniquely distinguish each of the

N configurations from the others we need at least dlgNe bits of information.

Thus, the lower bound is dlgNe because we need at least that number of steps

to uniquely identify any solution of the setH using the decision tree model.

We know that finding the minimum hitting set is a difficult problem (40)

but if we restrict the set of inputs of the MCSP to those inputs with only one

solution, then we can trivially find the minimum hitting set, which is the entire

solution set; even further, if the solution set derived from this restricted input

set is large enough, then it could be used as lower bound for the unrestricted

input case because the latter is at least as big as the former.

In our search for the lower bound, we enforce the restriction of unique

solutions for the MCSP by considering only inputs for which all their max-

imums are unique. For example, all the maximums for the input A =

[3, 5, 0, 3, 2, 4] are unique, and are shown in Table 3.3. We’ll call this kind

of input as restricted input.

Length Substring Sum

1 A[2] 5
2 A[1, 2] 8
3 A[4 . . . 6] 9
4 A[1 . . . 4] 11
5 A[2 . . . 6] 14
6 A[1 . . . 6] 17

Table 3.3: Unique maximums for the sequence A = [3, 5, 0, 3, 2, 4]

This restriction about the input is the key point to place a lower bound

for the general problem, because it will always be true that the number of

solutions that any algorithm could possibly answer will be at least as big as

the number of solutions for the restricted input case. Thus, a lower bound for

the general case of the MCSP would also be shown.

From now on, whenever we refer to the input (unless otherwise specified)

we are referring to the restricted input. Even further, we say that a configura-

tion P is feasible if there exists an input A such that P is its unique solution,

and infeasible otherwise.

Unfortunately, there are configurations P for which it does not exist such

input sequence A. If every configuration were feasible a clear lower bound of
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Ω(n log n) would exist for the n! possible configurations in the decision tree

model. Let’s show why some configurations are infeasible.

For example, consider the following configuration:

P = 2 3 4 1 2 1

1 2 3 4 5 6

then, for P to be feasible, it should exist an input sequence A such that

A[2] > A[6] by P [1]

A[3] + A[4] > A[4] + A[5] by P [2]

A[4] + A[5] + A[6] > A[2] + A[3] + A[4] by P [3]

which is infeasible because if we add the first two inequalities we show an

inequality that contradicts the third one, namely

A[2] + A[3] + A[4] > A[4] + A[5] + A[6] ××××

which makes the configuration infeasible.

That’s because, in order to be unique maximums, each one of the

P [i], i = 1, . . . , n positions describes implicitly a set of n − i inequalities

of the form

P [i]+i−1∑
k=P [i]

ak ≥ ε+

j+i−1∑
k=j
j 6=P [i]

j=1,...,n−i+1

ak (3-1)

where ε > 0 represents a sufficiently small positive number; and the additional

n non-negative restrictions

ai
i=1,...,n

≥ 0 (3-2)

Thus, if for a given configuration, the set of implicit inequalities does not

hold, then the configuration is not feasible.

The system of linear inequalities, generated for a configuration P by

the Formulas (3-1) and (3-2), describes a linear program. Hence, to test

for feasibility is sufficient to solve the linear program using a mathematical

programming solver for linear programs. Then, the configuration is feasible

if, and only if, a solution can be found for the linear program, and each ai

represents the i-th non-negative number of a input sequence A for which P is

a solution.

DBD
PUC-Rio - Certificação Digital Nº 1122118/CA



On the Lower Bound for the Maximum Consecutive Sub-Sums Problem 27

Thus, in order to determine a lower bound, a natural question to ask is:

how many feasible configurations are there?

3.1
Characterizing Feasible Outputs

In order to estimate the number of feasible configurations it is useful to

recognize when a given configuration P is not feasible. Next we describe some

patterns that can help us to rule out some infeasible configurations.

For example, consider the input sequence A = [. . . , α1, α2, β, γ1, γ2, . . .]

where 〈α1, α2〉 is the unique maximum of length 2 and 〈β, γ1, γ2〉 is the unique

maximum of length 3:

α1 α2

β γ1 γ2

then it must be true that α1+α2 > γ1+γ2 and also that α1+α2+β < γ1+γ2+β

which is contradictory. Hence, it’s impossible to have a feasible solution with

the maximum of length 2 adjacent to the maximum of length 3. Generalizing

this result we have:

Proposition 3. There is no feasible configuration such that pj = pi+i for some

i, j ∈ {1, 2, . . . , n}, where pi and pj are, respectively, the starting positions for

the maximums of size i and j.

Proof. Let pi be the starting position of the maximum of length i and let pj

the starting position of the maximum of length j adjacent to pi. Without loss

of generality let pi < pj meaning that pj = pi + i and also let i < j.

By definition, the segment of length j starting at pj is greater than any other

segment of length j, specifically greater than the segment starting at pi:

ε+

pi+j−1∑
k=pi

A[k] ≤
pj+j−1∑
k=pj

A[k]

By decomposing the previous inequality

ε+

pi+i−1∑
k=pi

A[k] +

pi+j−1∑
k=pi+i

A[k] ≤
pj+(j−i)−1∑

k=pj

A[k] +

pj+j−1∑
k=pj+(j−i)

A[k]
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Replacing pj by pi + i in the first summand of the right hand side

ε+

pi+i−1∑
k=pi

A[k] +

pi+j−1∑
k=pi+i

A[k] ≤
pi+j−1∑
k=pi+i

A[k] +

pj+j−1∑
k=pj+(j−i)

A[k] so that

ε+

pi+i−1∑
k=pi

A[k] ≤
pj+j−1∑

k=pj+(j−i)

A[k] (3-3)

By definition, for pi we also have that:

ε+

pj+j−1∑
k=pj+(j−i)

A[k] ≤
pi+i−1∑
k=pi

A[k] (3-4)

Adding (3-3) and (3-4) we get

2ε+

pi+i−1∑
k=pi

A[k] +

pj+j−1∑
k=pj+(j−i)

A[k] ≤
pj+j−1∑

k=pj+(j−i)

A[k] +

pi+i−1∑
k=pi

A[k]

Wich is infeasible because 2ε > 0.

j − i

ji

a

b

Figure 3.2: Visualization for the proof of Proposition 3, for pi < pj and i < j.

