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Prof. Márcio da Silveira Carvalho
Vice Dean of Graduate Studies
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Universidade Católica of Rio de Janeiro (PUC-Rio). He has
got his M.Sc. and B.Sc. at the same university. Nowadays,
he is IT coordinator at Brazilian School of Public and
Business Administration of the Getulio Vargas Foundation
(EBAPE/FGV). He is also an undergraduate professor of
Computer Science subjects in the same institution. He also
taught the Introduction to Logic course at PUC-Rio for
Engineering and Computer Science students. He was a student
visitor in INRIA, France from August to December 2016.

Bibliographic data

Santos, Jefferson de Barros

Systems for Provability and Countermodel Generation
in Propositional Minimal Implicational Logic / Jefferson de
Barros Santos ; advisor: Edward Hermann Haeusler; co–
advisor: Gilles Dowek. — 2017.

82 f. : il. color. ; 30 cm

Tese (doutorado)-Pontif́ıcia Universidade Católica do Rio
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Abstract

Santos, Jefferson de Barros; Haeusler, Edward Hermann (advisor);
Dowek, Gilles (co-advisor). Systems for Provability and
Countermodel Generation in Propositional Minimal
Implicational Logic. Rio de Janeiro, 2017. 82p. Tese de Doutorado —
Departamento de Informática, Pontif́ıcia Universidade Católica do Rio
de Janeiro.

This thesis presents a new sequent calculus called LMT→ that has

the properties to be terminating, sound and complete for Propositional

Implicational Minimal Logic (M→). LMT→ is aimed to be used for proof

search in M→, in a bottom-up approach. Termination of the calculus is

guaranteed by a strategy of rule application that forces an ordered way to

search for proofs such that all possible combinations are stressed. For an

initial formula α, proofs in LMT→ has an upper bound of |α| · 2|α|+1+2·log2|α|,

which together with the system strategy ensure decidability. System rules are

conceived to deal with the necessity of hypothesis repetition and the context-

splitting nature of →-left, avoiding the occurrence of loops and the usage of

backtracking. Therefore, LMT→ steers the proof search always in a forward,

deterministic manner. LMT→ has the property to allow extractability of

counter-models from failed proof searches (bicompleteness), i.e., the attempt

proof tree of an expanded branch produces a Kripke model that falsifies the

initial formula. Counter-model generation (using Kripke semantics) is achieved

as a consequence of the completeness of the system. LMT→ is implemented

as an interactive theorem prover based on the calculus proposed here. We

compare our calculus with other known deductive systems for M→, especially

with Fitting’s Tableaux, a method that also has the bicompleteness property.

We also proposed here a translation of LMT→ to the Dedukti proof checker as

a way to evaluate the correctness of the implementation regarding the system

specification and to make our system easier to compare to others.

Keywords
Logic; Propositional Minimal Implicational Logic; Sequent Calculus;

Proof Search; Counter-model Generation;
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Resumo

Santos, Jefferson de Barros; Haeusler, Edward Hermann; Dowek,
Gilles. Sistemas de prova e geração de contra exemplo para
Lógica Proposicional Minimal Implicacional. Rio de Janeiro, 2017.
82p. Tese de Doutorado — Departamento de Informática, Pontif́ıcia
Universidade Católica do Rio de Janeiro.

Esta tese apresenta um novo cálculo de sequente, correto e completo

para a Lógica Proposicional Minimal Implicacional (M→). LMT→ destina-se

a ser usado para a busca de provas em M→, em uma abordagem bottom-up. A

Terminação do cálculo é garantida por uma estratégia de aplicação de regras

que força uma maneira ordenada no procedimento de busca de provas de tal

forma que todas as combinações posśıveis são exploradas. Para uma fórmula

inicial α, as provas em LMT→ têm um limite superior de |α| · 2|α|+1+2·log2|α|,

que juntamente com a estratégia do sistema, garantem a decidibilidade do

mesmo. As regras do sistema são concebidas para lidar com a necessidade

de repetição de hipóteses e a natureza de perda de contexto da regra →-

esquerda , evitando a ocorrência de loops e o uso de backtracking. Portanto,

a busca de prova em LMT→ é determińıstica, sempre executando buscas no

sentido forward. LMT→ tem a propriedade de permitir a extração de contra-

modelos a partir de buscas de prova que falharam (bicompletude), isto é, a

árvore de tentativa de prova de um ramo totalmente expandido produz um

modelo de Kripke que falsifica a fórmula inicial. A geração de contra-modelo

(usando a semântica Kripke) é obtida como consequência da completude do

sistema. LMT→ é implementado como um provador de teoremas interativo

baseado no cálculo proposto aqui. Comparamos nosso cálculo com outros

sistemas dedutivos conhecidos para M→, especialmente com Tableaux no estilo

Fitting, um método que também tem a propriedade de ser bicompleto. Também

propomos aqui uma tradução de LMT→ para o verificador de prova Dedukti

como uma forma de avaliar a correção da implementação que desenvolvemos,

no que diz respeito à especificação do sistema, além de torná-lo mais fácil de

comparar com outros sistemas existentes.

Palavras-chave
Lógica; Lógica Proposicional Minimal Implicacional; Cálculo de

Sequentes; Busca de Provas; Geração de Contra-modelo;
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Either mathematics is too big for the human
mind, or the human mind is more than a
machine.

Kurt Gödel, as quoted in Topoi:
The Categorial Analysis of Logic (1979)

by Robert Goldblatt, p. 13.
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1
Introduction

1.1
Motivation

Propositional Minimal Implicational Logic (M→) is the fragment of the

Propositional Minimal Logic containing only the logical connective →.

The TAUT problem for M→, the general problem of deciding if a formula

α ∈M→ is always true, is a PSPACE-Complete problem as stated by Statman

(1974), who also shows that this logic polynomially simulates Propositional

Intuitionistic Logic. Statman’s simulation can also be used to polynomially

simulate Propositional Classical Logic. Furthermore, Haeusler (2015b) shows

that M→ can polynomially simulate not only Propositional Classical and

Intuitionistic Logic but also the full Propositional Minimal Logic and any

other decidable propositional logic with a Natural Deduction system where

the Subformula Principle holds (see Prawitz, 2006).

Moreover, M→ has a strong relation with open questions about the

Computational Complexity Hierarchy as we can see from the statements below.

– If CoNP 6= NP then NP 6= P .

– If PSPACE = NP then CoNP = NP .

– CoNP = NP , iff ∀α ∈ TAUTCla, ∃DS, a deductive system and Π, a

proof of α in DS, size(ΠDS) ≤ Poly(|α|).
– PSPACE = NP iff ∀α ∈ TAUTM→ , ∃DS, a deductive system and Π,

a proof of α in DS, size(ΠDS) ≤ Poly(|α|).

Those characteristics show us that M→ is as hard to implement as the

most popular propositional logics. This fact, together with its very simple

language (only one logical connective), makes M→ an important research

object that can provide us with many insights about the aforementioned

relations of complexity classes and about the complexity of many other logics.

Moreover, the problem of conducting a proof search in a deductive system

for M→has the complexity of TAUT as a lower bound. Thus, the size of

propositional proofs may be huge and automated theorem provers (ATP)
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should take care of super-polynomially sized proofs. Therefore, the study of

deductive systems for M→can directly influence in techniques to improve the

way provers manage such proofs.

Our main contribution here is to present a sound and complete sequent

calculus for M→ called LMT→, which allows the definition of a unified pro-

cedure for provability and counter-model generation in this logic. LMT→ aims

to be used for proof search in M→, in a bottom-up approach. The system is

based on a set of rules and in a general strategy for application of the rules in

such a way that we can avoid the usage of loop checkers and mechanisms for

backtracking. LMT→ also avoids the necessity of working with different sys-

tems for provability and refutation, a very common approach to deal with this

problem described in the literature. Counter-model generation (using Kripke

semantics) is achieved as a consequence of the features of the system and the

way the attempt proof tree (produced by a failed proof search) is constructed

during a proof search process. We also present here a comparison of our cal-

culus with other known deductive systems for M→, especially with Fitting’s

Tableaux, a method that also has the bicompleteness property.

We implemented LMT→ as an interactive theorem prover in Lua. Its

source code can be found at https://github.com/jeffsantos/GraphProver.

We also proposed here a translation of LMT→ to the Dedukti proof checker

as a way to evaluate the correctness of the implementation regards the system

specification and to make our system easier to compare to others.

1.2
How this thesis is organized

Chapter 2 presents some initial definitions, establish the vocabulary

and present the main problems in the field of proof search for M→.

Chapter 3 shows a study about the size of proofs in M→ to establish a bound

for proof search that can be used as a limit in the termination procedure

of LMT→. Chapter 4 presents LMT→ itself and its main features: termin-

ation, soundness, and completeness (with the counter-model generation as

a corollary). Chapter 5 compares our approach with the Tableaux System.

Chapter 6 presents a translation of proofs generated in LMT→ to the Dedukti

proof checker. Chapter 7 concludes this thesis and describes some possible

future work.

https://github.com/jeffsantos/GraphProver
DBD
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2
Propositional Minimal Implicational Logic (M→)

2.1
Propositional Logics

Propositional logic is a language used to express propositions, i.e.,

declarative sentences (assertions) that can be evaluated as holding or not in

some context. To refer to a propositional language, we use the symbol L and

assertions are represented as formulas that belong to L. We can formally define

those concepts as follows.

Definition 1 The alphabet of a propositional logic L consists of:

– An enumerable set of propositional symbols, called atoms.

– The bottom symbol (⊥).

– The usual connectives (or logical operators) for negation (¬), conjunction

(∧), disjunction (∨) and implication (→). The first one being an unary

operator, all the others being binary.

– parentheses: “(” and “)”.

Definition 2 We can define the general notion of a formula in L inductively:

– Every propositional symbol is a formula in L. We call them atomic

formulas.

– ⊥ is an atomic formula.

– If A is a formula in L then ¬A is also a formula.

– If A and B are formulas in L then (A ∧ B), (A ∨ B) and (A → B) are

also.

As usual, parentheses are used for disambiguation. We use the following

conventions for the text:

– We use upper case letters to represent atomic formulas: A, B, C, . . .
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– We use lower Greek letters to represent generic formulas: α, β, . . .

– Upper case Greek letters are used to represent sets of formulas. For

example ∆, Γ, . . .

– If parentheses are omitted, we interpret conjunctions and disjunctions

nested left. Implications are nested right.

2.2
Logical Consequence

To be able to reason about the truth of a sentence written in a logical

language, we need some mechanism to assign meaning to these sentences.

When we write formulas in a logical language, the allowed logical symbols

(the bottom symbol, logical connectives, and parentheses) follow their intrinsic

meaning, but a form must be defined to interpret nonlogical symbols (atoms).

We call interpretation the attribution of meaning to the nonlogical symbols

of a logical language. In propositional logic, this is done by establishing when

propositional letters in a formula hold or not. Then, the meaning of these

atomic parts combined determines the value of the full formula that they are

a part.

We say a formula is valid when it is true in all interpretations. For

propositional logic a valid formula is called tautology. A formula is valid in an

interpretation if it is always true in that interpretation. A formula α is said to

be satisfiable if there is any interpretation where α is true. A formula α is said

to be falsifiable if there is any interpretation where α is false. Finally, a formula

α is said to be unsatisfiable if α is always false for any given interpretation. If

α is unsatisfiable, ¬α is valid and vice versa.

The concept of logical consequence or entailment establishes a relation

of consequence between a set of formulas and a formula. That is, the logical

consequence determines when a formula logically follows from a set of formulas.

Formally, being ∆ a set of formulas and α a formula, we have:

∆ |= α

if and only if every interpretation satisfying all formulas of ∆ also satisfies α.

A valid formula α is represented as |= α.

We can have different ways to establish interpretations (and, thus, the

logical consequence notion) for a propositional logic. Classical, Intuitionistic

and Minimal Propositional Logics are very known propositional languages with

different notions of interpretations.
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2.3
Deductive Systems

A deductive system or deductive calculus consists of a set (possibly

empty) of axioms and a set (not empty) of inference rules used as a syntactic

mechanism aimed to prove theorems or to conclude, by a sequence of rule

applications, that an assertion can be derived from a set of initial assertions

(set of hypotheses).

Using DS to represent a deductive system, to indicate that a formula α

follows in DS from a set of hypotheses (∆) we use:

∆ ` α

Therefore, a deductive system can be seen as a binary relation where

the first component is a set of formulas and the second one is a formula. The

sequence of rule applications from the formulas in the set of hypotheses ∆ to

the formula α is a demonstration that α follows from ∆. If the initial set of

hypotheses is empty, we call the sequence of rule applications that ends in α

a proof, and α is a theorem.

A propositional logic can have many different deductive systems. In this

thesis we are particularly interested in the systems of Natural Deduction,

following the works of Jaśkowski (1934), Gentzen (1935) and Prawitz (2006),

Sequent Calculus, originally conceived by Gentzen (1935), but considering

adaptations proposed in Takeuti (2013) and the Tableaux System, as presented

by Fitting (1969). For Natural Deduction and Sequent Calculus, we still are

very influenced by notations and approaches presented in Seldin (1998).

We will study some relations between those systems when used to

construct proofs in the language of the Propositional Minimal Implicational

Logic.

2.4
Classical, Intuitionistic and Minimal Logics

One way to present the difference between Classical, Intuitionistic and

Minimal Logics is comparing their respective systems of Natural Deduction.

Here, we are restricted to propositional versions of those systems. In Natural

Deduction, rules capture the meaning of the

Propositional Minimal Logic (Min) obtained from a Natural Deduction

system with no axiom and a set of inference rules consisting of an introduc-

tion rule and an elimination rule for each logical connective of Min. Fig-

ure 2.1 shows the rules of such a system.
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A ∧B
A

∧1-e A ∧B
B

∧2-e A B
A ∧B ∧-i

A ∨B

[A]
....
C

[B]
....
C

C
∨-e A

A ∨B ∨1-i B
A ∨B ∨2-i

A ¬A
⊥ ¬-e

[A]
....
⊥
¬A ¬-i

A A→ B
B

→ -e

[A]
....
B

A→ B
→ -i

Figure 2.1: Natural Deduction System for Min

We obtain the Propositional Intuitionistic Logic (Int) when we add to

those set of rules a new one, specifically aimed to deal with the intuitionistic

meaning of ⊥.

Min +
⊥
A
⊥-Int

Propositional Classical Logic (Cla) is the result of either to add the rule

⊥-Cla to the set of rules of Min or to the set of rules of Int.

Min +

[¬A]
....
⊥
A
⊥-Cla

or ....

Int +

[¬A]
....
⊥
A
⊥-Cla

Seldin (1989) discusses the different logics that emerge from changes in

the set of allowed rules for a Natural Deduction System.
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Prawitz (2006) presents a comprehensible description of Natural Deduc-

tion Systems. His main result, the Normalization Theorem, states that arbit-

rary proofs in those logics can be transformed into an equivalent one where

detours (applications of an introduction rule to the main formula followed by

an elimination rule of the same main formula) are not present. These normal

form proofs have a particularly interesting feature, known as the Subformula

Principle which states that every formula occurrence in a normal deduction

proof of a formula α from a set of hypotheses Γ is a subformula of α or some

formula of Γ. Subformula Principle together with the decidability of the logic

allows the definition of procedures for proof search in the logic. In other words,

procedures that starting from the set Γ and using the rules of the calculus can

produce the formula α (top-down search) or that from the target formula α

using the rules of the system in a reverse sense (bottom-up search) ends in the

set of hypotheses Γ.

