

Luciano Sampaio Martins de Souza

Early Vulnerability Detection for
Supporting Secure Programming

DISSERTAÇÃO DE MESTRADO

DEPARTAMENTO DE INFORMÁTICA
Programa de Pós-Graduação em

Informática

Rio de Janeiro
January 2015

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 Luciano Sampaio Martins de Souza

Early Vulnerability Detection for
Supporting Secure Programming

DISSERTAÇÃO DE MESTRADO

Dissertation presented to the Programa de Pós-
Graduação em Informática of the Departamento de
Informática, PUC-Rio, as partial fulfillment of the
requirements for the degree of Mestre em
Informática.

Advisor: Prof. Alessandro Fabricio Garcia

Rio de Janeiro
January 2015

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

Luciano Sampaio Martins de Souza

Early Vulnerability Detection for
Supporting Secure Programming

Dissertation presented to the Programa de Pós-
Graduação em Informática of the Departamento de
Informática, PUC-Rio, as partial fulfillment of the
requirements for the degree of Master in Informatics.

Prof. Alessandro Fabricio Garcia
Advisor

Departamento de Informática – PUC-Rio

Prof. Anderson Oliveira da Silva
Departamento de Informática – PUC-Rio

Prof. Marcelo Blois Ribeiro
GE Global Research

Prof. Marcos Kalinowski
UFJF

Prof. José Eugenio Leal
Coordinator of the Centro

Técnico Científico da PUC-Rio

Rio de Janeiro, January 15th, 2015

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

All rights reserved

Luciano Sampaio Martins de Souza

The author graduated in Computer Science from the
University Tiradentes (UNIT) in 2006. He received a
Graduate Degree with emphasis on Web Development from
the University Tiradentes (UNIT) in 2011. His main
research interest is: Software Development.

Bibliographic data

CDD: 004

Souza, Luciano Sampaio Martins de

Early vulnerability detection for supporting secure

programming / Luciano Sampaio Martins de Souza;
advisor: Alessandro Fabricio Garcia. – 2015.

132 f. :il. (color.) ; 30 cm

Dissertação (mestrado) Pontifícia Universidade

Católica do Rio de Janeiro, Departamento de
Informática, 2015.

Inclui bibliografia

1. Informática – Teses. 2. Vulnerabilidade de

segurança. 3. Detecção contínua. 4. Analise de fluxo
de dados. I. Garcia, Alessandro Fabricio. II. Pontifícia
Universidade Católica do Rio de Janeiro.
Departamento de Informática. III. Título.

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

Acknowledgments

First, I would like to thank my parents and my brother. There are no words to

describe my gratitude for all the love, trust, encouragement and admiration

received. If I am reaching another goal in my life is because of you. You are my

foundation, inspiration and motivation.

Secondly, I thank Fernanda Monteiro to be on my side at all times in this

dissertation. Her dedication, discipline and patience were inspiring. Her love,

affection and understanding were the driving force that enabled me to reach this

goal.

My deepest gratitude goes to my advisor, Alessandro Garcia, for all the patience,

for the enormous contribution to my academic growth and, above all, the

friendship built over these two years of my Masters. His professionalism,

dedication and energy for work are exemplary.

I thank all the friends and members of the OPUS research group. Your comments

and discussions are always enriching.

My appreciation also goes to all my friends, in particular Igor Oliveira, Rafael

Oliveira and Eiji Barbosa.

I thank all the teachers of the Informatics Department of PUC-Rio for their

contribution in my education. I also thank all the staff of the department for their

services.

Finally, I also thank CNPq and PUC-Rio for financial aid, without which this

work would not have been possible.

To all of you, my sincere thanks.

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

Abstract
Souza, Luciano Sampaio; Garcia, Alessandro Fabricio (Advisor). Early
Vulnerability Detection for Supporting Secure Programming. Rio de
Janeiro, 2015. 132p. MSc. Dissertation – Departamento de Informática,
Pontifícia Universidade Católica do Rio de Janeiro.

Secure programming is the practice of writing programs that are resistant to

attacks by malicious people or programs. Programmers of secure software have to

be continuously aware of security vulnerabilities when writing their program

statements. They also ought to continuously perform actions for preventing or

removing vulnerabilities from their programs. In order to support these activities,

static analysis techniques have been devised to find vulnerabilities in the source

code. However, most of these techniques are built to encourage vulnerability

detection a posteriori, only when developers have already fully produced (and

compiled) one or more modules of a program. Therefore, this approach, also

known as late detection, does not support secure programming but rather

encourages posterior security analysis. The lateness of vulnerability detection is

also influenced by the high rate of false positives, yielded by pattern matching,

the underlying mechanism used by existing static analysis techniques. The goal of