Basically the proof says that, given two adjacent segments i, j (pi < pj

and i < j) we can define the segments a and b of length i, as shown in

Figure 3.2 (the segment a is derived directly from the maximum of length

i, and the segment b is derived from the maximum of length j subtracting the

overlapping part j−i of the segment of length j starting at pi). Those adjacent

segments would be feasible if, and only if a > b and b > a which is clearly

contradictory, making the whole set of inequalities infeasible.

Unfortunately, the non-adjacency does not completely characterize all

the configurations that are feasible because there exist configurations with

no adjacent maximum that are infeasible. For example, in Figure 3.3 the

configuration P = [2, 4, 2, 1, 2, 1] is infeasible because it describes a set of
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inequalities that doesn’t have solution, namely:

A[2] > A[4] by P [1]

A[4] + A[5] > A[1] + A[2] by P [2]

A[1] + A[2] + A[3] + A[4] > A[2] + A[3] + A[4] + A[5] by P [4]

which is infeasible because, if we add the first two inequalities and adding A[3]

to both sides, we have an inequality that contradicts the third one

A[2] + A[3] + A[4] + A[5] > A[1] + A[2] + A[3] + A[4] ××××

Figure 3.3: Grid representation for the infeasible configuration P =
[2, 4, 2, 1, 2, 1] with no adjacent maximums

However, it follows from Proposition 3 that the set of feasible config-

urations must be a subset of the non-adjacent configurations (configurations

with no adjacent maximum), next we show how this concept can help us to

understand the size of the set of feasible configurations.

3.2
Approximations for the Number of Feasible Configurations

We’ve shown that the number of feasible configurations can not be larger

than the number of non-adjacent configurations (Proposition 3). If this set is

not large enough, such that the log of its size is linear, then none of its subsets

could generate a superlinear lower bound and we could only conclude with a

trivial lower bound for the number of feasible configurations. However, this is

not the case. We show a, large enough, lower bound for the number of non-

adjacent configurations. To determine such lower bound we must first define:

Definition 3. A maximum of length i, with starting position pi, passes

through the j-th position if pi ≤ j ≤ pi + i− 1.
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Using this definition for the case of
⌈
n
2

⌉
we can show that:

Proposition 4. The number of configurations such that every starting position

pi, i = 1, 2, . . . , n passes through the position
⌈
n
2

⌉
is
⌈
n
2

⌉
!×
⌊
n
2

⌋
!

Proof. Using j =
⌈
n
2

⌉
we have that the starting position pi for the maximums

of length i is between:

pi ∈


[⌈

n
2

⌉
− i+ 1,

⌈
n
2

⌉]
if 1 ≤ i ≤

⌈
n
2

⌉
[1, n− i+ 1] if

⌈
n
2

⌉
< i ≤ n

More specifically, the number of possibilities for each maximum i of length

1, 2, . . . , n is 1, 2, . . . ,
⌈
n
2

⌉
,
⌊
n
2

⌋
,
⌊
n
2

⌋
− 1, . . . , 1 respectively. Thus, the total

number of possible configurations generated by those maximums is 1 × 2 ×
. . .×

⌈
n
2

⌉
×
⌊
n
2

⌋
×
⌊
n
2

⌋
− 1× . . .× 1 =

⌈
n
2

⌉
!×
⌊
n
2

⌋
!.

Corollary. The number of non-adjacent configurations is at least Ω
((

n
2
!
)2)

Proof. Given that all the maximums pass through the
⌈
n
2

⌉
position, then all

of them share at least one position and no adjacency is generated.

Therefore, the number of non-adjacent configurations is big enough to

contain a subset of super-exponential size, but this does not guarantee that

the number of feasible configurations is even exponential. To address this issue

we present a constructive proof to create at least 2b
n
2 c feasible configurations.

Proposition 5. There exists at least Ω
(
2

n
2

)
feasible configurations.

Proof. Let A be the input sequence of size n defined as

A[i] =



0 if 1 ≤ i <
⌈
n
2

⌉
− 1

2 if i =
⌈
n
2

⌉
− 1

4n if i =
⌈
n
2

⌉
3 if

⌈
n
2

⌉
< i ≤ n

And its unique solution P

P [i] =


⌈
n
2

⌉
if 1 ≤ i ≤

⌈
n
2

⌉
n− i+ 1 if

⌈
n
2

⌉
< i ≤ n

Or more visually:
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P =

1 2
⌈
n
2

⌉
n− 1 n

⌈
n
2

⌉ ⌈
n
2

⌉
. . .

⌈
n
2

⌉ ⌊
n
2

⌋
. . . 2 1

Then, it is possible to create a new configuration with any subset M of

maximums of length i, i = 2, 3, . . . , 1 +
⌊
n
2

⌋
, starting at position

⌈
n
2

⌉
− 1 by

changing the value A
[⌈

n
2

⌉
+ i− 1

]
to 1, for each maximum of length i ∈M . In

that way the sum of length i starting at
⌈
n
2

⌉
is dominated by the one starting

at
⌈
n
2

⌉
− 1 because

A
[⌈n

2

⌉
− 1
]
+A
[⌈n

2

⌉]
+A

[⌈n
2

⌉
+ 1
]
+ . . .+A

[⌈n
2

⌉
+ i− 2

]
>

A
[⌈n

2

⌉]
+A

[⌈n
2

⌉
+ 1
]
+ . . .+A

[⌈n
2

⌉
+ i− 2

]
+A

[⌈n
2

⌉
+ i− 1

]
As
⌊
n
2

⌋
values can take at least 2 different values, then the number of

feasible configurations created is 2b
n
2 c and the number of feasible configurations

is at least Ω
(
2

n
2

)
.

For example, let A = [0, 0, 2, 28, 3, 3, 3] be the input sequence and its

corresponding configuration P = [4, 4, 4, 4, 3, 2, 1], in order to generate the

configurations P = [4, 3, 4, 3, 3, 2, 1] (M = {2, 4}) the input can change

accordingly A = [0, 0, 2, 28, 1, 3, 1]. In Figure 3.4 is shown the layout for both

configurations using the grid representation.

0 0 2 28 3 3 3 0 0 2 28 1 3 1

Figure 3.4: Construction of feasible configurations.

In summary we’ve shown how to determine if a given configuration is

feasible or not by representing it as a set of linear inequalities and solving the

linear program. We’ve also shown how to characterize some of those infeasible

configurations via an adjacency test without running a optimization solver.