Prawitz’s normal proofs are equivalent to Gentzen’s cut-free proofs for

Sequent Calculus. These systems were shown equivalents by Gentzen (1935).

We will talk in more details about Sequent Calculus in the next sections.

As previously stated, Propositional Minimal Implicational Logic (M→)

is the fragment of the Propositional Minimal Logic containing only the logical

connective →. The Natural Deduction system restricted to the introduction

and elimination rules for the → connective (2-1) is correct and complete for

this logic.

A A→ B
B

→ -e

[A]
....
B

A→ B
→ -i

(2-1)

As stated in Chapter 1, this logic is the object of study of this research.

We propose here a sequent calculus for bottom-up proof search in M→. Before

we start to present our system, we show in the next sections more details about

M→ and proof search procedures in its context.

2.5
Semantics for M→

The semantics of M→ is the intuitionistic semantics restricted to→ only.

Thus, given a propositional language L, a M→ model is a structure 〈U,�,V〉,
where U is a non-empty set (worlds), � is a partial order relation on U and V is

a function from U into the power set of L, such that if i, j ∈ U and i � j then

V(i) ⊆ V(j). Given a model, the satisfaction relationship |= between worlds in

models and formulas is defined as in Intuitionistic Logic, namely:
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– 〈U,�,V〉 |=i p, p ∈ L, iff, p ∈ V(i)

– 〈U,�,V〉 |=i α1 → α2, iff, for every j ∈ U , such that i � j, if

〈U,�,V〉 |=j α1 then 〈U,�,V〉 |=j α2.

As usual a formula α is valid in a modelM, namelyM |= α, if and only

if, it is satisfiable in every world i of the model, namely ∀i ∈ U,M |=i α. A

formula is a M→ tautology, if and only if, it is valid in every model.

2.6
Proof Search and Counter-Model Generation in M→

It is known that Prawitz’s Natural Deduction System for Propositional

Minimal Logic with only the →-rules (→-Elim and →-Intro) is sound and

complete for the M→ regarding Kripke semantics. As a consequence of this,

Gentzen’s LJ system (Gentzen, 1935) containing only right and left →-rules

is also sound and complete.

Gentzen (1935) also proved the decision problem for Int (which includes

the case of Min and M→). However, Gentzen’s approach was not conceived

to be a bottom-up proof search procedure. Figure 2.2 shows structural and

logic rules of an adapted Gentzen’s sequent calculus for M→, called LJ→.

We restrict the right side of a sequent to one and only one formula (we are in

M→ thus sequents with empty right side does not make sense). This restriction

implies that structural rules can only be considered for main formulas on the

left side of a sequent. LJ→ also incorporates contraction in the→-left, with the

repetition of the main formula of the conclusion on the premises. We use those

adaptations to facilitate in explaining the difficulties in using sequent calculus

systems for proof search in Int, Min and M→. Dyckhoff (2016) describes in

details the evolution of those adaptations over Gentzen’s original LJsystem in

attempts to establishes better bottom-up proof search mechanisms for Int.

A central aspect when considering mechanisms for proof search in

M→ (and also for Int) is the application of the →-left rule. The LK system

proposed by Gentzen (1935), the sequent calculus for Classical Logic, with

some adaptations (e.g. Seldin (1998)) can ensure that each rule, when applied

in a bottom-up manner in the proof search, reduces the degree (the number of

atomic symbols occurrences and connectives in a formula) of the main formula

of the sequent (the formula to which the rule is applied) implying the termin-

ation of the system. However, the case for Int is more complicated. First, we

have the “context-splitting” (using an expression from Dyckhoff (2016)) nature

of→-left, i.e., the formula on the right side of the conclusion sequent is lost in

the left premise of the rule application. Second, as we can reuse a hypothesis
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in different parts of a proof, the main formula of the conclusion must be avail-

able to be used again by the generated premises. Thus, the →-left rule has

the repetition of the main formula in the premises, a scenario that allows the

occurrence of loops in automatic procedures.

axiom
∆, γ ⇒ γ

∆⇒ γ
weakening (w)

α,∆⇒ γ
α, α,∆⇒ γ

contraction (c)
α,∆⇒ γ

Γ, α, β,∆⇒ γ
exchange (e)

Γ, β, α,∆⇒ γ

∆⇒ α α,Γ⇒ γ
cut

∆,Γ⇒ γ

∆, α⇒ β →-right (→-r)
∆⇒ α→ β

∆, α→ β ⇒ α ∆, α→ β, β ⇒ γ →-left (→-l)
∆, α→ β ⇒ γ

Figure 2.2: Rules of Gentzen’s LJ

Since Gentzen, many others have explored solutions to deal with the

challenges aforementioned proposing new calculi (sets of rules), strategies and

proof search procedures to allow more automated treatment to the problem.

Unfortunately, the majority of these results are focused in Int, with

very few work specifically dedicated to Min or M→. Thus, we needed to

concentrate our literature review in the Int case, adjusting the found results

to the M→ context by ourselves.

A crucial source of information was the work of Dyckhoff (2016), properly

entitled “Intuitionistic decision procedures since Gentzen” that summarizes

in chronological order the main results of this field. By means of personal

communication, we had access to a preprint version of the document, which

helps us a lot in conducting the research. In the next paragraphs, we highlight

the most important of those results presented in Dyckhoff (2016).

A common way to control the proof search procedure in M→ (and

in Int) is by the definition of routines for loop verification as proposed

in Underwood (1990). Loop checkers are very expensive procedures, although

they are effective to guarantee termination in automatic provers for M→ (and

other logics with the same characteristic). The work in Heuerding et al. (1996)
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and Howe (1997) are examples of techniques that can be used to minimize the

performance problems that can arise with the usage of such procedures.

To avoid the use of loop checkers, Dyckhoff (1992) proposed a terminating

contraction-free sequent calculus for Int, named LJT, using a technique based

on the work of Vorob’ev (1970) in the 50s. Pinto & Dyckhoff (1995) extended

this work showing a method to generate counter-examples in this system.

They proposed two calculi, one for proof search and another for counter-model

generation, forming a way to decide about the validity or not of formulas in

Int. A characteristic of their systems is that the subformula property does not

hold on them. In Ferrari et al. (2013), a similar approach is presented using

systems where the subformula property holds. They also proposed a single

decision procedure for Int which guarantee minimal depth counter-model.

Focused sequent calculi appeared initially in the Andreoli’s work on

linear logic (Andreoli, 1992). The author identified a subset of proofs from

Gentzen-style sequent calculus, which are complete and tractable. Liang &

Miller (2007) proposed the focused sequent calculi LJF where they used a

mapping of Int into linear logic and adapted the Andreoli’s system to work

with the image. Dyckhoff & Lengrand (2006) presented the focused system

LJQ that work direct in Int. Focusing is used in their system as a way to

implement restrictions in the →-left rule as proposed by Vorob’ev (1970) and

Hudelmaier (1993). The work of Dyckhoff & Lengrand (2006) follows from the

calculus with the same name presented in Herbelin (1995).

Dyckhoff (2016) also identify a list of features particularly of interest

when evaluating mechanisms for proof search in Int that we will follow when

comparing our solution to the other existent ones. They are: termination

(proof search procedure stops both for theorems and non-theorem formulas),

bicompleteness (extractability of models from failed proof searches), avoid-

ance of backtracking (which is a very immediate approach to deal with the

context split in →-left, but it is also a complex and expensive procedure to

implement), simplicity (allows easier reasoning about systems).
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3
The Size of Proofs in M→

3.1
Measuring the Size of Proofs

Hirokawa has presented an upper bound for the size of normal form

Natural Deduction proofs of implicational formulas in Int (that correspond

to M→ formulas). Hirokawa (1991) showed that, for a formula α ∈ M→, this

limit is |α| · 2|α|+1. As the Hirokawa result concerns about normal proofs in

Natural Deduction we present now a translation of this system to a cut-free

sequent calculus, following the LJ→ rules presented in Section 2.6, thus we can

establish the limit for proof search in LJ→ too.

3.2
Translating Natural Deduction into Sequent Calculus

Figure 3.1 presents a recursively defined function1 to translate Natural

Deduction normal proofs of M→ formulas into LJ→ proofs (in a version of the

system without the cut rule).

In this definition, c is a function that returns the conclusion (last sequent)

of a LJ→ demonstration as showed in (3-1). Also, → −lc is a function that

receives two LJ→ sequents and a formula to construct the conclusion of a

→ −left rule application, as defined in (3-2).

c

( ∏
Γ⇒ γ

)
= Γ⇒ γ (3-1)

→ −lc(Γ⇒ α; β,Γ⇒ γ;α→ β) = Γ, α→ β ⇒ γ (3-2)

1We use a semicolon to separate arguments of functions (in function definitions and
function calls) instead of the most common approach to using commas. This change in
convention aims to avoid confusion with the commas used to separate formulas and sets of
formulas in sequent notation.
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Axioms:

F (α; Γ) = Γ, α⇒ α

Case of →Introduction:

F


[α]1∏
β

→-I1
α→ β

; Γ

 =
F

( α∏
β

; {α} ∪ Γ

)
→ r

Γ⇒ α→ β

Case of →Elimination:

F


∏

1
α α→ β

β∏
2

C

; Γ

 =

F

( ∏
1

α
; {α→ β} ∪ Γ

)
F

 β∏
2

C

; {α→ β} ∪ Γ


→ l

→ −lc

c(F ( ∏1

α
; {α→ β} ∪ Γ

))
; c

F
 β∏

2

C

; {α→ β} ∪ Γ

 ;α→ β



Figure 3.1: A recursively defined function to translate Natural Deduction
proofs into LJ→

As an example of the translation produced by the function of Figure 3.1,

we show below each step of the translation of a Natural Deduction proof (3-

3) into an LJ→ proof (3-4). To shorten the size of the proofs we collapsed

repeated occurrences of formulas when passed as the hypothesis argument of

the recursive function call.

[B]2
[A]1 [A→ (B → C)]3

→-E
B → C

→-E
C →-I1A→ C →-I2

B → (A→ C)
→-I3

(A→ (B → C))→ (B → (A→ C))

(3-3)

O
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F


[A→ (B → C)]3∏

1

B → (A→ C)
→-I3

(A→ (B → C))→ (B → (A→ C))

; ∅


O

F


[B]2, A→ (B → C)∏

2

A→ C →-I2
B → (A→ C)

; {A→ (B → C)}


→ r⇒ (A→ (B → C))→ (B → (A→ C))

O

F


[A]1, B,A→ (B → C)∏

3

C →-I1A→ C

; {B,A→ (B → C)}


→ r

A→ (B → C)⇒ B → (A→ C)
→ r⇒ (A→ (B → C))→ (B → (A→ C))

O

F

 B

A A→ (B → C)
→-E

B → C →-E
C

; {A,B,A→ (B → C)}


→ r

B,A→ (B → C)⇒ A→ C
→ r

A→ (B → C)⇒ B → (A→ C)
→ r⇒ (A→ (B → C))→ (B → (A→ C))

In the following steps consider that Γ = {A,B,A→ (B → C)}.

O

F (A; Γ) F
(
B B → C →-E

C
; Γ
)

→ l
→ −lc

(
c (F (A; Γ)) ; c

(
F
(
B B → C →-E

C
; Γ
))

;A→ (B → C)
)
→ r

B,A→ (B → C)⇒ A→ C
→ r

A→ (B → C)⇒ B → (A→ C)
→ r⇒ (A→ (B → C))→ (B → (A→ C))

O
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Γ⇒ A

F (B; {Γ, B → C)} F (C; {Γ, B → C)}
→ l→ −lc(c(F (B; {Γ, B → C)}); c(F (C; {Γ, B → C)});B → C)
→ l

Γ⇒ C
→ r

B,A→ (B → C)⇒ A→ C
→ r

A→ (B → C)⇒ B → (A→ C)
→ r⇒ (A→ (B → C))→ (B → (A→ C))

O

Γ⇒ A

Γ, B → C ⇒ B Γ, B → C,C ⇒ C
→ l

Γ, B → C ⇒ C
→ l

Γ⇒ C
→ r

B,A→ (B → C)⇒ A→ C
→ r

A→ (B → C)⇒ B → (A→ C)
→ r⇒ (A→ (B → C))→ (B → (A→ C)) (3-4)

3.3
Dealing with Super-Polynomial Proofs

Theorem 3 The size of proofs in LJ→ considering only implicational tautolo-

gies is the same of that in Natural Deduction, i.e. for an implicational formula

α, a proof in LJ→ has maximum height of |α| · 2|α|+1.

Proof : This proof follows directly from the translation function aforemen-

tioned as each step in the Natural Deduction proof is translated into exactly

one step in the LJ→ resultant proof. �
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4
The Sequent Calculus LMT→

4.1
Initial Definitions

In this chapter, we present a sound and complete sequent calculus for

M→. We call this system LMT→. We can prove for each rule that if all premises

are valid, then the conclusion is also valid and if at least one premise is invalid,

then the conclusion also is. Besides that, this proof is constructive in the sense

that for any sequent we have an effective way to produce either a proof or a

counter-model of it.

We start defining the concept of sequent used in the proposed calculus.

A sequent in our system has the following general form:

{∆′},Υp1

1 ,Υ
p2

2 , ...,Υ
pn
n ,∆⇒ [p1, p2, ..., pn], ϕ (4-1)

where ϕ is a formula in L and ∆, Υp1

1 ,Υ
p2

2 , ...,Υ
pn
n are bags1 of formulas. Each

Υpi
i represents formulas associated with an atomic formula pi.

A sequent has two focus areas, one in the left side (curly bracket)2 and

another on the right (square bracket). Curly brackets are used to control the

application of the →-left rule and square brackets are used to keep control of

formulas that are related to a particular counter-model definition. ∆′ is a set

of formulas and p1, p2, ..., pn is a sequence that does not allow repetition. We

call context of the sequent a pair (α, q), where α ∈ ∆′ and ϕ = q, where q is

an atomic formula on the right side of the sequent.

The axioms and rules of LMT→ are presented in Figure 4.1. In each rule,

∆′ ⊆ ∆.

Rules are inspired by their backward application. In a →-left rule

application, the atomic formula, q, on the right side of the conclusion goes to

the []-area in the left premise. ∆ formulas in the conclusion are copied to the left

premise and marked with a label relating each of them with q. The left premise

1A bag (or a multiset) is a generalization of the concept of a set that, unlike a set, takes
repetitions into account: a bag {A, A, B} is not the same as the bag {A, B}.

2Note that the symbols { and } here do not represent a set. They are used as an annotation
in the sequent to determine the left side focused area. Therefore, ∆′ instead is a set of
formulas in the focused area.
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also has a copy of ∆ formulas without the q-label. This mechanism keeps track

of proving attempts. The form of the restart rule is better understood in the

completeness proof on Section 4.5. A forward reading of rules can be achieved

considering the notion of validity, as described in Section 4.4.

Axiom:

axiom{∆′, q},Υp1

1 ,Υ
p2

2 , . . . ,Υ
pn
n ,∆⇒ [p1, p2, . . . , pn], q

Focus:

{∆′, α},Υp1

1 ,Υ
p2

2 , . . . ,Υ
pn
n ,∆, α⇒ [p1, p2, . . . , pn], β

fα{∆′},Υp1

1 ,Υ
p2

2 , . . . ,Υ
pn
n ,∆, α⇒ [p1, p2, . . . , pn], β

Restart:

{},Υ1,Υ2, . . . ,Υi,Υ
pi+1

i+1 , . . . ,Υ
pn
n ,∆

q ⇒ [p1, p2, . . . , pi+1, . . . , pn, q], pi
rpi{∆′},Υp1

1 ,Υ
p2

2 , . . . ,Υ
pi
i ,Υ

pi+1

i+1 , . . . ,Υ
pn
n ,∆⇒ [p1, p2, . . . , pi, pi+1, . . . , pn], q

→-Right

{∆′},Υp1

1 ,Υ
p2

2 , . . . ,Υ
pn
n ,∆, α⇒ [p1, p2, . . . , pn], β

→-rα→β
{∆′},Υp1

1 ,Υ
p2

2 , . . . ,Υ
pn
n ,∆⇒ [p1, p2, . . . , pn], α→ β

→-Left

Considering Υ =
n⋃
i=1

Υpi
i and p̄ = p1, p2, . . . , pn, we have:

{α→ β,∆′},Υ,∆q,∆⇒ [p̄, q], α {α→ β,∆′},Υ,∆, β ⇒ [p̄], q
→-l(α→β,q)

{α→ β,∆′}Υ,∆⇒ [p̄], q

Figure 4.1: Rules of LMT→

4.2
A Proof Search Strategy

The following is a general strategy to be applied with the rules of

LMT→ to generate proofs from an input sequent (a sequent that is a candidate

to be the conclusion of a proof), which is based on a bottom-up application of

the rules. From the proposed strategy, we can then state a proposition about

the termination of the proving process.
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A goal sequent is a new sequent in the form of (4-1). It is a premise of

one of the system’s rules, generated by the application of this rule on an open

branch during the proving process. If the goal sequent is an axiom, the branch

where it is will stop. Otherwise, apply the first applicable rule in the following

order:

1. Apply →-right rule if it is possible, i.e., if the formula on the right side

of the sequent, outside the []-area, is not atomic. The premise generated

by this application is the new goal of this branch.

2. Choose one formula on the left side of the sequent, not labeled yet, i.e.,

a formula α ∈ ∆ that is not occurring in ∆′, then apply the focus rule.

The premise generated by this application is the new goal of this branch.

3. If all formulas on the left side have already been focused, choose the first

formula α ∈ ∆′ such that the context (α, q) was not yet tried since the

last application of a restart rule. We say that a context (α, q) is already

tried when a formula α on the left was expanded (by the application of

→-left rule) with q as the formula outside the []-area on the right side of

the sequent. The premises generated by this application are new goals of

the respective new branches.

4. Choose the leftmost formula inside the []-area that was not chosen before

in this branch and apply the restart rule. The premise generated by this

application is the new goal of the branch.

Figure 4.2 shows a general attempt proof tree generated by the applica-

tion of the aforementioned strategy.

Observation 4 From the proof strategy we can make the following observa-

tions about a tree generated during a proving process:

(i) A top sequent is the highest sequent of a branch in the tree.

(ii) In a top sequent of a branch on the form of sequent (4-1), if ϕ ∈ ∆ then

the top sequent is an axiom and the branch is called a closed branch.

Otherwise, we say that the branch is open and ϕ is an atomic formula.

(iii) In every sequent of the tree, ∆′ ⊆ ∆.

(iv) For i = 1, . . . n, Υ
pi−1

i−1 ⊆ Υpi
i .
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{∆′},Υp1

1 ,Υ
p2

2 ,Υ
pi−1

i−1 , . . . ,Υ
pi
i ,∆⇒ [p1, p2, . . . , pi−1, pi], pk (where k = 1, 2, . . . , i)

...
a sequence of focus, →-left and →-right

{},Υp1

1 ,Υ
p2

2 , . . . ,Υ
pi−1

i−1 ,∆⇒ [p1, p2, . . . , pi−1], pi
...

a sequence of focus, →-left, →-right and restart (for each atomic formula in the []-area)

{ϕ→ ψ},Υp2

2 , . . . ,Υ
pi−1

i−1 ,∆
pi ,Υp1

1 ,Υ1, ϕ1, . . . , ϕn ⇒ [p2, . . . , pi−1, pi, p1], p2

... →-right{ϕ→ ψ},Υp2

2 , . . . ,Υ
pi−1

i−1 ,∆
pi ,Υp1

1 ,Υ1 ⇒ [p2, . . . , pi−1, pi, p1], ϕ
...
→-left{ϕ→ ψ},Υp2

2 , . . . ,Υ
pi−1

i−1 ,∆
pi ,Υ1 ⇒ [p2, . . . , pi−1, pi], p1

focus{},Υp2

2 , . . . ,Υ
pi−1

i−1 ,∆
pi ,Υ1 ⇒ [p2, . . . , pi−1, pi], p1

restart-p1{∆′},Υp1

1 ,Υ
p2

2 , . . . ,Υ
pi−1

i−1 ,∆⇒ [p1, p2, . . . , pi−1], pi
...

a sequence of focus, →-left and →-right

{ϕ→ ψ},Υp1

1 ,Υ1, ϕ1, . . . , ϕn ⇒ [p1], p2

...
a sequence →-right

{ϕ→ ψ},Υp1

1 ,Υ1 ⇒ [p1], ϕ

...
{ϕ→ ψ, ψ}, ψ,Υ1 ⇒ [], p1

focus{ϕ→ ψ}, ψ,Υ1 ⇒ [], p1 →-left{ϕ→ ψ},Υ1 ⇒ [], p1
focus{}, ϕ→ ψ, γ1, . . . , γm ⇒ [], p1

...
{}, ϕ→ ψ ⇒ [], γ →-right{} ⇒ [], (ϕ→ ψ)→ γ

Figure 4.2: General attempt proof tree
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4.3
An Upper Bound for the Proof Search in LMT→

Using the same approach applied in Chapter 3, we now propose a

translation from LJ→ proofs into the system LMT→. The translation function

needs to adapt a sequent in LJ→ form to a sequent in LMT→ form. Figure 4.3

presents the definition of the translation function3.

Axioms:

F ′ (Γ, α⇒ α; ∆; Υ; Σ; Π) =
{∆},Υ,Γ, α⇒ [Σ], α∏

Last rule is →-right:

F ′

 D
Γ, α⇒ β →-r

Γ⇒ α→ β

; ∆; Υ; Σ; Π

 =

F ′
(

D
Γ, α⇒ β

; ∆; Υ; Σ;
{∆},Υ,Γ⇒ [Σ], α→ β∏ )

→ r{∆},Υ,Γ⇒ [Σ], α→ β

Π

Last rule is →-left:

F ′

 D1

Γ, α→ β ⇒ α

D2

Γ, β ⇒ q →-l
Γ, α→ β ⇒ q

; ∆; Υ; Σ; Π

 =

D′1 D′2 → l

PROOFUNTIL

(
FOCUS

(
{∆},Υ,Γ, α→ β ⇒ [Σ], q

Π

))

Figure 4.3: A recursive function to translate LJ→ into LMT→

We use some abbreviations to shorten the function definition of Fig-

ure 4.3. We present them below.

D′1 = F ′
(

D1

Γ, α→ β ⇒ α
; ∆ ∪ {α→ β}; Υ ∪ Γq ∪ {(α→ β)q}; Σ ∪ {q}; Π′

)
3As in Chapter 3, we use semicolon to separate function arguments here

DBD
PUC-Rio - Certificação Digital Nº 1221712/CA



Systems for Provability and Countermodel Generation in Propositional Minimal
Implicational Logic 30

D′2 = F ′
(

D2

Γ, β ⇒ q
; ∆ ∪ {α→ β}; Υ; Σ; Π′

)

Π′ = PROOFUNTIL

(
FOCUS

(
{∆},Υ,Γ, α→ β ⇒ [Σ], q

Π

))

Γq =
means that all formulas of the set Γ are labeled with a

reference to the atomic formula q

(α→ β)q = means the same for the individual formula α→ β.

The complex case occurs when the function F ′ is applied to a proof

fragment in which the last LJ→ rule applied is an →-left. In this case, F ′

needs to inspect the proof fragment constructed until that point to identify

whether the context (α → β, q) was already used or not. This inspection has

to be done since LMT→ does not allow two or more applications of the same

context between two applications of the restart rule. To deal with this, we use

some auxiliary functions described below.

FOCUS is a function that receives a fragment of proof in LMT→ form

and builds one application of the focus rule on the top of the proof fragment

received in the case that the main formula of the rule is not already focused.

The main formula is also an argument of the function. In the function definition

(4-2), we have the constraint that α ∈ Γ.

FOCUS

 {∆},Υ,Γ⇒ [Σ], β∏
{} ⇒ [], γ

;α

 =



{∆, α},Υ,Γ⇒ [Σ], β
focus{∆},Υ,Γ⇒ [Σ], β∏

{} ⇒ [], γ

if α /∈ ∆

{∆},Υ,Γ⇒ [Σ], β∏
{} ⇒ [], γ

otherwise


(4-2)
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The function PROOFUNTIL also receives a fragment of a proof in

LMT→ form where (α → β, q) is one of the available contexts, applies the

restart rule with an atomic formula p such that p ∈ Σ in the top of this fragment

of proof and, then, conducts a sequence of LMT→ rule applications following

the strategy aforementioned until the point that the context (α → β, q)

is available again. This mechanism has to be done in the case that the

context (α → β, q) is already applied in an →-left application, some point

after the last restart rule application in the proof fragment received as the

argument Π. Otherwise, the proof fragment is returned unaltered. Function

PROOFUNTIL is described in the function definition (4-3).

PROOFUNTIL

 {∆, α→ β},Υ,Γ⇒ [Σ], q∏
{} ⇒ [], γ

 =



{∆′′, α→ β},Υ′′,Γ′ ⇒ [Σ′′], q
...

{},Υ′,Γq,Γ⇒ [Σ′], p
restart−p{∆, α→ β},Υ,Γ⇒ [Σ], q∏

{} ⇒ [], γ

→ -left(α→ β, q) ∈∏

{∆, α→ β},Υ,Γ⇒ [Σ], q∏
{} ⇒ [], γ

otherwise



(4-3)

As an example of this translation, we use here the formula

((((A→ B)→ A)→ A)→ B)→ B. We know from Dowek & Jiang

(2006) that this formula needs two repetitions of the hypothesis

(((A→ B)→ A)→ A)→ B to be proved in M→. To shorten the proof

tree we use the following abbreviation: ((A→ B)→ A)→ A = ε. Thus, its

normal proof in Natural Deduction can be represented as shown in Proof (4-4).
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[A]1

ε → I4 [ε→ B]3

B
→ E

(A→ B)
→ I1

[(A→ B)→ A]2

A
→ E

ε → E2
[ε→ B]3

B
→ E

(ε→ B)→ B
→ I3

(4-4)

Using the translation presented in Figure 3.1, we achieve the following

LJ→ cut-free proof. To shorten the proof we numbered each subformula of the

initial formula that we want to prove and use these numbers to refer to those

subformulas all over the proof. Let us call this LJ→ version of the proof D
(Proof (4-5)).

→3,→1, A,→1⇒ A →-R→3,→1, A⇒→2 →3,→1, A,B ⇒ B →-L→3,→1, A⇒ B →-R→3,→1⇒→0 →3,→1, A⇒ A →-L→3,→1⇒ A →-R→3⇒→2 →3, B ⇒ B →-L→3⇒ B →-R⇒ ((((A→0 B)→1 A)→2 A)→3 B)→4 B
(4-5)

The translation to LMT→ starts by applying the function F ′ to the full

proof D.

F ′

 D;

Γ = ∅;
∆ = ∅;
Υ = ∅;
Σ = ∅;
Π = nil


This first call of F ′ produces the end sequent of the proof in LMT→ and

calls the function F ′ recursively to the rest of the original proof in LJ→. This

LJ→ fragment has now, as its last rule application, an →-left.

∏
= {} ⇒ [], ((((A→0 B)→1 A)→2 A)→3 B)→4 B

F ′


D1

→3⇒→2 →3, B ⇒ B →-l→3⇒ B
;

Γ = ∅;
∆ = ∅;
Υ = ∅;
Σ = ∅;
Π


→ r∏
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Then, as the main formula (((A →0 B) →1 A) →2 A) →3 B (in the

proof represented only by →3) is not focused yet, the call of function F ′ first

constructs an application of the focus rule on the top of the Π fragment received

as a function argument. Also, the context (→3, B) was not expanded yet. Thus,

the recursive step can proceed directly without the need of a restart (this

is controlled by the PROOFUNTIL function as shown in F ′ definition in

Figure 4.3).

∏
=

{→3},→3⇒ [], B
→ focus{},→3⇒ [], B

→ r{} ⇒ [], ((((A→0 B)→1 A)→2 A)→3 B)→4 B

F ′


D2

→3⇒→2
;

Γ = {→3};
∆ = {→3};
Υ = {→B

3 };
Σ = {B};
Π

 F ′

 →3, B ⇒ B ;

Γ = {→3};
∆ = {→3};
Υ = ∅;
Σ = ∅;
Π


→ l∏

The call of F ′ on the right premise constructs an axiom. Thus this branch

in the LMT→ proof translation being built is closed. The next recursive call

”pastes” on the top of the right branch of the new version of Π as follows.

∏
=

{→3},→B
3 ,→3⇒ [B],→2 {→3},→3, B ⇒ [], B

→ l{→3},→3⇒ [], B
→ focus{},→3⇒ [], B

→ r{} ⇒ [], ((((A→0 B)→1 A)→2 A)→3 B)→4 B

F ′


D3

→3,→1⇒→0 →3, A⇒ A →-L→3,→1⇒ A
;

Γ = {→3};
∆ = {→3};
Υ = {→B

3 };
Σ = {B};
Π


→ r∏

This process goes until a point where the context (→3, B) is again found,

and the translation needs to deal with a restart in the LMT→ translated proof.

This situation happens when the recursion of F ′ reaches the point below.
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F ′


D4

→3,→1, A⇒→2 →3,→1, A,B ⇒ B →-L→3,→1, A⇒ B

;

Γ = {→1, A};
∆ = {→3,→1};
Υ = {→B

3 ,→A
3 ,→A

1 };
Σ = {B,A};
Π



The Π fragment constructed in this step of the recursion is presented

below.

∏′
{→3,→1},→B

3 ,→A
3 ,→A

1 ,→3,→1⇒ [B,A],→0 {→3,→1},→B
3 ,→3,→1, A⇒ [B], A

{→3,→1},→B
3 ,→3,→1⇒ [B], A

→ l

{→3},→B
3 ,→3,→1⇒ [B], A

→ focus

{→3},→B
3 ,→3⇒ [B],→2

→ r
{→3},→3, B ⇒ [], B

{→3},→3⇒ [], B
→ l

{},→3⇒ [], B
→ focus

{} ⇒ [], ((((A→0 B)→1 A)→2 A)→3 B)→4 B
→ r

The Π′ fragment in Π is built as the result of a proof search from the top

sequent of the leftmost branch of Π until the point that there is a repetition of

the context (→3, B) and the→-left rule can be applied again without offending

the LMT→ strategy. This result is produced by the PROOFUNTIL call when

applying F ′ to an LJ→ fragment that end with a →-left rule application.