Using this characterization we’ve proved that is possible to have a subset

DBD
PUC-Rio - Certificação Digital Nº 1122118/CA



On the Lower Bound for the Maximum Consecutive Sub-Sums Problem 32

of non-adjacent configurations of super-exponential size, and proved that the

number of feasible configurations should be at least exponential. However, we

fail to prove the existence of a set of feasible configurations of super-exponential

size. Thus, in the next chapter we give empirical evidence that this set is large.
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4
Computational Approximations

Having discussed the approach towards the lower bound, next it’s presen-

ted empirical evidence about the number of feasible configurations.

Given the exponential nature of this problem, the methods are divided

in two parts, first it’s presented a deterministic way of counting the number of

feasible configurations and, as the running time is reasonably big, probabilistic

evidences about the number of feasible configurations are presented.

The objective of these experiments is to give an empirical evidence about

the number of feasible configurations in order to show a lower bound for the

MCSP. To show how large the values are, we’ll compare them against the

square root of the factorial function (
√
n! – arbitrarily chosen –) which would

also imply a lower bound of Ω(n lg n).

All the experiments were performed under the following hardware and

software specifications:

– Main Hardware Platform: Intel R© CoreTM i7 3960X, 3.30GHz CPU,

32GB RAM, 64-bit.

– Operating System: Windows 7 Professional x64

– Compiler: Microsoft R©Visual C# 2010 Compiler version 4.0.30319.1

– Solver: Microsoft Solver Foundation (MSF) 3.1 for the deterministic

methods and lp solve 5.5 (interfaced through MSF 3.1) for the ran-

domized methods.

We used the lp solve 5.5 for the randomized methods because as n gets

larger (greater than 13) it shows a better performance than the MSF 3.1 solver.

All executions were terminated (at most) after 24 hours of execution

time, and it was used the value of ε = 1 for the feasibility tests.
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4.1
Deterministic Methods

In order to count the number of feasible configurations deterministically

a very large numbers of configurations must be generated, in fact n! configur-

ations are possible and an equal number of linear programs must be solved,

each with
(
n
2

)
+ n inequalities described by the Formulas (3-1) and (3-2). But,

as discussed above, not all of them must be counted nor solved.

Next we present the methods used to deterministically count the number

of feasible configurations.

4.1.1
Brute Force (BF)

The Brute-Force(P, i) method is a backtracking algorithm that, given

an (initially empty) configuration P of size n, tries all possibilities for the

i-th position of P , and continues recursively until i > n, then it runs the

optimization solver to determine the configuration’s feasibility.

For each of the n positions we have n− i+ 1, i = 1, 2, . . . , n possibilities

for the starting position of the maximum of length i. Hence, a total of n!

configurations are possible.

The method Is-Feasible(P ) of line 3 receives a configuration P , gener-

ates all the implicit inequalities – Formulas (3-1) and (3-2) – described by P ,

and solves the linear program returning true if it’s a feasible configuration or

false otherwise. Thus, the execution of Brute-Force(P, 1) counts all feasible

configurations of size n.

Algorithm 4.1 Brute-Force(P, i)

1: n← |P |
2: if i > n then
3: if Is-Feasible(P ) then
4: count← count+ 1
5: end if
6: return
7: end if
8: for j ← 1 to n− i+ 1 do
9: P [i]← j
10: Brute-Force(P, i+ 1).
11: end for
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4.1.2
Brute Force With Level Validation (BFLV)

To reduce the number of linear programs solved by the Brute-Force

algorithm it is important to consider that if the infeasibility is detected earlier

in the root to leaf path of the backtracking tree, a considerable number of

infeasible linear programs could be avoided.

This can be accomplished verifying the linear program every time a new

position is fixed in the configuration P . The method Is-Feasible(P, i) of

line 8 receives a configuration P , generates the implicit inequalities (up to i)

described by P and solves the linear program returning true if it’s a feasible

configuration or false, otherwise.

Algorithm 4.2 Brute-Force-With-Level-Validation(P, i)

1: n← |P |
2: if i > n then
3: count← count+ 1
4: return
5: end if
6: for j ← 1 to n− i+ 1 do
7: P [i]← j
8: if Is-Feasible(P, i) then
9: Brute-Force-With-Level-Validation(P, i+ 1).
10: end if
11: end for

4.1.3
Non-Adjacent Maximums Brute Force (NA)

Another way reduce the number of linear programs evaluated is to rule

out some infeasible configurations without running the optimization solver;

but this process can not be too time demanding because otherwise it would be

counterproductive. To detect the non-feasible configurations it’s used the fact

stated in Proposition 3. To do so, the method Non-Adjacent-Brute-Force

maintains two boolean vectors of size n to restrict the starting positions S and

the ending positions E. Whenever a new position is fixed, its two adjacent

positions are forbidden (the next adjacent starting position and the previous

adjacent ending position). To count all the feasible configurations, without

generating any adjacent pair of maximums, the method Non-Adjacent-

Brute-Force should be called with the S,E vectors initialized with all

their elements set as true in the following way: Non-Adjacent-Brute-

Force(P, 1, S, E).
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Algorithm 4.3 Non-Adjacent-Brute-Force(P, i, S, E)

1: n← |P |
2: if i > n then
3: if Is-Feasible(P ) then
4: count← count+ 1
5: end if
6: return
7: end if
8: for j ← 1 to n− i+ 1 do
9: if S[j] = true and E[j + i− 1] = true then
10: P [i]← j // j is not adjacent to any other
11: (s, e)← (S[j + i], E[j − 1])
12: S[j + i]← E[j − 1]← false
13: Non-Adjacent-Brute-Force(P, i+ 1, S, E)
14: (S[j + i], E[j − 1])← (s, e)
15: end if
16: end for

4.1.4
Non-Adjacent Maximums With Level Validation (NALV)

Finally, we combine the two previous approaches by solving the linear

program every time a new position is fixed, reducing the total number of calls

(with infeasible configurations) to the optimization solver. To execute the code

the vectors S,E should be initialized with all their elements set as true in

the following way: Non-Adjacent-With-Level-Validation(P, 1, S, E).

4.1.5
Results

In Table 4.1 it’s summarized the results of the four counting methods,

along with the time taken to compute the number of feasible configurations.