∏′
1

∏′
2 →-l{→3},→B

3 ,→3,→1,→B
1 , A

B ,→B
3⇒ [B], A

focus{},→B
3 ,→3,→1,→B

1 , A
B ,→B

3⇒ [B], A
restart{→3,→1},→B

3 ,→A
3 ,→A

1 ,→1, A,→3⇒ [B,A], B

where Π′1 is:

{→3,→1},→B
3 ,→

A
3 ,→

A
1 ,→

B
1 , A

B ,→B
3 ,→3,→1, A⇒ [B,A], B

→-r
{→3,→1},→B

3 ,→
A
3 ,→

A
1 ,→

B
1 , A

B ,→B
3 ,→3,→1⇒ [B,A],→0 {→3},→B

3 ,→
A
3 ,→

A
1 ,→

B
1 , A

B ,→B
3 ,→3,→1, A⇒ [B,A], A

→-l
{→3,→1},→B

3 ,→
A
3 ,→

A
1 ,→

B
1 , A

B ,→B
3 ,→3,→1⇒ [B,A], A

focus
{→3},→B

3 ,→
A
3 ,→

A
1 ,→

B
1 , A

B ,→B
3 ,→3,→1⇒ [B,A], A

→-r
{→3},→B

3 ,→
A
3 ,→

A
1 ,→

B
1 , A

B ,→B
3 ,→3,→1⇒ [B,A],→2

and Π′2 is:

{→3,→1},→B
3 ,→

A
3 ,→

A
1 ,→

B
1 , A

B ,→B
3 , B

A,→3,→1, B,A⇒ [B,A], B
→-r

{→3,→1},→B
3 ,→

A
3 ,→

A
1 ,→

B
1 , A

B ,→B
3 , B

A,→3,→1, B ⇒ [B,A],→0 {→3, to1},→B
3 ,→3,→1,→B

1 , A
B ,→B

3 , B,A⇒ [B], A
→-l

{→3,→1},→B
3 ,→3,→1,→B

1 , A
B ,→B

3 , B ⇒ [B], A
focus

{→3},→B
3 ,→3,→1,→B

1 , A
B ,→B

3 , B ⇒ [B], A
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The top sequent of the fragment Π′1 is the point where we can apply the

→-left rule to the context (→3, B) again. Thus the next recursion call becomes:

Π′3 Π′4 → l
Π

where

∏′
3 = F ′


→3,→1, A⇒ A

→3,→1, A⇒→2
;

Γ = {→3,→1, A};
∆ = {→3,→1};
Υ = {→A

3 ,→A
1 ,→B

3 ,→B
1 , A

B};
Σ = {B,A};
Π



and

∏′
4 = F ′

 →3,→1, A,B ⇒ B ;

Γ = {→3,→1, A};
∆ = {→3,→1};
Υ = {→A

3 ,→A
1 ,→B

3 ,→B
1 , A

B};
Σ = {B,A};
Π



Finally, after finish the translation process we obtained the translated

proof of (4-6).
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{→3,→1},→B
3 ,→

A
3 ,→

A
1 ,→

B
1 , A

B ,→B
3 ,→3,→1, A⇒ [B,A], A

{→3,→1},→B
3 ,→

A
3 ,→

A
1 ,→

B
1 , A

B ,→B
3 ,→3,→1, A⇒ [B,A],→2

→ r
{→3,→1},→B

3 ,→
A
3 ,→

A
1 ,→

B
1 , A

B ,→B
3 ,→3,→1, A⇒ [B,A], A

Π′

{→3,→1},→B
3 ,→

A
3 ,→

A
1 ,→3,→1⇒ [B,A],→0

{→3,→1},→B
3 ,→3,→1⇒ [B], A

→ l
{→3,→1},→B

3 ,→3,→1, A⇒ [B], A

{→3},→B
3 ,→3,→1⇒ [B], A

→ focus

{→3},→B
3 ,→3⇒ [B],→2

→ r
{→3},→3, B ⇒ [], B

{→3},→3⇒ [], B
→ l

{},→3⇒ [], B
→ focus

{} ⇒ [], ((((A→0 B)→1 A)→2 A)→3 B)→4 B
→ r

(4-6)
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4.3.1
Termination

To control the end of the proof search procedure of LMT→ our approach

is to define an upper bound limit to the size of its proof search tree. Then, we

need to show that the LMT→ strategy here proposed allows exploring all the

possible ways to expand the proof tree until it reaches this size.

From Theorem 3, we know that the upper bound for cut-free proofs based

on LJ→ is |α| · 2|α|+1, where α is the initial formula that we want to prove. We

use the translation presented in Figure 4.3 on the previous Section to find a

similar limit for LMT→proofs. We have to analyze three cases to establish an

upper bound for LMT→.

The cases are described bellow and are summarized in Table 4.1.

(i) Axioms of LJ→ maps one to one with axioms of LMT→;

(ii) →-right applications of LJ→ maps one to one with →-right applications

of LMT→;

(iii) →-left applications of LJ→ maps to LMT→ in three different possible

sub-cases, according to the context (α→ β, q) in which the rule is being

applied in LJ→. We have to consider the fragment of LMT→ already

translated to decide the appropriate case.

over the proof fragment of LMT→ translated until this point of the

recursion.

– If the context is not yet focused neither expanded

Then, one application of →-left in LJ→ maps to

two applications of rules in LMT→: first, a focus

application, then an →-left application.

– If the context is already focused but not yet expanded

Then, one application of →-left in LJ→ maps to one

application of →-left in LMT→.

– If the context (α→ β, q) is already focused and expanded

Then, the one application of →-left in LJ→ maps to

the height of the LMT→ proof fragment produced by

the execution of the PROOFUNTIL function. Let

this height be called h.
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LJ→ LMT→ Map
axiom axiom 1:1
→-right →-right 1:1

focused expanded

→-left
No No 1:2 1 focus and 1 →-left
Yes No 1:1 1 →-left
Yes Yes 1:h 1 to the size of PROOFUNTIL

Table 4.1: Mapping the size of LJ→ proofs into LMT→

Lemma 5 The height h that defines the size of the proof fragment returned

by the function PROOFUNTIL has a maximum limit of 22log2|α|, where α is

the main formula of the initial sequent of the proof in LMT→.

Proof : Consider a proof
∏

LJ→ of an initial sequent in LJ→ with the form

⇒ α. The process of translating
∏

LJ→ to LMT→ produces a proof
∏

LMT→

with the initial sequent in the form {} ⇒ [], α. Consider that α has the

form α1 → α2. In some point of the translation to LMT→, we reach a

point where a context (ψ → ϕ, q) is already focused and expanded in the

already translated part of the proof
∏

LMT→ . At this point, the function

PROOFUNTIL generates a fragment of the proof
∏

LMT→ , call it Σ of size

h. The height h is bound by the number of applications of →-left rules in Σ.

This can be determined by the multiplication of the degree of the formula α1

(that bounds the number of possible implicational formulas in the left side of

a sequent in LMT→) by the maximum number of atomic formulas (n) inside

the []-area in the highest branch of Σ (each pi inside the []-area allows one

application of the restart rule). Thus we can formalize this in the following

manner:

h = n× |α1|
h = |α| × |α|
h = |α|2

Since

|α|2 = 22·log2|α|

Then, we have that

h = 22·log2|α|

�

Theorem 6 The size of a proof for a formula α ∈ M→ in LMT→ has an

upper bound of |α| · 2|α|+1+2·log2|α|.
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Proof : Considering the size of proofs for a formula α using LJ→, the mapping

in Table 4.1 and the Lemma 5, the proof follows directly. �

Theorem 7 LMT→ eventually stops.

Proof : To guarantee termination, we use the upper bound presented in The-

orem 6 to limit the height of opened branches during the LMT→ proof search

process. The strategy presented in Section 4.2 forces an ordered application

of rules that produces all possible combination of formulas to be expanded in

the right and left sides of generated sequents. In other words, when the upper

bound is reached the proof search had, for sure, stressed all possible expansions

until that point.

– →-right rule is applied until we obtain an atomic formula on the right

side.

– focus rule is applied until every non-labeled formula become focused. The

same formula can not be focused twice unless a restart rule is applied.

– →-left rule can not be applied more than once to the same context unless

a restart rule is applied.

– between two applications of the restart rule in a branch there is only

one possible application of a→-left rule for a context (α, q). α and q are

always subformulas of the initial formula.

– restart rule is applied for each atomic formula that appears on the right

side of sequents in a branch in the order of its appearance in the []-

area, which means that proof search will apply the restart rule for each

pi, i = 1, . . . n until the branch reaches the defined limit.

�

The proof of completeness of LMT→ is closely related with this strategy

and with the way the proof tree is labeled during the proving process. Section

4.4 presents the soundness proof of LMT→ and Section 4.5, the completeness

proof.
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4.4
Soundness

In this section, we prove the soundness of LMT→. A few basic facts and

definitions used in the proof follow.

Definition 8 A sequent {∆′},Υp1

1 ,Υ
p2

2 , . . . ,Υ
pn
n ,∆ ⇒ [p1, p2, . . . , pn], ϕ is

valid, if and only if, ∆′,∆ |= ϕ or ∃i(
i⋃

k=1

Υpk
k ) |= pi, for i = 1, . . . n.

Definition 9 We say that a rule is sound, if and only if, in the case of the

premises of the sequent are valid sequents, then its conclusion also is.

A calculus is sound, if and only if, each of its rules is sound. We prove

the soundness of LMT→ by showing that this is the case for each one of its

rules.

Proposition 10 Considering validity of a sequent as defined in Definition 8,

LMT→ is sound.

Proof : We show that supposing that premises of a rule are valid then, the

validity of the conclusion follows. In the sequel, we analyze each rule of LMT→.

→-left We need to analyze both premises together. Thus we have the

combinations described below.

– Supposing the left premise is valid because α → β,∆′,∆ |= α and the

right premise is valid because α → β,∆′,∆, β |= q. We also know that

α→ β ∈ ∆ and ∆′ ⊆ ∆. In this case, the conclusion holds:

α→ β ∆′ ∆∏
α α→ β

β
q

– Supposing the left premise is valid because ∃i(
i⋃

k=1

Υpk
k ) |= pi, for i =

1, . . . , n, the conclusion holds as it is the same. Supposing the left premise

is true because ∆q |= q, the conclusion also holds, as ∆q = ∆.

– Supposing the right premise is valid because ∃i(
i⋃

k=1

Υpk
k ) |= pi, for

i = 1, . . . , n, then conclusion also holds.

restart Here, we have three cases to evaluate.
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– Supposing the premise is valid because Υp1

1 ,Υ
p2

2 , . . . ,Υ
pi
i |= pi, then

∃i(
i⋃

k=1

Υpk
k ) |= pi, for i = 1, . . . , n. The conclusion is also valid.

– Supposing the premise is valid because ∃j(
j⋃

k=i+1

Υpk
k ) |= pj, for j =

i+ 1, . . . , n, then conclusion also holds.

– Supposing the premise is valid because ∆q |= q, then ∆ |= q and, as

∆′ ⊆ ∆, ∆′,∆ |= q.

→-right

– Supposing the premise is valid because Υp1

1 ,Υ
p2

2 , . . . ,Υ
pi
i |= pi, then

∃i(
i⋃

k=1

Υpk
k ) |= pi, for i = 1, . . . , n. This is also valid in the conclusion.

– Supposing the premise is valid because ∆′,∆, α |= β, then every Kripke

model that satisfies ∆′, ∆ and α also satisfies β. We know that ∆′ ⊆ ∆.

Those models also satisfies α→ β and, then, conclusion also holds.

focus

– Supposing the premise is valid because Υp1

1 ,Υ
p2

2 , . . . ,Υ
pi
i |= pi, then

∃i(
i⋃

k=1

Υpk
k ) |= pi, for i = 1, . . . , n. This is also valid in the conclusion.

– Supposing the premise is valid because ∆′, α,∆, α |= β, then the

conclusion also holds as ∆′,∆, α |= β.

�
From Proposition 10, we conclude that LMT→ only prove tautologies.

4.5
Completeness

By Observation 4.ii we know that a top sequent of an open branch in an

attempt proof tree has the general form below, where q is an atomic formula:

{∆′},Υp1

1 ,Υ
p2

2 , ...,Υ
pn
n ,∆⇒ [p1, p2, ..., pn], q

From Definition 8 and considering that ∆′ ∈ ∆ in any sequent of an

attempt proof tree following our proposed strategy, we can define a invalid

sequent as follows:

Definition 11 A sequent is invalid if and only if ∆ 2 q and ∀i(
i⋃

k=1

Υpk
k ) 2 pi,

for i = 1, . . . , n.
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Our proof of the completeness starts with a definition about atomic

formulas in the left and right side of a top sequent.

Definition 12 We can construct a Kripke counter-model M that satisfies

atomic formulas in the right side of a top sequent and that falsifies the atomic

formula on the left. This construction can be done in the following way:

1. The model M has an initial world w0.

2. By the proof strategy, we can conclude that, in any sequent of the proof

tree, Υp1

1 ⊆ Υp2

2 ⊆ · · · ⊆ Υpn
n ⊆ ∆. We create a world in the model

M corresponding for each one of these bags of formulas and, using

the inclusion relation between them, we define a respective accessibility

relation in the model M between such worlds. That is, we create worlds

wΥ
p1
1
, wΥ

p2
2
, . . . , wΥpnn , w∆ related in the following form: wΥ

p1
1
� wΥ

p2
2
�

· · · � wΥpnn � w∆. As w0 is the first world of M, it precedes wΥ
p1
1

, that

is, w0 � wΥ
p1
1

is also included in the accessibility relation. If Υpi
i = Υ

pi+1

i+1 ,

for i = 1, . . . , n, then the associated worlds that correspond to those sets

have to be collapsed in a single world wΥ
pi
i −Υ

pi+1
i+1

. In this case, the previous

relation wΥ
pi
i
� wΥ

pi+1
i+1

is removed from the � relation of the model M
and the pairs wΥ

pi−1
i−1
� wΥ

pi
i

and wΥ
pi+1
i+1
� wΥ

pi+2
i+2

become respectively

wΥ
pi−1
i−1
� wΥ

pi
i −Υ

pi+1
i+1

and wΥ
pi
i −Υ

pi+1
i+1
� wΥ

pi+2
i+2

.

3. By the Definition 11 of an invalid sequent, ∆ 2 q. The world w∆ will be

used to guarantee this. We set q false in w∆, i.e, M 2w∆
q. We also set

every atomic formula that is in ∆ as true, i.e., ∀p, p ∈ ∆,M �w∆
p.

4. By the Definition 11 of an invalid sequent, we also need that ∀i(
i⋃

k=1

Υpk
k ) 2

pi, for i = 1, . . . n. Thus, for each i, i = 1, . . . , n we set M 2w
Υ
pi
i

pi

and ∀p, p ∈ Υpi
i , being p an atomic formula, M �w

Υ
pi
i

p. In the case

of collapsed worlds, we keep the satisfaction relation of the previous

individual worlds in the collapsed one.

5. In w0 set every atomic formula inside the []-area (all of them are atomic)

as false. That is, M 2w0 pi, for i = 1, . . . , n. We also set the atomic

formula outside the []-area false in this world:M 2w0 q. Those definitions

make w0 consistent with the � relation of M.