In Table 4.2 it’s possible to compare the number of infeasible configurations

computed by each method. As expected, the Brute-Force method spent

most of its time testing infeasible configurations to extract only “a few”

valid configurations. Both pruning criteria (Brute-Force-With-Level-

Validation and Non-Adjacent-Brute-Force) for n = 11 are faster than

the exhaustive method by an order of magnitude (a factor of more than 20x and

18x respectively) as shown in Table 4.1. For very small values of n the Non-

Adjacent-Brute-Force method is faster than the Brute-Force-With-

Level-Validation method, but as n grows the number of nodes pruned by

the latter is more effective than the former, spending less time computing

infeasible configurations. It’s important to note that the number of feasible
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Algorithm 4.4 Non-Adjacent-With-Level-Validation(P, i, S, E)

1: n← |P |
2: if i > n then
3: count← count+ 1
4: return
5: end if
6: for j ← 1 to n− i+ 1 do
7: if S[j] = true and E[j + i− 1] = true then
8: P [i]← j // j is not adjacent to any other
9: (s, e)← (S[j + i], E[j − 1])
10: S[j + i]← E[j − 1]← false
11: if Is-Feasible(P, i) then
12: Non-Adjacent-With-Level-Validation(P, i+ 1, S, E)
13: end if
14: (S[j + i], E[j − 1])← (s, e)
15: end if
16: end for

n Feasible Configurations
√
n! BF(sec) BFLV(sec) NA(sec) NALV(sec)

1 1 1 <0.1 <0.1 <0.1 <0.1
2 2 1 <0.1 <0.1 <0.1 <0.1
3 4 2 <0.1 <0.1 <0.1 <0.1
4 12 5 <0.1 <0.1 <0.1 <0.1
5 36 11 <0.1 <0.1 <0.1 <0.1
6 148 27 <0.2 <0.2 <0.1 <0.2
7 586 71 1.3 0.7 0.2 0.6
8 2,790 201 13.2 4.3 1.9 3.6
9 13,338 602 159.9 28.8 16.9 24.5

10 71,562 1,905 2,150.8 214.4 169.1 183.4
11 378,024 6,318 31,491.2 1,502.9 1,727.2 1,288.5
12 2,222,536 21,886 11,380.6 19,270.8 9,800.0
13 12,770,406 78,911 77,079.9

Table 4.1: The first two columns shows the number of feasible configurations
and the value of

√
n!, the last four columns shows computational time measured

in seconds for each method.
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n BF BFLV NA NALV

1 0 0 0 0
2 0 0 0 0
3 2 2 0 0
4 12 8 0 0
5 84 36 4 4
6 572 150 34 22
7 4,454 702 320 186
8 37,530 3,426 2,614 1,094
9 349,542 18,046 22,156 7,124

10 3,557,238 101,696 192,616 45,570
11 39,538,776 590,208 1,746,054 298,056
12 3,638,396 16,742,836 1,952,638
13 13,122,528

Table 4.2: Number of times that the optimization solver is called, in each of
the four methods, and determines that a given configuration is infeasible.

configurations is always bigger than
√
n! and, as n grows, the difference seems

to be bigger and bigger.

The Table 4.2 shows the number of times that, for each algorithm, the

solver is called and determines that a configuration is infeasible; and (for

the Brute-Force-With-Level-Validation and Non-Adjacent-With-

Level-Validation methods) gives an asymptotic notion about why the

performance of pruning whole branches of the backtracking-tree is superior.

The combination of both pruning techniques is stronger (the Non-Adjacent-

With-Level-Validation method) and avoids to test almost an order of

magnitude (a factor of 8x) infeasible configurations for n = 12, and presumably

a lot more for n = 13.

4.2
Randomized Methods

Given the exponential nature of the exact deterministic counting

strategies, next we describe some probabilistic evidence about the number

of feasible configurations.

4.2.1
Mean Estimation (ME)

This method tries to estimate the number of feasible configurations by

generating independent and identically distributed random configurations; and

treating the feasibility test (i.e. to determine if a configuration is feasible or

not) as a Bernoulli trial. Then, the number of feasible configurations over the
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number of configurations sampled can be used to estimate the true mean (as

the number of samples tends to the infinite) and to estimate the total number of

feasible configurations as a percentage of the complete space of configurations

searched.

One important aspect about this kind of simulation is the number of

iterations that we must perform in order to approximate the true mean. For this

simulation we try to test if the number of simulations is sufficient to estimate

the true mean; that is, given a confidence interval and a error criterion, to

perform an output analysis for terminating the simulation (8). Let Xi be the

indicator random variable:

Xi =

1 if the configuration Xi is feasible

0 otherwise

then, the value that we’ll try to estimate is the mean, defined as:

θ = E

(
1

N

N∑
i=1

Xi

)

where N is the number of all possible distinct configurations. To estimate θ,

let R be the number of simulations performed in a given experiment, then the

sampled mean is defined as

θ̂ =
1

R

R∑
i=1

Xi

and the sampled variance is

S2 =
1

R− 1

R∑
i=1

(
Xi − θ̂

)2
Thus, it is desired that a sufficiently large sample size, R, be taken to satisfy

Pr
(
|θ̂ − θ| ≤ ε

)
≥ 1− α

where 100(1 − α)% represents the confidence interval and ε the allowed

error. Then, to determine the required sample size (and using a normal

approximation, i.e. the central limit theorem), the following formula can be

used to determine the number of iterations or sample size (8)

R ≥
(
zα/2 × S

ε

)2

(4-1)

where zα/2 is the 100(1 − α/2) percentage point of the standard normal
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distribution, forming the 100(1− α)% confidence interval for θ by

θ̂ − zα/2
S√
R
≤ θ ≤ θ̂ + zα/2

S√
R

We compute the value of R at every iteration and stop whenever the

number of simulations performed N is greater than R.

Algorithm 4.5 Mean-Estimation(n, zα/2, ε)

1: R←∞
2: N ← 0
3: θ̂ ← 0
4: M2 ← 0
5: S2 ← 0
6: while R > N do
7: N ← N + 1
8: P ← Get-Configuration(n)
9: X ← Is-Feasible(P ) // 1 if it’s feasible and 0 otherwise
10: δ ← X − θ̂
11: θ ← θ + δ/N // computing the sampled mean
12: M2 ←M2 + δ(X − θ̂)
13: if N > 1 and θ̂ > 0 then
14: S2 ←M2/(N − 1) // computing the sampled variance
15: R← ((zα/2 ×

√
S2)/ε)2

16: end if
17: end while

The Mean-Estimation method computes the mean and the variance

using the online algorithm proposed by Welford (70) and with the given error

and confidence interval determines a sufficiently large value for R.