The Figure 4.4 shows the general shape of counter-models following the

steps enumerated above. This procedure to construct counter-model allows us

to state the following lemma:
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w0

2 p1, . . . , pn
2 q

wΥ
p1
1

∀p, p ∈ Υp1

1 , p atomic, � p
2 p1

...

wΥpn
n

∀p, p ∈ Υpn
n , p atomic, � p
2 pn

w∆

∀p, p ∈ ∆ , p atomic, � p
2 q

Figure 4.4: General schema of counter-models

Lemma 13 Let S be a top sequent of an open branch in an attempt proof tree

generated by the strategy presented in Section 4.2. Then we can construct a

Kripke model M with a world u where M 2u S, using the aforementioned

counter-model generation procedure.

Proof : We can prove this by induction on the degree of formulas in ∆. From

Definition 12, items 3 and 4 we know the value of each atomic formula in

the worlds w∆ and in each world wΥ
pi
i

. The inductive hypothesis is that every

formula in ∆ is true in w∆. Thus, as Υp1

1 ⊆ Υp2

2 ⊆ · · · ⊆ Υpn
n ⊆ ∆, every

formula in Υpi
i is true in wΥ

pi
i

, for i = 1, . . . , n.

Thus, we have two cases to consider:

1. The top sequent is in the rightmost branch of the proof tree ([]-area is

empty).

Let α → β be a formula in M→ that is in ∆. We show that M �w∆

α → β. In this case, by the proof strategy, β ≡ (β1 → (β2 → · · · →
(βm → p))), where p is an atomic formula. By Definition 12.3 �w∆

p.

As w∆ has no accessible world from it (except for itself), �w∆
β. By the

proof strategy, βm → p, βm−1 → βm → p, . . . , β2 → · · · → βm−1 → βm →
p, β1 → β2 → · · · → βm−1 → βm → p also are in ∆. The degree of each

of these formulas is less than the degree of α→ β and, by the induction

hypothesis, all of them are true in w∆. Thus �w∆
β and �w∆

α→ β.

As the []-area is empty, the sets Υpi
i are also empty. The counter-model

only has two words, w0 and w∆, following the properties described in

Definition 12.
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2. The top sequent is in any other branch that is not the rightmost one

([]-area is not empty).

Let α→ β be a formula in M→ that is in ∆. We show thatM �w∆
α→

β. In this case, by the proof strategy, α ≡ (α1 → (α2 → · · · → (αm →
q))), where q is the atomic formula in the right side of the sequent,

out of the []-area. By Definition 12.3 2w∆
q. By the proof strategy,

α1, α2, . . . , αm also are in ∆. The degree of each of these formulas is

less than the degree of α → β and, by the induction hypothesis, all of

them are true in w∆. This ensures 2w∆
α and �w∆

α→ β.

Considering now a formula α → β from M→ that is in Υpi
i . By

Definition 12.2, α → β also belongs to ∆. From the last paragraph,

we show that, for any formula α → β ∈ ∆, 2w∆
α. As 2w∆

α, by the

accessibility relation of the Kripke model, 2w
Υ
pi
i

α, for each i = 1, . . . , n.

Thus, the value of α → β is defined in any of these worlds by the value

of α→ β in w∆, that we showed to be true. Thus, �w
Υ
pi
i

α→ β.

As stated in Definition 12.2, Υp1

1 ⊆ Υp2

2 ⊆ · · · ⊆ Υpn
n ⊆ ∆ and following

the accessibility relation rule of the M→ semantic (relations are reflexive and

transitive) we conclude that:

M �w0 Υp1

1 ,2w0 p1

�w0 Υp2

2 ,2w0 p2

...

�w0 Υpn
n ,2w0 pn

�w0 ∆,2w0 q

Proving Lemma 13. �

Definition 14 A rule is said invertible or double-sound iff the validity of its

conclusion implies the validity of its premises.

In other words, by Definition 14 we know that a counter-model for a

top sequent of a proof tree which can not be expanded anymore can be used

to construct a counter-model to every sequent in the same branch of the tree

until the conclusion (root sequent). In the case of the →-right rule in our

system, not just if the premise of the rule has a counter-model then so does the

conclusion, but the same counter-model will do. Weich (1998) called rules with
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this property preserving counter model. Dyckhoff (personal communication,

2015) proposed to call this kind of rules of strongly invertible rules. In the

case of the →-left rule, this is the same when one of the premises is valid,

but, considering the case that both premises are not valid, we need to mix the

counter-models of both sides to construct the counter-model for the conclusion

of the rule. This way to produce counter-models is what we call a weakly

invertible rule.

Lemma 15 The rules of LMT→are invertible.

Proof : We show that the rules of LMT→ are invertible when considering a

proof tree labeled in the schema presented in Section 4.2. We prove that for the

structural rules (focus and restart) and→-right, from the existence of a Kripke

model that makes the premise of the rule invalid follows that the conclusion

is also invalid. For the →-left rule, from the Kripke models of the premises,

we can construct a Kripke model that also makes the conclusion of the rule

invalid.

→-right If the premise is invalid, then there is a Kripke modelM where

∆′,∆, α 2 β and ∀i(
i⋃

k=1

Υpk
k ) 2 pi, for i = 1, . . . , n in a given world u of M.

Thus, in the conclusion we have:

– By the definition of semantics of Section 2.5, there have to be a world v,

u � v, in the model M where ∆′,∆, α are satisfied and where β is not.

Thus, in u, α→ β can not hold.

– By the modelM, for each i, exists a world vi, u � vi, where �vi Υpi
i and

2vi pi.

– Thus, the conclusion is also invalid.

→-left Considering that one of the premises of →-left is not valid, the

conclusion also is. We have to evaluate three cases:

1. The right premise is invalid but the left premise is valid.

Then there is a Kripke model M where α → β,∆′,∆, β 2 q and

∀i(
i⋃

k=1

Υpk
k ) 2 pi, for i = 1, . . . , n from a given world u. Thus, in the

conclusion we have:

– By the model M, there have to be a world v, u � v, in the model

where α→ β,∆′,∆, β are satisfied and where q is not.

– By the modelM, for each i, exists a world vi, u � vi, where �vi Υpi
i

and 2vi pi.
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– Thus, the conclusion is invalid too.

2. The left premise is invalid but the right premise is valid. Then

there is a Kripke modelM where α→ β,∆′,∆ 2 α and ∀i(
i⋃

k=1

Υpk
k ) 2 pi,

for i = 1, . . . , n, and ∆q 2 q from a given world u. Thus, in the conclusion

we have:

– By the model M, there have to be a world v, u � v, in the model

where α→ β,∆′,∆ are satisfied and where α is not.

– By the modelM, for each i, exists a world vi, u � vi, where �vi Υpi
i

and 2vi pi.
– We also know by M that there is a world v∆q , u � v∆q , where

�v∆q
∆q and 2v∆q

q. We also have that ∆q = ∆ and that α→ β ∈ ∆.

Therefore, �v∆q
∆′ and �v∆q

α→ β.

– Thus, the conclusion can not be valid.

3. Both left and right premises are invalid. Then there are two models

M1 and M2, from the right and left premises respectively. In M1 there

is a world u1 that makes the right sequent invalid as described in item

1. In M2 there is a world u2 that makes the sequent of the left premise

invalid as described in item 2. Considering the way Kripke models are

constructed based on Lemma 13, we know that u1 and u2 are root worlds

of their respective counter-models. Thus, converting the two models into

one,M3, by mixing u1 and u2 in the root ofM3, called u3, we have that

in u3:

– α→ β,∆′,∆ are satisfied and α is not.

– for i = 1, . . . , n, we have that �u3 Υpi
i and 2u3 pi.

– 2u3 q

– Thus, the conclusion is also invalid.

focus If we have a model that invalidates the premise, this model also

invalidates the conclusion as the sequents in the premise and in the conclusion

are the same despite the repetition of the focused formula α.

restart If the restart premise is invalid, then there is a Kripke model

M and a world u from which Υ1,Υ2, . . . ,Υi 2 pi and ∀j(
j⋃

k=1

Υpk
k ) |= pj, for

j = i+ 1, . . . , n, and ∆q 2 q. Thus, in the conclusion we have:

– By the modelM, there have to be a world v, u � v, in the model where

Υ1,Υ2, . . . ,Υi are satisfied and where pi is not. Each Υk has the same

formulas as Υpk
k and, by the restart condition, we know that 2 pk, for

k = 1, . . . , i.
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– By the model M, for each j, exists a world vj, u � vj, where �vj Υ
pj
j

and 2vj pj.

– We also know by M that there is a world vq, u � vq, where �vq ∆q and

2vq q. We also have that ∆′ ⊆ ∆. Therefore, �vq ∆′.

– Thus, the conclusion is invalid.

�
Now we can state a proposition about completeness of LMT→:

Proposition 16 LMT→ is complete regarding the proof strategy presented in

Section 4.2

Proof : It follows direct from Proposition 7 (LMT→ terminates) and

Lemma 13 (we can construct a counter-model for a top sequent in a terminated

open branch of LMT→) and Lemma 15 (the rules of LMT→ are invertible).

�
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4.5.1
Examples

Example 17 As an example, consider the Peirce formula, ((A→ B)→ A)→ A,

which is very known to be a Classic tautology, but not a tautology in Intu-

itionistic neither in Minimal Logic (which includes M→). Proof (4-7) below

shows the open branch of an attempt proof tree for this formula. Following our

termination criteria, this branch should be higher than the fragment below, but,

to help improve understanding, we stop that branch in the point from which

proof search just produces repetition (similar to the use of a loop checker).

...

...

... →1, A, (→1)A, { →1, A}⇒28[A,B], B

→1, A, (→1)A, { →1, A}⇒26[A,B], B
→ left− →1

→1, A, (→1)A, { →1 }⇒25[A,B], B
focus−A

→1, A, (→1)A, {}⇒22[A,B], B
focus− →1

(→1)B ,→1, (A)B , (→1)A, A, { →1, A}⇒21[B,A], B
restart−B

(→1)B ,→1, (A)B , (→1)A, A, { →1, A}⇒19[B,A], B
→ left− →1

(→1)B ,→1, (A)B , { →1 }, (→1)A, A⇒16[B,A], B
focus−A

(→1)B ,→1, (A)B , { →1 }, (→1)A⇒13[B,A],→0

→ right− →0 ...

(→1)B ,→1, (A)B , { →1 }⇒12[B], A
→ left− →1

(→1)B ,→1, (A)B , {}⇒11[B], A
focus− →1

→1, (→1)A, A, { →1, A}⇒9[A], B
restart−A

→1, (→1)A, A, { →1, A}⇒6[A], B
→ left− →1

→1, { →1 }, (→1)A, A⇒5[A], B
focus−A

→1, { →1 }, (→1)A⇒3[A],→0

→ right− →0 ...

→1, { →1 }⇒2[], A
→ left− →1

{},→1 ⇒1[], A
focus− →1

{}⇒0(((A→0 B)→1 A)→2 A), []
→ right− →2

(4-7)

From the top sequent of the open branch (⇒28) we can generalize the

sequent as:

∆′ Υp1

1 ∆ ⇒28 [p1, p2] q

{→ 1, A} →A
1 →1, A ⇒28 [A,B], B

Thus, following the method described in Section 4.5 we can extract the

counter-model below that falsifies the sequent:
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w0

2 A
2 B

2 A→0 B

� (A→0 B)→1 A

wΥA

2 A
2 B

2 A→0 B

� (A→0 B)→1 A

w∆

� A
2 B

2 A→0 B

� (A→0 B)→1 A

(4-8)

From Lemma 15 we can extend this counter-model to falsify the initial

sequent (⇒0), showing that the Pierce rule does not hold on M→.

DBD
PUC-Rio - Certificação Digital Nº 1221712/CA



Systems for Provability and Countermodel Generation in Propositional Minimal
Implicational Logic 50

Example 18 As another example, we can consider the Dummett formula:

(A → B) ∨ (B → A). It is known that a Kripke counter-model that falsifies

this formula need at least two branches in Int and Min, so it is also in M→.

This example allows us to understand how to mix the right and left premises

counter-models to falsifies a conclusion sequent of a →-left rule.

As we want to use LMT→, we need to convert the Dummett formula from

the form above to its implicational version. We use here the general translation

presented in Haeusler (2015b). Thus, the translated version is a formula α as

follows:

α ≡ (((A→ B)→ A) → (((B → A)→ A)→ (C → A))) →
((((A→ B)→ B)→ (((B → A)→ B)→ (C → B)))→ C)

To shorten the presentation, consider the following abbreviations:

α1 = ((A→ B)→ A)→ (((B → A)→ A)→ (C → A))

α2 = ((A→ B)→ B)→ (((B → A)→ B)→ (C → B))

The tree (4-9), presents a shortened version of a totally expanded attempt

proof tree in LMT→for the Dummet formula in implicational formula. We

concentrate in show the application of the operational rules (→-left and →-

right). We removed from the tree the focus area on the left of each sequent and

the applications of structural rules. We also exclude from the tree the labeled

formulas, just showing the necessary formulas for the specific point in the tree.

The list of sequents above the boxed sequents in the tree represent top sequents

of each branch after the total expansion of α2.

DBD
PUC-Rio - Certificação Digital Nº 1221712/CA



S
ystem

s
for

P
rovability

and
C
ounterm

o
del

G
eneration

in
P
rop

ositional
M
inim

al
Im

plicational
L
ogic

51

. . .⇒ [B,C], A

((((((((
. . . , B ⇒ [C], B

. . .⇒ [C,B], B

. . . , A⇒ [C], B

. . .⇒ [C], C

. . . , B ⇒ [], C

. . .⇒ [C,A], A (M1)

. . . , B ⇒ [B,C], A

((((((((
. . . , B ⇒ [C], B

(((((((((
. . . , B ⇒ [C,B], B

(((((((((
. . . , B,A⇒ [C], B

. . . , B ⇒ [C], C

. . . , B ⇒ [], C

. . . , B ⇒ [C], A (M2)

. . . , A→ B ⇒ [C], A

. . . ,⇒ [C], (A→ B)→ A

. . .⇒ [B,C], A

((((((((
. . . , B ⇒ [C], B

. . .⇒ [C,B], B

. . . , A⇒ [C], B

. . .⇒ [C], C

. . . , B ⇒ [], C

. . .⇒ [C,A], q (M1) (((((((((
. . . , A⇒ [C], A

. . . , B → A⇒ [C], A

. . . ,⇒ [C], (B → A)→ A

. . .⇒ [B,C], A

((((((((
. . . , B ⇒ [C], B

. . .⇒ [C,B], B

. . . , A⇒ [C], B

. . .⇒ [C], C

. . . , B ⇒ [], C

. . . ,⇒ [C], C (M1)

(((((((((
. . . , A⇒ [B,C], A

(((((((((
. . . , A,B ⇒ [C], B

. . . , A⇒ [C,B], B

. . . , A⇒ [C], B

. . . , A⇒ [C], C

. . . , A,B ⇒ [], C

. . . , A⇒ [], C (M3)

. . . , C → A⇒ [], C

. . . , ((B → A)→ A)→ (C → A)⇒ [], C → −left(α1,C)
((A→ B)→ A)→ (((B → A)→ A)→ (C → A)), α2 ⇒ [], C

α1, α2 ⇒ [], C

⇒ [], α1 → (α2 → C)

⇒ [], α

(4-9)
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From the open branches of the tree (4-9) we extract the following three

models. Models M1 repeats in some branches. Thus, we only represent it once

here. We indicated in tree (4-9), in the top sequents of each branch, the

corresponding model generated on it, following the Definition 12.