The method Is-Feasible of line 9 receives a configuration P and

returns 1 if it’s a feasible configuration and 0 otherwise. For this case, the

method Is-Feasible runs a non-adjacency validation, before running the

optimization solver because, in that way, in O(n) time we can determine if

a given configuration have adjacencies which means that, by Proposition 3,

it’s infeasible. Otherwise, if the configuration is non-adjacent it runs the

optimization solver to determine the feasibility of the configuration.

For the method Get-Configuration of line 8 we used two different

spaces of configurations. The first is the complete n! space of configurations

and the second is the space of configurations derived by the Proposition 4 and

explained below.

Space of configurations n! This space is formed by all the possible config-

urations. At each iteration, the starting position of the maximum of length
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i is determined in line 2 generating a uniformly distributed random number

between 1 and n− i+ i inclusive.

Algorithm 4.6 Get-Configuration(n)

1: for i← 1 to n do // generating a random configuration
2: P [i]← U(1, n− i+ 1)
3: end for
4: return P

Space of configurations
⌈
n
2

⌉
!×
⌊
n
2

⌋
! This is the space of all the non-

adjacent configurations that passes though the
⌈
n
2

⌉
position. The numbers

are selected randomly from the ranges of the maximums that passes through⌈
n
2

⌉
(Proposition 4).

Algorithm 4.7 Get-Configuration(n)

1: for i← 1 to
⌈
n
2

⌉
do

2: P [i]← U(
⌈
n
2

⌉
− i+ 1,

⌈
n
2

⌉
)

3: end for
4: for i←

⌈
n
2

⌉
+ 1 to n do

5: P [i]← U(1, n− i+ 1)
6: end for
7: return P

4.2.2
Lower Bounded Mean Estimation (LBME)

This method doesn’t try to estimate the number of feasible configurations

by estimating the true mean; instead it tries to bound the true mean from

below, such that it is at least as big as an specified threshold, in our case
√
n!.

In other words, the number of iterations is determined such that, for a small

enough error ε, the number of estimated feasible configurations is at least as

big
√
n!, within a confidence interval.

Let C be the size of the configuration search space, and let CL be the

threshold. From the Formula 4-1 we have that

ε ≥ zα/2
S√
R

(4-2)

Then, R must be large enough and S small enough such that

(θ̂ − ε)C ≥ CL
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Algorithm 4.8 Lower-Bounded-Mean-Estimation(n, zα/2, C, CL)

1: R← 0
2: θ̂ ← 0
3: M2 ← 0
4: S2 ← 0
5: ε← 0
6: while (θ̂ − ε)C < CL do
7: R← R + 1
8: P ← Get-Configuration(n)
9: X ← Is-Feasible(P ) // 1 if it’s feasible and 0 otherwise

10: δ ← X − θ̂
11: θ ← θ + δ/R // computing the sampled mean
12: M2 ←M2 + δ(X − θ̂)
13: if R > 1 and θ̂ > 0 then
14: S2 ←M2/(R− 1) // computing the sampled variance
15: ε← zα/2

√
S2/R

16: end if
17: end while

The logic of the Lower-Bounded-Mean-Estimation method is sim-

ilar to the Mean-Estimation method logic. The main difference is that the

error is computed according to the Formula 4-2. With this error, the number

of iterations and the sampled variance we can determine a lower bound for the

number of feasible configurations.

For example, let C = n!, and let CL =
√
n! for n = 10, with θ̂ = 0.01972

and an error ε = 0.01872 (computed during the the k-th iteration of the

Lower-Bounded-Mean-Estimation algorithm using the Formula 4-2) the

number of feasible configurations is bigger than the lower bound CL and the

execution of the algorithm can be stopped.

The Get-Configuration method in line 8, uses the same methods

specified for the Mean-Estimation method, selected according to the size of

the space of configurations C used.

4.2.3
Results

The Table 4.3 shows an estimated number of feasible configurations

obtained. We can observe that for the “control” known values (n = 10, . . . , 13)

shown in Table 4.4 and their corresponding estimates seem to be very accurate.

Using this probabilistic estimation for the number of feasible configurations we

were able to increment the value of n up to 20. We should note that the explicit

sampled mean (θ̂) is not given because it’s always greater than (and very close)

to the variance, instead is shown the number of feasible configurations found
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and the number of experiments performed. It’s also interesting to note that

every time that the allowed error was decremented, the number of experiments

incremented accordingly. All the floating point numbers where rounded up to

two decimal places, and the maximum execution time was 24 hours.

n ε Experiments Feasibles S2 n!(θ̂ − ε) n!(θ̂ + ε)

10 10−3 74,327 1,465 19.33× 10−3 67,944 75,201
11 10−4 3,629,848 34,532 94.36× 10−4 376,276 384,259
12 10−4 1,758,527 8,262 46.27× 10−4 2,178,663 2,274,463
13 10−4 774,842 1,483 19.63× 10−4 11,624,077 12,869,482
14 10−5 34,639,244 31,121 89.97× 10−5 77,629,122 79,372,688
15 10−5 14,239,428 5,250 36.96× 10−5 470,431,051 496,584,538
16 10−5 5,686,958 1,036 16.42× 10−5 3,226,976,502 3,645,432,300
17 10−6 213,625,070 12,572 57.20× 10−6 19,992,561,940 20,703,936,797
18 10−6 83,062,414 1,825 21.80× 10−6 133,144,821,566 145,949,568,978
19 10−7 2,908,525,970 22,021 75.71× 10−7 908,833,543,177 933,162,563,259
20 10−7 978,429,499 2,492 25.47× 10−7 5,953,162,185,964 6,439,742,587,599

Table 4.3: Estimated number of feasible configurations with a confidence of
95% (zα/2 = 1.96) and allowed error of ε for the ME and the n! space of
configurations

The Table 4.4 shows the exact and approximate values for the number of

configurations for the complete space of configurations. It can be noticed that

the estimated number of feasible configurations for n = 20 is already greater

than
√

25!. This gives an asymptotic idea of how large the number of feasible

configurations is with respect to the squared root of the factorial function.