M1

w0

w1

2 C

w11

2 B

w12

� A

w2

2 C

w21

2 B

w22

� B

w3

2 C

w31

� A
2 B

w4

2 C
w5

2 C
� B

M2

w′0

w′1

2 C

w′11

2 B

w′12

� B
2 A

w′2

2 C

w′21

� B
2 C

M3

w′′0

w′′1

2 C

w′′11

2 B

w′′12

� A
2 B

w′′2

2 C

w′′21

2 B

w′′22

� A

w′′3

2 C

w′′31

� A
2 C

w′′4

2 C

w′′41

� A
2 B
2 C
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Therefore, at the point in the tree where the rule →-left is applied to the

context (α1, C) (the single labeled rule application in the tree (4-9)) we have

the join of these models. Counter-model M4 below represent this unification (to

legibility we remove repeated branches in M4). Thus, M4 2 α:

M4

w0∗

w1∗
2 C

w11∗
2 B

w12∗
� A
2 B

w2∗
2 C

w21∗
2 B

w22∗
2 A
� B

w3∗
2 C

w31∗
� A
2 B
2 C

w4∗
2 C
� B

w5∗
2 C

w51∗
� A
� B
2 C
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5
Comparing LMT→ and Tableaux

5.1
Fitting’s Tableaux Systems

In this chapter, we explore the relationship between the system

LMT→ presented in the previous chapter and the Tableaux System in the

way it was proposed in Fitting (1969). We will use the name Tableaux to refer

generally to the family of systems that follow the same technique. To talk

about an individual Tableaux implementation for a specific logic we use the

name Tableaux together with the initials of the logic in subscript. For example,

Figure 5.1 presents the full set of rules of Fitting’s Tableaux for Intuitionistic

Propositional Logic (Int) that we will just refer to as TableauxInt.

T∧ S, T (α ∧ β)

S, Tα, Tβ
F → S, F (α ∧ β)

S, Fα|S, Fβ

T∨ S, T (α ∨ β)

S, Tα|S, Tβ
F∨ S, F (α ∨ β)

S, Fα, Fβ

T¬ S, T (¬α)

S, Fα
F¬ S, F (¬α)

ST , Tα

T → S, T (α→ β)

S, Fα|S, Tβ
F → S, F (α→ β)

ST , Tα, Fβ

Figure 5.1: Fitting’s Tableaux Rules

Each rule of TableauxInt has a main signed formula in the premise and

the rule application produces the decomposition of this formula in newly signed

formulas on the conclusion. By a signed formula we mean Tα or Fα, where

α is a formula in Int. If S is a set of signed formulas and ϕ is a single signed
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formula, we will write S ∪ {ϕ} simply as S, ϕ, following Fitting’s notation

style. In Figure 5.1, S is any set (possibly empty) of signed formulas and α

and β are any formulas. The set ST that appears in rules F ¬ and F → means

{Tα|Tα ∈ S}.
Fitting (1969) describes the way to apply the rules in a proof search pro-

cedure and establishes the common vocabulary to use in this process. We sum-

marize here the main important concepts to uniformise the descriptions in the

following sections. We call a configuration, a finite collection of S1, S2, . . . , Sn

of sets of signed formulas. By an application of a rule R to a configuration

S1, S2, . . . , Sn we mean the replacement of this configuration for a new one,

just changing some Si, i = 1, . . . n in the original configuration by the res-

ult of applying rule R to Si. A tableau is finite sequence of configurations

C1, C2, . . . , Cn, where each configuration (except the first) is the result of ap-

plying one of the TableauxInt rules to the preceding configuration. A set S of

signed formulas is said closed if it contains both Tα and Fα. A configuration is

closed if each Si in it is closed. A tableau is closed if some of its configurations

is closed. We call a tableau for a set S a tableau C1, C2, . . . , Cn in which C1

is {S}. S is said inconsistent if some tableau for S is closed, otherwise S is

consistent. α is a theorem if {Fα} is inconsistent, and a closed tableaux for

Fα is a proof of α.

If we change ST for S in rules F ¬ and F →, we get the Tableaux System

for Classical Propositional Logic (Cla). We call this system TableauxCla.

To get a system for the Full Propositional Minimal Logic (Min) we use

the same set of rules from Figure 5.1, but, in this case, the ⊥ has no meaning

and using the usual form ¬α = α → ⊥ we get the new version of ¬-rules

below where ⊥ is a simple atomic formula in the logic and, thus, T⊥ is not a

contradiction. This system is called TableauxMin. For M→, we just need to

restrict ourselves to the →-rules of Figure 5.1.

T¬ S, T (α→ ⊥)

S, Fα|S, T⊥
F¬ S, F (α→ ⊥)

ST , Tα, F⊥

Fitting (1969) also makes the link between these systems and the

appropriate semantics of the respective logic. In the classical system, Tα and

Fα mean α is true, and α is false respectively. That is, if the situation above

the line of a rule holds, the situation below the line also holds. Proof search is a

refutation procedure: we start by supposing α is not true (Fα), then, reaching

a configuration in which α is both true and false makes us conclude that α has

to be true since this situation is not possible. In the intuitionistic and minimal

cases, Tα means α is proven, and Fα means α has not been proved. We can
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then read the rules as: if the situation above the line is the case, the situation

below it is possible, i.e. compatible with our present knowledge. As an example

let us consider the case of F →-rule, that is important for us here interested

in M→: if α → β has not been proven, it is possible to prove α without

proving β. Otherwise, a proof of β would be directly derived from a proof of α,

which constitutes a proof of α→ β. And we have ST in the bottom of the rule

because in proving α we can review some additional unproven formulas. As the

classical version, the system for Int and Min is also a refutation procedure,

since a formula can not be both proven and not proven at the same time.

Thus, following what was described in the aforementioned paragraphs,

we have a procedure for proof search using Tableaux Systems for the three

propositional logics described here. Let us consider some examples, the first

one being in Cla. To prove that the formula ¬¬(A ∨ ¬A) is a classical tautology

we start with a configuration C1 = {{F¬¬(A ∨ ¬A)}} and after a successive

application of rules we stop with a closed tableau.

{{F¬¬(A ∨ ¬A)}}
{{T¬(A ∨ ¬A)}}
{{F (A ∨ ¬A)}}
{{FA, F¬A}}
{{FA, TA}} (5-1)

We call this style of visualization of tableau configurations of tableaux-as-

sets. To facilitate our description of soundness and completeness of the system,

this is the default view that we use in this text. However, the known tableaux-

as-trees view can also be used. This view is very well described also by Fitting

in D’Agostino et al. (2013). From the case of the proof 5-1 we have:

(1)
(2)
(3)
(4)
(5)
(6)

F¬¬(A ∨ ¬A)
T¬(A ∨ ¬A)
F (A ∨ ¬A)

FA
F¬A
TA
⊗

(5-2)

In proof 5-2 the only one branch is closed by steps (4) and (6).

The translation of a tableau for Cla to the sequent calculus LK is

immediate:
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– the set inside configuration C1 of the tableau becomes the root sequent in

LK, i.e., LK proofs follow the tableau configurations, but upside down.

– a configuration Ci with one set inside becomes the conclusion sequent of

an LK application of a rule with the sets of Ci+1 becoming the premises

sequents (one or two) of this rule application.

– inside a set of a configuration, formulas signed with T become left

formulas of the translated sequent in LK and formulas signed with F ,

the right ones.

This way, for the case of the proof 5-1 we can construct the following

LK proof:

A ⇒ A ¬-r⇒ A,¬A ∨-r⇒ (A ∨ ¬A)
¬-l¬(A ∨ ¬A) ⇒ ¬-r⇒ ¬¬(A ∨ ¬A)

But the formula ¬¬(A ∨ ¬A) is also an intuitionistic tautology. Thus,

using the rules of Figure 5.1 we can construct an intuitionistic proof for it.

One thing that is not clear in the first look to the rules of Fitting’s Tableaux

for Int or Min is that, in the cases of T¬ and T → we must repeat the main

formula above the line of the rule application in the part below the line. This

repetition of hypotheses is necessary to achieve completeness in some logics

(as presented in Chapter 2). Therefore, a more precise way to represent those

rules would be:

T¬ S, Tα→ β

S, Tα→ β, Fα|S, Tα→ β, Tβ
T¬ S, T¬α

S, T¬α, Fα

Thus, the intuitionistic proof of ¬¬(A ∨ ¬A) is presented in the proof 5-3

below, based on the TableauxInt rules:

{{F¬¬(A ∨ ¬A)}}
{{T¬(A ∨ ¬A)}}

{{T¬(A ∨ ¬A), F (A ∨ ¬A)}}
{{T¬(A ∨ ¬A), FA, F¬A}}
{{T¬(A ∨ ¬A), TA}}

{{T¬(A ∨ ¬A), TA, F (A ∨ ¬A)}}
{{T¬(A ∨ ¬A), TA, FA, F¬A}} (5-3)
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The translation from TableauxInt to LJ is very close to the classical

translation of TableauxCla to LK that we explained above. But there are

some changes in the presented approach that we need to do. Because the

application of a T -rule does not remove F -formulas and LJ proofs just allow

one formula on the right side, we need to decide which of the F -formulas in one

of the configuration sets to use as the right formula of the translated sequent.

Therefore, we have three cases to consider:

– in the case of a T¬ rule applied to a formula α, we use α as the right

formula of the premise sequent in the translation:

T¬ S, T¬α
S, T¬α, Fα ¬ − l Γ,¬α⇒ α

Γ,¬α⇒ γ

where S = Γ ∪ {Fγ}

– in the case of a T → rule applied to a formula α → β, we use α as the

right formula of the left premise sequent in the translation and the last

inserted F -formula in S (γ, in the schema below) in the right premise.

T → S, Tα→ β

S, Tα→ β, Fα|S, Tα→ β, Tβ

→ −l Γ, α→ β ⇒ α Γ, α→ β, β ⇒ γ

Γ, α→ β ⇒ γ

where S = Γ ∪ {Fγ}

– in the case of a F∨ rule applied to a formula α ∨ β, we have to choose

which one of the cases to keep in the premise sequent in the translation:

T¬ S, Fα ∨ β
S, Fα, Fβ

∨ − r Γ⇒ α
Γ⇒ α ∨ β

∨ − r Γ⇒ β

Γ⇒ α ∨ β

where S = Γ

Thus, the translated LJ proof for the tableau proof 5-3 is:
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¬(A ∨ ¬A), A ⇒ A ∨-r¬(A ∨ ¬A), A ⇒ A ∨ ¬A
¬-l¬(A ∨ ¬A), A ⇒ ¬-r¬(A ∨ ¬A) ⇒ ¬A ∨-r¬(A ∨ ¬A) ⇒ A ∨ ¬A
¬-l¬(A ∨ ¬A) ⇒ ¬-r⇒ ¬¬(A ∨ ¬A)

The tableaux-as-tree view of the Proof 5-3 is constructed in a slightly

different manner than in the classical version. In Cla every time a formula

is expanded, it can be checked as already used since it will not be expanded

anymore. In the case of an Intuitionistic Logic (and also for Minimal Logic)

tableaux, trees can grow as well as shrink. Every time an F -rule is applied

we need to erase the previous F -formulas at the same branch, following the

rules of Figure 5.1. In the tree view below this happens when expanding the F -

formula in line (5). At this time, we need to erase the only F -formula previously

generated (the one in line (4)). Moreover, in tree view for Int and Min , T -

formulas are kept unchecked, meaning that they can be used again since it is

necessary to the completeness of the system.

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)

F¬¬(A ∨ ¬A) X
T¬(A ∨ ¬A)
F (A ∨ ¬A) X

��HHFA
F¬A X
TA

F (A ∨ ¬A) X
FA
F¬A
⊗

(5-4)

As already mentioned the case of Min is the same of Int, only considering

that ⊥ has no meaning, and so, a signed formula T⊥ is allowed. The case for

M→ is the sub-case of Min by restricting ourselves to T → and F → rule.

5.2
Soundness and Completeness of Fitting’s Tableaux

In this section, we will show the Soundness and Completeness Proofs

of TableauxM→ . From now we will keep the focus on M→ as it is our main

objective of study in this text. We will follow the proofs presented in Fitting

(1969) for TableauxInt, adapting them to the specific case of Tableaux for

M→.
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5.2.1
Soundness

Definition 19 A set {Tα1, . . . , Tαn, Fβ1, . . . , Fβm} is realizable if

there is some model 〈U,�,V〉 and some world w ∈ U such that

w |= α1, . . . , w 2 αn, w 2 β1, . . . , w 2 βm. In this case, w realizes the set.

For a configuration C = S1, S2, . . . , Sn, C is realizable if some Si is realizable.

Theorem 20 If a configuration Ci of a tableau C1, C2, . . . , Cn is realizable, then

the configuration Ci+1 is also realizable.

Proof : We have two cases, depending on the rule that produced Ci+1:

Case (a) Ci is {. . . , {S, T (α→ β)}, . . .} and Ci+1 is {. . . , {S, T (α→ β), Fα},
{S, T (α→ β), Tβ}, . . .}. Supposing Ci is realizable, then, some Sj ∈ Ci
is realizable. If Sj is not {S, T (α→ β)} thus Sj is still realizable in Ci+1.

If that element is {S, T (α → β)}, then for some model M = 〈U,�,V〉
and some world w ∈ U , w realizes {S, T (α→ β)}. That is, w realizes S

and w |= α→ β which means that, for all v ∈ U such that w � v, v 2 α
or v |= β, so either w realizes {S, T (α→ β), Fα} or {S, T (α→ β), Tβ}.

Case (b) Ci is {. . . , {S, F (α→ β)}, . . .} and Ci+1 is {. . . , {S, T (α→ β),

Tα, Fβ}, . . .}. Supposing Ci is realizable, for the same reason of case

(a) we just need to evaluate the case that {S, F (α → β)} is realizable.

Then for some model M = 〈U,�,V〉 and some world w ∈ U , w realizes

S and w 2 α → β which means that, there is a v ∈ U such that w � v,

v |= α and v 2 β. By the Semantics of Kripke models for M→ presented

in Chapter 2 we know that if w realizes S then v also realizes ST . Hence,

v realizes {ST , Tα, Fβ} and Ci+1 is realizable.

�

Corollary 21 TableauxM→ is sound regarding the Semantics of M→, that

is, if `TableauxM→ α then α is valid.

Proof : We prove by contrapositive. Suppose α is not valid, so there is a

model M = 〈U,�,V〉 and some world w ∈ U such that M 2w α. This

means that {Fα} is realizable. But a proof of α would be a closed tableau

C1, C2, . . . , Cn where C1 is {{Fα}}. But, by Theorem 20 we know that if C1 is

realizable, each Ci is also. A realizable configuration can not be closed, showing

the contradiction. Hence, 0TableauxM→ α. �
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5.2.2
Hintikka collections

Here, we are going to present some important definitions to be used in the

completeness proof of TableauxM→ . The central concept is the definition of a

Hintikka collection for M→. This concept is adapted here from Fitting (1969)

that presented Hintikka collections in terms of Int. Both cases are inspired by

the notion of Hintikka sets originally conceived by Hintikka and very developed

in Smullyan (1995).

Definition 22 Let U be a collection of consistent sets of signed formulas in

M→. U is a Hintikka collection for M→ if for any set Γ ∈ U we have:

– T (α→ β) ∈ Γ⇒ Fα ∈ Γ or Tβ ∈ Γ,

– F (α→ β) ∈ Γ⇒ for some ∆ ∈ U , ΓT ⊆ ∆, T (α) ∈ ∆, F (β) ∈ ∆.

Definition 23 Let U be a Hintikka collection for M→. Let M = 〈U,�,V〉 be

a model according with the semantics presented in Chapter 2. M is a model

for U if:

1. ΓT ⊆ ∆⇒ there are wΓ, w∆ ∈ U such that wΓ � w∆

2. T (α) ∈ Γ⇒ wΓ |= α

F (α) ∈ Γ⇒ wΓ 2 α.

Theorem 24 There is a model for any Hintikka collection for M→.

Proof : Let U be a Hintikka collection. Let M = 〈U,�,V〉 be a model. Let

Γ,∆ ∈ U and ΓT ⊆ ∆ then define wΓ, w∆ ∈ U and the relation � as wΓ � w∆.

If Tp ∈ Γ, where p is an atomic formula, let wΓ |= p. To ensure that item (2) of

last definition holds for any formula α→ β, we use an induction on the degree

of the formula. Thus we have two cases:

T (α→ β) ∈ Γ ⇒ ∀∆ ∈ U(ΓT ⊆ ∆⇒ T (α→ β) ∈ ∆)

⇒ ∀∆ ∈ U(ΓT ⊆ ∆⇒ F (α) ∈ ∆ or T (β) ∈ ∆)

⇒ ∀∆ ∈ U(wΓ � w∆ ⇒ ∆ 2 α or ∆ |= β)

⇒ wΓ |= α→ β,

(5-5)
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F (α→ β) ∈ Γ ⇒ ∃∆ ∈ U(ΓT ⊆ ∆ and T (α) ∈ ∆ and F (β) ∈ ∆)

⇒ ∃∆ ∈ U(wΓ � w∆ and ∆ |= α and ∆ 2 β)

⇒ wΓ 2 α→ β.

(5-6)

�
Then, to show the completeness of TableauxM→ we just need to prove

that: for an arbitrary formula α ∈ M→, if 0TableauxM→ α then there is a

Hintikka collection U such that for some Γ ∈ U , Fα ∈ Γ. That is, there is a

model with a world wΓ such that Γ 2 α.

5.2.3
Completeness

Here we adapt the original completeness proof for TableauxInt presented

in Fitting (1969) to the specific case of M→. We follow the definitions and steps

of the proof very closed to the Fitting’s version.

Definition 25 A reduced set S ′ for a finite, consistent set S of signed formu-

las of M→ is defined in the following manner: Let S0 be S. Let Sn be a finite,

consistent set of signed formulas. Suppose that the rule T → apply to Sn, i.e.,

Sn = {V, Tα→ β}. As Sn is consistent, so clearly either {V, Tα→ β, Fα} or

{V, Tα→ β, Tβ} is consistent. Let Sn+1 be {V, Tα→ β, Fα} if consistent, oth-

erwise let Sn+1 be {V, Tα→ β, Tβ}. Thus, we define a sequence S0, S1, S2, . . .

with the property that for an element Sn of the sequence, Sn ⊆ Sn+1. Consider

that P(S) is the collection of all signed subformulas of formulas in S. Each

Sn is finite and consistent. Hence, Sn ⊆ P(S). Therefore, there is only a finite

number of different possible Sn. This way, there must be a member of the se-

quence, say Sn such that the application of another rule T → in some of the

formulas of Sn produces Sn again. This Sn is the reduced set S ′ of S. If S ′ is

a reduced set, we know that:

T (α→ β) ∈ S ′ ⇒ Fα ∈ S ′ or Tβ ∈ S ′

Observation 26 Any finite, consistent set of signed formula has a finite,

consistent reduced set.

Definition 27 Let S be a finite, consistent set of signed formulas. If

Fα→ β ∈ S then {ST , Tα, Fβ} is an associated set of S. We say that A(S)

is the collection of all associated sets of S.
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Observation 28 Consider a set S and its associated set A(S) according to

Definition 27.

– Let U ∈ A(S), then U ⊆ P(S). Since P(S) is finite , A(S) is also finite.

– As S is consistent, any associated set of S is also consistent.

– Fα→ β ∈ S ⇒ for some U ∈ A(S), ST ⊆ U, Tα ∈ U, Fβ ∈ U .

Theorem 29 TableauxM→ is complete.

Proof : Suppose 0TableauxM→ α. Then {Fα} is consistent. Starting with {Fα}
we create the following sequence:

S0 is the reduced set of {Fα}
then produce A(S0) =

{U1, U2, . . . , Un}
S1 is the reduced set of U1

S2 is the reduced set of U2

...

Sn is the reduced set of Un

then produce A(S1) =

{Un+1, Un+2, . . . , Um}
Sn+1 is the reduced set of Un+1

Sn+2 is the reduced set of Un+2

...

Sm is the reduced set of Um

then repeat the pro-

cess with S2 and so on.

Hence we form the sequence S0, S1, S2, . . .. Since each Si ⊆ P(S), there

are only finitely many possible different Si. Thus, eventually, we reach a point

Sk of the sequence where any continuation repeats a previous produced member

of it. Let U = {S0, S1, . . . , Sk}. From Definition 22 we can concluded that U is

a Hintikka collection. Hence, there is a model that falsifies α in M→.

�

Corollary 30 From the proof of Theorem 29 we can also infer that M→ is

decidable. All the process described above is bound by the size of P(S). This last

is bound by the number of signed subformulas of the first configuration {Fα},
that is, in the end, bound by the degree of α, i.e., |P(S)| <= 2|α|.
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Fitting finished the presentation of his completeness proof for Int stating

that we can extract from the proof a procedure for decidability in that logic.

In fact, the aforementioned procedure works as a strategy for rule application

in a TableauxM→ proof search. For instance, the general method of Tableaux

Systems described in the begin of this Chapter only states that with a rule

application we move from one configuration to another. But as in M→ we need

to repeat hypothesis to prove some tautologies of the language, this general

application of rules can lead us to loops during the proof search. The order

forced by the procedure embedded in the Completeness Proof above avoids

this problem.

Example 31 We follow now this procedure to show that ((A → B) → A) →
A, the Peirce formula, is not a valid formula in M→.

Suppose 0TableauxM→ ((A→ B)→ A)→ A, then {F (((A→ B)→ A)→ A)}
is consistent. Starting with {F (((A→ B)→ A)→ A)} we need to follow this

sequence:

S0 is the reduced set of {F (((A→ B)→ A)→ A)}
A(S0) = {{T ((A→ B)→ A), FA}}

S1 is the reduced set of {T ((A→ B)→ A), FA}
S1 = {T ((A→ B)→ A), FA}
S1 = {T ((A→ B)→ A), FA, F (A→ B)}
(since S1 = {{T ((A→ B)→ A), FA, TA)}} is not consistent)

A(S1) = {{T ((A→ B)→ A), TA, FB}}

S2 is the reduced set of {T ((A→ B)→ A), TA, FB}
S2 = {T ((A→ B)→ A), TA, FB}
S2 = {T ((A→ B)→ A), TA, FB, F (A→ B)}
(since S1 = {{T ((A→ B)→ A), TA, FB, FA)}} is not consistent)

A(S2) = {{T ((A→ B)→ A), TA, FB, TA, FB}}

S3 is the reduced set of {T ((A→ B)→ A), TA, FB, TA, FB}
S3 = {T ((A→ B)→ A), TA, FB, TA, FB}
S3 = {T ((A→ B)→ A), TA, FB, TA, FB, F (A→ B)}
(but here we have the repetition of an already produced Si, thus the previous

one becomes the Sk)

This sequence can be followed during the proof search of

TableauxM→ generating the attempt proof tree presented in (5-7).
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{

S0

{F ((A→ B)→ A)→ A} }

{{T (A→ B)→ A,FA}}

{

S1

{T (A→ B)→ A,FA,F (A→ B)} ,

Γ1

{T (A→ B)→ A,FA, TA} }

{{T (A→ B)→ A, TA,FB},Γ1}

{

S2

{T (A→ B)→ A, TA,FB, F (A→ B)} ,

Γ2

{T (A→ B), TA, FB, TA} ,Γ1}

{{T (A→ B)→ A, TA, TA, FB},Γ2,Γ1}
Repetition of a previously generated configuration

{{T (A→ B)→ A, TA, TA, FB,F (A→ B)}, {T (A→ B), TA, TA, FB, TA},Γ2,Γ1}

(5-7)

This way, the process stops and we construct the collection U =

{S0, S1, S2} that is a Hintikka collection. Using the Definition 24 we can

generate the following model:

wS0

2 ((A→ B)→ A)→ A

wS1

2 A

wS2

� A
0 B

(5-8)

Example 32 Another interesting example is the case of the formula

((A→ B) ∨ (B → A)), the Dummett formula, that is not a valid formula

in Int neither in Min. Therefore, the translated version of this formula for

M→ is neither valid. The steps below follow the full procedure described in

Fitting (1969) in the Completeness Proof of TableauxInt. The importance

of this example is to show a formula that needs a Kripke model with parallel

worlds as a counter-model.
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Suppose 0TableauxM→ ((A→ B) ∨ (B → A)), then {F ((A→ B) ∨ (B → A))}
is consistent. Starting with {F ((A→ B) ∨ (B → A))} we need to follow this

sequence:

S0 is the reduced set of {F ((A→ B) ∨ (B → A))}
S0 = {F ((A→ B) ∨ (B → A)), FA→ B,FB → A}

A(S0) = {{TA,FB}, {TB,FB}}

S1 is the reduced set of {TA,FB}
S1 = {TA,FB}

A(S1) = {}

S2 is the reduced set of {TB,FA}
S2 = {TB,FA}

A(S2) = {}

In this case, the proof search procedure does not produce all the sets of the

sequence S0, S1, S2, which is due to the fact that in the second step of the proof

search we need to make a choice for which formula expand, not considering the

other one. Although we lose information necessary to build the counter-model,

the procedure is still able to confirm that the initial formula is not valid. We

can see this in the tableau (5-9).

{{F ((A→ B) ∨ (B → A))}}
{{F ((A→ B) ∨ (B → A)), FA→ B,FB → A}}

{{TA,FB}}
(5-9)

Using the collection U = {S0, S1, S2}, that is a Hintikka collection, we

can generate the following model:

wS0

2 A→ B

2 B → A

wS1

� A
2 B

wS2

� B
2 A

(5-10)
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5.3
Comparison between LMT→ and Fitting’s Tableaux

We use the criteria proposed in Dyckhoff (2016) and discussed here in

Chapter 2, Section 2.6 to compare the systems LMT→ and TableauxM→ .

5.3.1
Termination

LMT→ and TableauxM→ use different approaches to guarantee termin-

ation of the proof search procedure. LMT→ has an ordered way to generate

proofs that are aimed to stress all possible combinations of rule applications

(as we presented in Theorem 7 in Chapter 4).

The order established by the strategy extracted from the Completeness

Proof of TableauxM→ (Theorem 29) avoids loops due to hypothesis repetition,

but we still need a mechanism to identify the end of the proof search procedure.

The suggestion based on the Fitting’s Completeness is to check for repetition

of a configuration each time an expansion is done. Thus, the direct way to

implement this using a loop checker.

For an initial formula α, the space for proof search in LMT→ is bound

by |α| · 2|α|+1+2log2|α| which is established in Theorem 6 in Chapter 4. In the

case of TableauxM→ the proof search space is limited by the size of P({Fα})
that is bound by 2|α| (as shown in Corollary 30).

5.3.2
Bicompleteness

LMT→ uses the top sequent of a totally expanded and opened branch to

construct a counter-model that, then, by inversibility of the system’s rules can

be extended as counter-model for the initial formula (as described in Section 4.5

in Chapter 4). The inclusion relation between sets of labeled formulas in this

top sequent is used to define the accessibility relation of the counter-model.

TableauxM→ uses a very similar approach: from a full expanded opened

branch of a tableau, it is possible to build a Hintikka collection, and, then,

we construct the counter-model (see Theorem 29). The accessibility relation

in the model is derived from the inclusion relation of true formulas in sets of

the Hintikka collection. The main difference between the two strategies is that

TableauxM→ uses information spread through the branch to generate the

associated Hintikka collection while LMT→ accumulates this information on

the top sequent of the opened branch.

Example 4-8 is the one generated for the Peirce formula from LMT→ and

Example 5-8 from TableauxM→ .
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5.3.3
Determinism

LMT→ avoids the use of backtracking techniques keeping the proof

attempt history locally in each sequent of the proof search tree. Its restart

rule is used to go back to a point that was not yet fully explored but in a

forward manner.

To explain the need for some backtracking mechanism in the case of

TableauxM→ we use the proof fragment (5-11) that shows the first part

of a tableau for the formula ((((A → C) → A) → A) → C) → C that

we know from Dowek & Jiang (2006) that needs to use the assumption

(((A→ C)→ A)→ A)→ C at least twice to be proved in M→. As presented

in Haeusler (2015a) this formula is used as the base to define a family of

formulas in M→ with no bounds on the use of assumptions. We numbered

each configuration of the tableau to refer to them. In step (6) we reach a

configuration where the first set has two F -formulas in it. So, we need to create

two associated sets, one for each formula. But, following a forward application

of rules, the choice for one F -formula will eliminate the other, forcing us to

mark this part of the proof to come back after full expansion of the first chosen

F -formula.

5.3.4
Simplicity

According to Dyckhoff (2016), simplicity means “to allow easier reas-

oning about systems”. In this sense, LMT→ has a non-standard sequent

definition (comparing with LJ style of sequents) while the signed formulas

in TableauxM→ is a very known technique. To keep the rule applications al-

ways forward in the proof search procedure, LMT→ needs the restart rule

and its labeling system that also add complexity to reader’s understanding of

generated proofs. However, in contrast, with an aim in automatic reasoning,

LMT→ becomes a more practical solution as a unified procedure for both,

provability and counter-model generation (although, TableauxM→ also has

this feature), without the need of loop checkers (although its use can shorten

the space to search for proofs).
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(1) {

S0

{F (((((A→ C)→ A)→ A)→ C)→ C)} }

(2) {{T ((((A→ C)→ A)→ A)→ C), FC}}

(3) {

S1

{((((A→ C)→ A)→ A)→ C), FC, F (((A→ C)→ A)→ A} ,

Γ1

{T ((((A→ C)→ A)→ A)→ C), FC, TC} }

(4) {{T ((((A→ C)→ A)→ A)→ C), T (((A→ C)→ A), FA},Γ1}

(5) {T ((((A→ C)→ A)→ A)→ C), T ((A→ C)→ A), FA, F (A→ C)},

Γ2

{T ((((A→ C)→ A)→ A)→ C), T ((A→ C)→ A), FA, TA} ,Γ1}

(6) {

S2

{T ((((A→ C)→ A)→ A)→ C), T ((A→ C)→ A), FA, F (A→ C), F (((A→ C)→ A)→ A} , {T ((((A→ C)→ A)→ A)→ C), T ((A→ C)→ A), FA, F (A→ C), TC},Γ2,Γ1}

...

(5-11)
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6
Checking LMT→ Proofs with Dedukti

6.1
What is Dedukti

Dedukti is a “universal proof checker, based on the λΠ-calculus modulo”,

as stated in its maintenance website (http://dedukti.gforge.inria.fr).

Assaf et al. (2016) describe both, the λΠ-calculus modulo theory and Dedukti

as its implementation. The abstract of this paper summarize very well what

The λΠ-calculus modulo theory, implemented in the Dedukti sys-

tem, is a logical framework where many theories can be expressed:

constructive and classical predicate logic, Simple Type Theory, pro-

gramming languages, Pure type systems, the Calculus of Inductive

Constructions with universes... This feature allows to use it to check

large libraries of proofs coming from various proof systems: Zenon,

iProver, FoCaLiZe, HOL-Light, and Matita.