Using a big enough error ε, we were able to improve our estimates up

to n = 25. The Table 4.5 shows the lower bounded approximation for the

minimum number of feasible configurations using the complete search space of

n! and
√
n! as a lower bound to compute the allowable error. Interestingly it

seems enough to sample only 9 feasible configurations to obtain a interval of

confidence of 99%, the same behavior occurred for an interval of 95% but the

number of feasible samples needed were only 6.

Using both approaches (reducing the search space, and allowing a big

enough error) we were able to increment the lower bound for the number of

feasible configurations up to n = 28. The Table 4.6 shows the lower bounded

approximation for the minimum number of feasible configurations using the

search space of
⌈
n
2

⌉
!×
⌊
n
2

⌋
! and

√
n! as a lower bound to compute the allowable

error. In this case the number of sampled feasible configurations varied a little,

but it was considerably smaller than the number of feasible configurations

sampled for the ME methods.
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n Feasible Configurations
√
n! Factor

1 1 1 1.0x
2 2 1 2.0x
3 4 2 2.0x
4 12 5 2.4x
5 36 11 3.3x
6 148 27 5.5x
7 586 71 8.3x
8 2,790 201 13.9x
9 13,338 602 22.2x

10 71,562 1,905 37.6x
11 378,024 6,318 59.8x
12 2,222,536 21,886 101.6x
13 12,770,406 78,911 161.8x
14 ≈78,500,905 295,260 265.9x
15 ≈483,507,795 1,143,536 422.8x
16 ≈3,436,204,401 4,574,144 751.2x
17 ≈20,348,249,369 18,859,677 1,078.9x
18 ≈139,547,195,272 80,014,834 1,744.0x
19 ≈920,998,053,218 348,776,577 2,640.7x
20 ≈6,196,452,386,782 1,559,776,269 3,972.7x

Table 4.4: True and estimated number of feasible configurations and how they
are compared against

√
n!

n ε Experiments Feasible Conf. S2 n!(θ̂ − ε)

10 23.17× 10−3 330 9 26.61× 10−3 14,897
11 60.37× 10−4 1,278 9 69.98× 10−4 40,113
12 31.84× 10−4 2,427 9 36.96× 10−4 251,199
13 18.66× 10−4 4,144 9 21.68× 10−4 1,904,585
14 11.19× 10−4 6,914 9 13.00× 10−4 15,943,765
15 18.00× 10−5 43,007 9 20.92× 10−5 38,333,554
16 17.92× 10−5 43,187 9 20.84× 10−5 610,779,065
17 44.05× 10−6 175,687 9 51.23× 10−6 2,551,292,017
18 23.80× 10−6 325,210 9 27.67× 10−6 24,807,356,419
19 77.92× 10−7 993,333 9 90.60× 10−7 154,305,371,850
20 17.00× 10−7 4,552,503 9 19.77× 10−7 673,359,924,340
21 11.59× 10−7 6,679,699 9 13.47× 10−7 9,637,383,950,966
22 21.76× 10−8 35,566,189 9 25.30× 10−8 39,819,894,547,344
23 54.09× 10−9 143,100,807 9 62.89× 10−9 227,626,575,747,434
24 22.60× 10−9 342,364,019 9 26.28× 10−9 2,283,432,250,195,320
25 36.92× 10−10 2,096,189,348 9 42.94× 10−10 9,323,644,785,400,530

Table 4.5: Minimum number of possible feasible configurations with a confid-
ence of 99% (zα/2 = 2.58) and an allowed error of ε for the LBME method

using the n! space of configurations and a threshold of
√
n!
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n ε Experiments Feasible Conf. S2
⌈
n
2

⌉
!×
⌊
n
2

⌋
!(θ̂ − ε)

10 12.27× 10−2 87 23 19.67× 10−2 2,040
11 64.65× 10−3 196 28 12.31× 10−2 6,757
12 77.41× 10−3 125 16 11.25× 10−2 26,228
13 53.65× 10−3 167 13 72.22× 10−3 87,791
14 23.45× 10−3 419 15 34.60× 10−3 313,820
15 15.07× 10−3 634 14 21.63× 10−3 1,425,107
16 74.74× 10−4 1,285 14 10.78× 10−3 5,560,936
17 59.92× 10−4 1,423 11 76.76× 10−4 25,430,004
18 31.19× 10−4 2,738 11 40.03× 10−4 118,251,795
19 76.20× 10−5 12,662 14 11.05× 10−4 452,544,058
20 47.41× 10−5 18,847 12 63.63× 10−5 2,141,639,684
21 19.01× 10−5 46,999 12 25.53× 10−5 9,442,157,464
22 64.58× 10−6 138,395 12 86.70× 10−6 35,264,213,994
23 71.61× 10−6 108,076 9 83.27× 10−6 222,962,946,159
24 15.65× 10−6 546,660 11 20.12× 10−6 1,025,446,995,013
25 62.70× 10−7 1,364,667 11 80.61× 10−7 5,339,970,243,861
26 22.49× 10−7 3,805,041 11 28.91× 10−7 24,896,939,497,429
27 22.71× 10−7 3,407,720 9 26.41× 10−7 200,723,602,034,240
28 69.63× 10−8 11,115,976 9 80.96× 10−8 861,470,894,034,408

Table 4.6: Minimum number of possible feasible configurations with a confid-
ence of 99% (zα/2 = 2.58) and an allowed error of ε for the LBME method

using the
⌈
n
2

⌉
!×
⌊
n
2

⌋
! space of configurations and a threshold of

√
n!

4.2.4
Random Walk in the Backtracking Tree

So far, the randomized methods have tried to estimate the number of

feasible configurations as a percentage of the configuration space size. Another

approach is to try to estimate the number of feasible configurations using the

backtracking tree (namely the number of leaves of the tree) and the probability

of ending up in a particular leaf.

Let’s first remember the Brute-Force-With-Level-Validation

method. In this method, every time we assign the value P [i] = k for k =

1, . . . , n− i+1 we test if the configurations is still feasible; if so, we recursively

test for P [i+ 1] for i = 1, . . . , n. If the whole configuration is feasible or infeas-

ible at any point, then the method backtracks to a previously unexplored state

and continues from there. This process describes a tree which is often called

backtracking tree.

The Figure 4.1 shows the backtracking tree for the configurations of size

n = 4. For example, the configuration P = [1, 2, x, x] is infeasible because

the maximums of size 1 and size 2 are adjacent; therefore the children of that

internal node does not need to be explored.
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In the previous case the exploration of the tree is done via a depth first

approach. For our new randomized approach we propose a more breadth first

like traversal. That is, for each level i we first discover all values P [i] = k for

k = 1, . . . , n− i+ 1 such that P is still feasible. Let’s say that exists bi feasible

values, we call bi the feasible branching factor, then we choose randomly one

of those values for P [i] and continue recursively with P [i + 1]; if the method

observes the feasible branching factors b1, b2, . . . , bn, in a root to leaf path, the

method outputs

X =
n∏
i=1

bi

This value will be used to estimate the number of leaves as we explain later.

The Figure 4.2 shows the backtracking tree composed only by the feasible

configurations. It also shows the value X for each leaf of the tree, for example

the value assigned for the dashed path 2 − 1 − 2 − 1 is X = 16, which is the

product of their corresponding feasible branching factors 4, 2, 2, 1.

The method Branching-Product computes the value X for a random

root to leaf path in the backtracking tree T of configurations of size n in a non-

recursive way.

Algorithm 4.9 Branching-Product(n)

1: bp ← 1
2: for i← 1 to n do
3: k ← 1
4: for j ← 1 to n− i+ 1 do
5: P [i]← j
6: if Is-Infeasible(P, i) then
7: continue
8: end if
9: F [k]← j

10: k ← k + 1
11: end for
12: bp ← bp × (k − 1)
13: P [i]← F [U(1, k − 1))]
14: end for
15: return bp

The Is-Infeasible method in line 6 returns true if the configuration

is infeasible and false otherwise, and all the feasible values are stored in the

vector F . Then, a random feasible value is selected from vector F using the

function U(1, k − 1) of line 13 that returns a random number between 1 and

k − 1 inclusive.
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n = 4

1

1
1 1

2

2

3
1 1

2

2

1
1 1

2 1

2
1 1

2 1

3

3

1

2
1 1

2 1

3
1 1

2 1

4

1
1

2 1

2

3
1

2 1

Figure 4.1: Backtracking tree for configurations of size n = 4, at each level the
feasible positions are shown inside a square.
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T

1

1 1 1 X = 8
8

8

3 1 1 X = 8
8

8

4

2

1
1 1 X = 1616

2 1 X = 1616
8

2
1 1 X = 1616

2 1 X = 1616

84

3

2
1 1 X = 1616

2 1 X = 1616
8

3
1 1 X = 1616

2 1 X = 1616

8

4

4

1 2 1 X = 8
8

8

3 2 1 X = 8
8

8

4

Figure 4.2: Tree induced by the feasible configurations of the backtracking tree
T (4), and the value X assigned each one of its leaves. The path 2− 1− 2− 1
is also show dashed.

Let X be the output of Branching-Product. Clearly, X is a random

variable. We argue that E[X] is equal to the number of leaves of the tree.

In fact, let ` be a leaf of the backtracking tree. The probability of a random

walk reaching ` is 1/B(`), where B(`) is the product of the feasible branching

factors in the path from the root of the tree to `. In addition, if ` is reached,

the method outputs B(`). Let L be the set of leaves of the backtracking tree.

Thus we have that

E[X] =
∑
`∈L

1

B(`)
×B(`) = |L|

For example, the Figure 4.2 shows the probability distribution, for the

backtracking tree T (4), {8 7→ 1
2
, 16 7→ 1

2
} and the expected value E[X] =

8 · 1
2

+ 16 · 1
2

= 12 which is the number of leaves.
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After coming up with this approach, we found that it has already been

proposed to study heuristics for backtracking algorithms (47, 42).

We must note that we can always reach a leaf node, and therefore the

sum of probabilities be 1, as a consequence of the following Proposition

Proposition 6. Given the first m maximums of a configuration of size

n, m < n, it is always possible to find a maximum of length m+ 1.

Proof. Inductively, given the first m feasible positions of the backtracking tree

T (n) it is always possible to create an input, such that, the first m positions

are the same, and a feasible position m + 1 exists. Consider the input A

that the optimization solver answer for the first m maximums, then either

the configurations have a unique maximum of length m + 1 or not. If the

input have a unique maximum of length m + 1 the Proposition is proved, if

not, it must have more than one maximum. Let δ be the smallest difference

between the maximum and the second maximum for lengths j = 1, . . . ,m. If

we add the value δ
2

to the first position of the leftmost maximum, then the new

maximum is unique because it is greater than any other maximum of length

m+ 1 by at least δ
2
; and all the previous maximums remain the same because

the value added is less than the smallest difference even if we add several times,

at different levels, to the same position δ
2

+ δ
22

+ δ
24

+ . . . + δ
2k
< δ. Then, the

Proposition is proved.

We do not use directly the value of X to estimate the number of feasible

configurations; instead, we assume that the E[X] ≤
√
n! and use the value of

X to reject this hypothesis with some level of confidence.

Suppose that E[X] ≤
√
n!, then by Markov’s inequality (54) we have

that:

Pr[X ≥ cE[X]] ≤ 1

c

Pr[X ≥ c
√
n!] ≤ Pr[X ≥ cE[X]]

Pr[X ≥ c
√
n!] ≤ 1

c
(4-3)

which imply that

Pr[X < c
√
n!] ≥ 1− 1

c
(4-4)

In other words, under the hypothesis that E[X] ≤
√
n!, if we sample X

and find a value larger than c
√
n!, either we were lucky or the hypothesis is

false and we could reject it with confidence of 1 − 1
c
. Then, if we reject the

hypothesis, the only other possibility is that E[X] is greater or equal than
√
n!
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For example, imagine that, for n = 10, we sample a value X = 46,080;

as 46,080/
√

10! ≈ 24.19, letting c = 24 by (4-4), with a probability of at

least 1 − 1
24
≈ 95%, we must have observed a value less than 24

√
n!, however

we observed a value greater than that. Therefore, we reject the hypothesis

that E[X] ≤
√

10! with 95% level of confidence. We know that in this case

E[X] = 71,562 which validates our rejection.