λΠ-calculus modulo theory can be seen as a variant of Martin Löf’s Intu-

itionistic Type Theory (Martin-Löf & Sambin, 1984) extended with dependent

types and rewrite, which allows λΠ-calculus modulo to express so many differ-

ent theories and systems. As a logical framework, λΠ-calculus modulo theory

provides a universal definition of fundamental concepts of Logic (formulas, con-

nectives, proofs, models, soundness, completeness, and so on) in a once and

only once manner in the description of those theories and systems.

Dedukti, the implementation of λΠ-calculus modulo, is a proof checker,

aimed to check proofs generated by different automated and semi-automated

provers. With more systems being ported to Dedukti “we can start imagining

a single library of formal proofs expressed in different theories, developed in

different systems, but formulated in a single framework” (Assaf et al., 2016).

Hence, we decided to use Dedukti to check proofs generated in our prover, the

implementation of our calculus LMT→.

The process to translate a system to Dedukti is done by instrumenting

the system to be translated (let us call it System B) allowing it to be able to

http://dedukti.gforge.inria.fr
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generate a version (a file) of its proofs in the language of Dedukti (i.e., in the

logical framework syntax). This translation of a proof of System B works as a

certificate that Dedukti will process to check correctness. Thus, the first part

of this process is to design carefully the translation of System B to Dedukti

syntax using λΠ-calculus modulo theory as the foundation.

Dedukti is developed by the Deducteam, an INRIA research team of the

Programs, Verification, and Proofs theme, located in France.

In this section, we present the step by step translation of LMT→ proofs

into Dedukti.

6.2
Translation of LMT→ Proofs into Dedukti

To allow Dedukti to be used as the proof checker for LMT→, we need

to convert LMT→ proofs into a form that Dedukti already knows how to deal

with. In Assaf et al. (2016), authors present a technique to encode a Natural

Deduction (ND) system for M→ into Dedukti. Our approach here is to use

this already known translation of ND into Dedukti. First, we need to convert

LMT→ proofs into this ND system. Then, we can use the encoding of ND

into Dedukti to allow Dedukti to check LMT→ proofs. In the next section, we

present a strategy 1 for translations of proofs produced by LMT→ into ND.

Before start presenting the translation, we need to highlight some char-

acteristics of ND and Dedukti that need to be considered during the definition

of the translation strategy:

– Standard ND does not handle the bracket’s areas of LMT→.

– Standard ND for M→ just allows one formula on the right side of a

sequent.

– A sequent in LMT→ is implemented as a bag having multiples bags on

the left and a sequence of atomic formulas (the []-area) and a formula on

the right side. The ND encoded in Dedukti uses the structure of Dedukti

sequents, that is a bag of lists on the left and a single formula on the

right.

1This strategy was first presented by Frédéric Gilbert from INRIA in the translation of
Zenon theorem prover for Dedukti and proposed by him to the translation of LMT→ to
Dedukti.
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Steps

1. Dealing with bag of lists

Considering the general form of the sequent in LMT→, presented in

Chapter 4 and reproduced below:

{∆′},Υp1

1 ,Υ
p2

2 , ...,Υ
pn
n ,∆⇒ [p1, p2, ..., pn], ϕ

We change the structure of the sequent in the following manner:

– ∆,∆′,Υp1

1 ,Υ
p2

2 , ...,Υ
pn
n become lists of formulas in the form

αn, αn−1, . . . , α1, where α1 is the head of the list.

– In ∆′, we control the list to avoid repetition, thus it acts as a

sequence that does not allow repetition.

– p1, p2, ..., pn becomes a queue where p1 is the front and pn is the

back.

Figure 6.1 represents the adapted set of rules of LMT→ considering those

changes.

axiom{∆′1, q,∆′2},Υp1
1 ,Υ

p2
2 , . . . ,Υ

pn
n ,∆⇒ [p1, p2, . . . , pn], q

{∆′, α},Υp1
1 ,Υ

p2
2 , . . . ,Υ

pn
n ,∆, α⇒ [p1, p2, . . . , pn], β

focusα{∆′},Υp1
1 ,Υ

p2
2 , . . . ,Υ

pn
n ,∆, α⇒ [p1, p2, . . . , pn], β

{},Υ1,Υ
p2
2 , . . . ,Υ

pn
n ,∆q ⇒ [p2, . . . , pn, q], p1

restartpi{∆′},Υp1
1 ,Υ

p2
2 , . . . ,Υ

pn
n ,∆⇒ [p1, p2, . . . , pn], q

{∆′},Υp1
1 ,Υ

p2
2 , . . . ,Υ

pn
n ,∆, α⇒ [p1, p2, . . . , pn], β →-rightα→β{∆′},Υp1

1 ,Υ
p2
2 , . . . ,Υ

pn
n ,∆⇒ [p1, p2, . . . , pn], α→ β

{∆′1, α→ β,∆′2},Υ,∆q,∆⇒ [p̄, q], α {∆′1, α→ β,∆′2},Υ,∆, β ⇒ [p̄], q →-leftα→β{∆′1, α→ β,∆′2}Υ,∆⇒ [p̄], q

where Υ =

n⋃
i=1

Υpi
i and p̄ = p1, p2, . . . , pn.

Figure 6.1: Rules of LMT→ adapted to Dedukti data structure
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2. Mixing syntax and semantic to avoid the usage of brackets

In Chapter 4 we described some properties of the sequent of LMT→:

– A sequent of LMT→ in the aforementioned general form is valid if

and only if, ∆′,∆ |= ϕ or ∃i(
i⋃

k=1

Υpk
k ) |= pi, for i = 1, . . . n.

– And from Observations 4.iii and 4.iv we have:

– In every sequent of the tree, ∆′ ⊆ ∆.

– For i = 1, . . . n, Υ
pi−1

i−1 ⊆ Υpi
i .

Based on these concepts we produce an interpretation of the general

sequent of LMT→ indexed by a formula G, say it,

wwww wwww
G

:

wwww{∆′},Υpi
i ,∆⇒LMT [pi], ϕ

wwww
G

= (∆→ ϕ)→ G,
(

(Υpi
i → pi)→ G

)n
i
⇒ND G

where a formula in the notation Γ → β is an abbreviation

for γ1, γ2, . . . , γk → β, for some k >= 0, that means that

γ1 → (γ2 → (. . .→ (γk → β))).

3. Translating rules

Provide an interpretation of rules under
www www

G
in Natural Deduction.

That is, for each rule R of LMT→, construct a proof Π in Natural De-

duction such that it has the premises and the conclusion of R translated

to
www www

G
as hypotheses and conclusion, respectively.

S1 . . . Sn
R

S B

wwwwS1

wwww
G

. . .

wwwwSnwwww
G∏

ND tree for RwwwwSwwww
G

– Premises and conclusions of focus, restart and →-right rules are,

basically, identities in this translation.

– Axiom and →-left are analyzed in more details in the next section.

4. Translating a proof

Translate of
D

{} ⇒ [ ], ϕ
, a proof in LMT→ to ND:

– By induction, we can translate a proof of a formula ϕ in LMT→ by

a proof in ND of the sequent ϕ→ G⇒ G
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– Using ϕ as G we have the sequent ϕ→ ϕ⇒ ϕ, that can be proved

in ND using the following schema:

ϕ→ ϕ⇒ ϕ
→I⇒ (ϕ→ ϕ)→ ϕ

ϕ⇒ ϕ
→I⇒ ϕ→ ϕ
→E⇒ ϕ

6.3
Translating Rules of LMT→ to Dedukti

Following the translation strategy presented in the last section, we

will translate the axiom and each rule of LMT→ to the Natural Deduction

implementation of Dedukti.

First, consider the following abbreviations:

Fi = Υpi
i → pi

−→
F =

(
(Υpi

i → pi)→ G
)n
i
, for i = 1, . . . , n

Axiom

The translated version of the LMT→ axiom in the ND system of Dedukti

using the interpretation
www www

G
is a

∏
axiom proof as follows:

Π axiom

(∆′1, q,∆
′
2)→ q → G,

−→
F ⇒ G

To facilitate readability of the proof, consider the following abbreviation

of formulas:

A ≡ (∆′1, q,∆
′
2)→ q,

∆′1 ≡ α1, . . . , αn

∆′2 ≡ β1, . . . , βm

The ND proof of the translated axiom becomes:

A→ G,
−→
F ⇒ A→ G

A→ G,
−→
F , α1, . . . , αn, q, β1, . . . , βm ⇒ q

····
A→ G,

−→
F ⇒ (α1 → (. . .→ (αn → (q → (β1 → (. . .→ (βm → q)))))))

A→ G,
−→
F ⇒ (∆1, q,∆2)→ q

A→ G,
−→
F ⇒ G
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The cases of focus, restart and →-right rules are trivial, as premises and

conclusions of each of these rules are exactly the same. The application of these

rules only changes the form of the sequent:

Focus

((∆, α)→ β)→ G,
−→
F ⇒ G

focus

((∆, α)→ β)→ G,
−→
F ⇒ G

Restart

(Υp1

1 → p1)→ G,
(
Fi → G

)n
i=2
,∆q → (q → G)⇒ G

restart

∆→ (q → G),
−→
F ⇒ G

→-Right

((∆, α)→ β)→ G,
−→
F ⇒ G

→−right
(∆→ (α→ β))→ G,

−→
F ⇒ G

→-Left

Consider the following abbreviations:

C ≡ (∆1, α→ β,∆2)→ q

D ≡ (∆1, α→ β,∆2)→ α

E ≡ (∆1, α→ β,∆2, β)→ q

Γ ≡ −→F

The translated version of the LMT→→-left rule in the ND system of

Dedukti using the interpretation
www www

G
becomes:

D → G,Γ, C → G⇒ G E → G,Γ⇒ G

Π→−left

C → G,Γ⇒ G
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∏
→−left can be expanded as follows:

C → G,Γ, D → G⇒ G

C → G,Γ⇒ (D → G)→ G

Γ, E → G⇒ G

D,C → G,Γ, E → G⇒ G

D,C → G,Γ⇒ (E → G)→ G

Π1
D,C → G,Γ, E ⇒ C D,C → G,Γ, E ⇒ C → G

D,C → G,Γ, E ⇒ G

D,C → G,Γ⇒ E → G

D,C → G,Γ⇒ G

C → G,Γ⇒ D → G

C → G,Γ⇒ G

The fragment
∏

1 of
∏
→−left can be expanded as follows, considering that ∆1 ≡ α1, . . . , αn and ∆2 ≡ β1, . . . , βm and ∆ ≡ ∆1, α→

β,∆2:

D,∆⇒ βm

D,∆⇒ βm−1

D,∆⇒ D
····

D,∆⇒ βm−1 → (βm → α)

D,∆⇒ βm → α

D,∆⇒ α

E,∆, α⇒ α E,∆, α⇒ α→ β

E,∆, α⇒ β

E,∆, α⇒ βm

E,∆, α⇒ E
····

E,∆, α⇒ βm → (β → q)

E,∆, α⇒ β → q

E,∆, α⇒ q

E,∆⇒ α→ q

D,E,∆⇒ q

D,E,∆1, α→ β,∆2 ⇒ q

D,E ⇒ (∆1, α→ β,∆2)→ q

D,E ⇒ C

D,C → G,Γ, E ⇒ C
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6.4
A Translation Example

As an example of the application of this strategy, we can see the

proof of the tautology (q →0 p)→2 (q →1 p) in LMT→ and its correspondent

translated proof in the Natural Deduction system supported by Dedukti. We

numbered the subformulas to facilitate understanding of the translation steps.

{(q →0 p), q}, ((q →0 p))
p, (q)p, (q →0 p), q ⇒LMT [p], q

{(q →0 p), q, p}, (q →0 p), q, p⇒ [ ], p

{(q →0 p), q}, (q →0 p), q, p⇒LMT [ ], p
focusp

{(q →0 p), q}, (q →0 p), q ⇒LMT [ ], p
→ left→0

{(q →0 p)}, (q →0 p), q ⇒LMT [ ], p
focusq

{}, (q →0 p), q ⇒LMT [ ], p
focus→0

{}, (q →0 p)⇒LMT [ ], (q →1 p)
→ right→1

{} ⇒LMT , [ ], ((q →0 p)→2 (q →1 p))
→ right→2

O

Π axiomq

((q →0 p, q)→ q)→ G, ((q →0 p, q)→ p)→ G⇒ND G
Π axiomp

((q →0 p, q, p)→ p)→ G⇒ND G

Π→ left→0

((q →0 p, q)→ p)→ G⇒ND G
focus−q

((q →0 p, q)→ p)→ G⇒ND G
focus−→0((q →0 p, q)→ p)→ G⇒ND G
→ right→1((q →0 p)→ (q →1 p))→ G⇒ND G
→ right→2((q →0 p)→2 (q →1 p))→ G⇒ND G

∏
→−left0 ,

∏
axiomp

and
∏

axiomq
are obtained following the translations

maps presented in Section 6.3. To complete the proof we need to perform the

final step shown in Section 6.2.
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7
Conclusion and Future Work

We presented here the definition of a sequent calculus for proof search

in the context of the Propositional Minimal Implicational Logic (M→). Our

calculus, called LMT→, aims to proceed the proof search of M→ formulas

in a bottom-up, forward-always approach. Termination of the proof search

is achieved without using loop checkers during the process. LMT→ is a

deterministic process, which means that the system does not need an explicit

backtracking mechanism to be complete. In this sense, LMT→ is a bicomplete

process, generating Kripke counter-models from search trees produced by

unsuccess proving processes.

In the definition of the calculus, we also presented some translations

between deductive systems for M→: ND to LJ→ and LJ→ to LMT→. We

also established a relation between LMT→ and Fitting’s Tableaux Systems

for M→regards the counter-model generation in those systems.

We keep the development of a theorem prover, built in Lua (https:

//github.com/jeffsantos/GraphProver), and translated to the Dedukti

proof checker, in such a way that proofs generated by the system can be checked

in a very standard tool.

As future work, we can enumerate some important features to be de-

veloped or extended in the system as well as some new research topics that

can be initialized.

– Precise upper bound for termination The upper bound used here

for achieving termination in LMT→ is a very high bound. Many non-

theorems can be identified in a small number of steps. We can still explore

options to shorten the size of the proof search tree. Even in the case of

theorems, our labeling mechanism in conjunction with the usage of the

restart rule produces many repetitions in the proof tree.

– Compression and sharing Following the techniques proposed by

Gordeev & Haeusler (2016) we can explore new ways to shorten the

size of proofs generated by LMT→.

– Minimal counter-models The size of the generated counter-model in

LMT→ still takes into account every possible combination of subformu-

https://github.com/jeffsantos/GraphProver
https://github.com/jeffsantos/GraphProver
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las, yielding Kripke models with quite a lot worlds. There are still work to

be done in order to produce smaller models. Stoughton (1996) presents

an implementation of the systems in Dyckhoff (1992) and in Pinto &

Dyckhoff (1995) with the property of “minimally sized, normal natural

deduction of the sequent, or it finds a ”small”, tree-based Kripke coun-

termodel of the sequent” using the words of the author. This reference

can be a good start point to improve LMT→ counter-model generation.

– Dedukti translation implementation The translation to Dedukti

needs to be fully implemented and incorporated into the prover imple-

mentation code.
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