We extend this approach by taking the maximum of k samples. Let

X1, X2, . . . , Xk be the values for k samples of the random variable X. Under

the assumption that E[X] ≤
√
n! we have that

Pr[max{X1, X2, . . . , Xk} ≥ c
√
n!] = Pr[X1 ≥ c

√
n! ∨ . . . ∨Xk ≥ c

√
n!]

= 1− Pr[X1 < c
√
n! ∧ . . . ∧Xk < c

√
n!]

= 1−
k∏
i=1

Pr[Xi < c
√
n!]

≤ 1−
(

1− 1

c

)k
Pr[max{X1, X2, . . . , Xk} ≥ c

√
n!] ≤ 1−

(
1− 1

c

)k
(4-5)

Wich imply

Pr[max{X1, X2, . . . , Xk} < c
√
n!] ≥

(
1− 1

c

)k
(4-6)

In other words, assuming that E[X] ≤
√
n!, and using the

max{X1, X2, . . . , Xk}, the probability of all the samples being less than

c
√
n!, for a large enough c, is very high, and if in those k values we find a

value greater or equal than that, then we could reject the hypothesis, which

would imply that E[X] ≥
√
n!.

For example, for n = 10 and k = 10, imagine that

max{X1, X2, . . . , X10} = 378000 which is ≈ 198.431
√

10! that means that

the probability

Pr[max{X1, X2, . . . , X10} < c
√

10!] ≥
(

1− 1

198

)10

≈ 95.07%

This implies that we can reject the hypothesis with a confidence of 95.07%

because we’ve found a value greater than 198
√

10!. But, if the number of

samples were 100 and the maximum remains the same, the confidence level

would drop to 60.27%, this clearly shows the trade off between the number
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values sampled and how this affect the confidence level.

It is important to note that even if we decide not to reject the hypothesis,

for example if the confidence level were less than 50%, it does not validate the

hypothesis that E[X] ≤
√
n!.

4.2.5
Results

For this experiment the allowed running time was 16 hours, and the

number of experiments or samples was arbitrarily chosen to be k = 1,000. Each

experiment represents a call to the Branching-Product method. Let c be

the floor of the ratio between the maximum value found in the 1,000 samples

and
√

(n!), Table 4.7 shows the probability of Pr[max{X1, X2, . . . , Xk} ≤
c
√
n!] assuming that E[X] ≤

√
n! for configurations up to size n = 60. This

probability also expresses our confidence to reject the hypothesis because in

fact we’ve found a value greater than c
√
n!. It can be observed that the

probability of finding a big enough value (larger than
√
n!) decreases as n

increases, as shown in the third column of the Table.

n
⌊
MaxFound/

√
n!
⌋

No values Xk ≥
√
n! Pr[max{X1, . . . , Xk} ≤ c

√
n!]

10 555 1,000 16.473337%

11 1,474 1,000 50.729819%

12 1,678 1,000 55.094229%

13 9,686 1,000 90.190406%

14 16,101 999 93.977962%

15 14,143 999 93.173312%

16 19,603 999 95.026546%

17 60,931 996 98.372180%

18 137,280 998 99.274205%

19 139,566 996 99.286051%

20 329,058 998 99.696563%

30 75,202,827 965 99.998670%

40 27,078,377 795 99.996307%

50 3,324,405 435 99.969923%

60 1,012,995 145 99.901331%

Table 4.7: Probability of Pr[max{X1, . . . , Xk} ≤ c
√
n!] for k = 1,000

With this new approach we managed to state that the number of feasible

configurations is larger than
√
n!, for n = 60 with 99.9% level of confidence.
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To be able to report results for larger values of n we need a larger

number of samples, each with a quadratic number of calls to the optimization

solver, which means that the computational effort would also be increased

considerably. Some ideas extend this approach for larger values of n and future

research directions are given in the following chapter.
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5
Conclusions

This thesis have described an attempt to prove a superlinear lower bound

for the MCSP in the decision tree model using an algebraic view of the

problem.

We’ve given a new technique specifying a restricted input case (inputs

with unique solutions or feasible configurations) and we’ve shown that a lower

bound over the number of feasible configurations is sufficient to derive a lower

bound for the MCSP.

We’ve presented empirical evidences that the number of feasible config-

urations is larger than
√
n!. This observation lead us to conjecture that the

lower bound for the MCSP is Ω(n lg n).

We believe we can show experimental evidences that the number of

feasible configurations is larger than
√
n! for larger values of n. Currently the

main limitation is the computational time, that’s why future research direction

consider to change the current solvers and the interfacing model to a more

robust linear optimization tool, allowing parallelization for the feasibility tests

at each level of the backtracking tree.

Another promising direction is to implement a probabilistically explor-

ation by approximating the number of feasible configurations at each level of

the backtracking tree instead of testing all possible values. Choosing a more

suitable factorial function to compare the number of feasible configurations

with, also seems a reasonable idea.

Even further, the possibility of a non-empirical lower bound could be

achieved if a characterization of the minimum and the maximum branching

factors were possible, therefore, future directions also include to explore

analytically, deterministically and probabilistically these root to leaf paths of

the backtracking tree.
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[19] BÜRGISSER, P.; CLAUSEN, M. ; SHOKROLLAHI, M. A. Algebraic

complexity theory, volume 315. Springer, 1997.

DBD
PUC-Rio - Certificação Digital Nº 1122118/CA



On the Lower Bound for the Maximum Consecutive Sub-Sums Problem 56

[20] BUTMAN, A.; ERES, R. ; LANDAU, G. M. Information Processing

Letters. Scaled and permuted string matching, journal, v.92, n.6, p. 293 –

297, 2004.

[21] CHEN, Y.; LU, H.-I. ; TANG, C. Disjoint segments with maximum

density. volume 3515 of Lecture Notes in Computer Science, p.

845–850. Springer Berlin Heidelberg, 2005.

[22] CHENG, C.-H.; CHEN, K.-Y.; TIEN, W.-C. ; CHAO, K.-M. Improved

algorithms for the k maximum-sums problems. In: PROCEEDINGS

OF THE 16TH INTERNATIONAL CONFERENCE ON ALGORITHMS AND

COMPUTATION, ISAAC’05, p. 799–808, Berlin, Heidelberg, 2005. Springer-

Verlag.

[23] CICALESE, F.; FICI, G. ; LIPTÁK, Z. Searching for jumbled
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