this dissertation is twofold. First, we propose to perform continuous detection of

security vulnerabilities while the developer is editing each program statement,

also known as early detection. Early detection can leverage his knowledge on the

context of the code being created, contrary to late detection when developers

struggle to recall and fix the intricacies of the vulnerable code they produced from

hours to weeks ago. Our continuous vulnerability detector is incorporated into the

editor of an integrated software development environment. Second, we explore a

technique originally created and commonly used for implementing optimizations

on compilers, called data flow analysis, hereinafter referred as DFA. DFA has the

ability to follow the path of an object until its origins or to paths where it had its

content changed. DFA might be suitable for finding if an object has a vulnerable

path. To this end, we have implemented a proof-of-concept Eclipse plugin for

continuous vulnerability detection in Java programs. We also performed two

empirical studies based on several industry-strength systems to evaluate if the

code security can be improved through DFA and early vulnerability detection.

Our studies confirmed that: (i) the use of data flow analysis significantly reduces

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

the rate of false positives when compared to existing techniques, without being

detrimental to the detector performance, and (ii) early detection improves the

awareness among developers and encourages programmers to fix security

vulnerabilities promptly.

Keywords
Early detection; security vulnerability; data flow analysis; secure

programming.

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

Resumo
Souza, Luciano Sampaio; Garcia, Alessandro Fabricio. Detecção de
vulnerabilidades de segurança em tempo de programação com o intuito
de dar suporte a programação segura. Rio de Janeiro, 2015. 132p.
Dissertação de Mestrado – Departamento de Informática, Pontifícia
Universidade Católica do Rio de Janeiro.

Programação segura é a prática de se escrever programas que são resistentes

a ataques de pessoas ou programas mal-intencionados. Os programadores de

software seguro precisam estar continuamente cientes de vulnerabilidades de

segurança ao escrever as instruções de código de um programa. Eles precisam

estar preparados para executar continuamente ações para prevenir ou removê-las

de seus programas. Neste cenário, as técnicas de análise estática foram concebidas

para encontrar vulnerabilidades no código-fonte. No entanto, a maioria das

técnicas existentes são construídas de uma maneira a incentivar a detecção de

vulnerabilidade tardiamente, apenas quando os desenvolvedores já tenham

produzido (e compilado) por completo um ou mais módulos de uma aplicação.

Portanto, esta abordagem, também conhecida como detecção tardia, não promove

programação segura, mas apenas análise retrospectiva de segurança. O atraso na

detecção de vulnerabilidades também é influenciado pela alta taxa de falsos

positivos, gerados pelo casamento de padrões, mecanismo comumente usado por

técnicas de análise estática. Esta dissertação tem dois objetivos. Em primeiro

lugar, nós propomos promover detecção de vulnerabilidades, enquanto o

desenvolvedor está editando cada instrução do programa, também conhecida

como detecção antecipada. A detecção antecipada pode aproveitar o

conhecimento do desenvolvedor sobre o contexto do código que está sendo

desenvolvido, ao contrário da detecção tardia em que os desenvolvedores

enfrentam dificuldades para lembrar detalhes do código vulnerável produzido a

horas ou semanas atrás. Nosso detector de vulnerabilidades é incorporado ao

editor de um ambiente integrado de desenvolvimento de software. Em segundo

lugar, vamos explorar uma técnica criada e comumente utilizada para a

implementação de otimizações em compiladores, chamada de análise de fluxo de

dados, doravante denominada como DFA. DFA tem a capacidade de seguir os

caminhos de um objeto, até a sua origem ou para caminhos onde o seu conteúdo

tenha sido alterado. DFA pode ser adequado para encontrar se um objeto tem um

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

ou mais caminhos vulneráveis. Para isso, implementamos um plugin Eclipse,

como prova de conceito, para detecção antecipada de vulnerabilidades em

programas Java. Depois disso, foram realizados dois estudos empíricos baseados

em vários sistemas da indústria para avaliar se a segurança de um código fonte

produzido pode ser melhorada através de DFA e detecção contínua de

vulnerabilidades. Nossos estudos confirmaram que: (i) análise de fluxo de dados

reduz significativamente a taxa de falsos positivos, quando comparada com

técnicas existentes, sem prejudicar o desempenho do detector, e (ii) a detecção

antecipada melhora a consciência entre os desenvolvedores e os incentiva a

corrigir vulnerabilidades de segurança prontamente.

Palavras-chave
Vulnerabilidades de segurança; Detecção contínua; Analise de fluxo de

dados.

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

Contents

1 Introduction 16	

1.1. Problem Description 18	

1.2. Limitations of Related Work 21	

1.3. Goals and Overview of the Solution 24	

1.4. Research Questions 25	

1.5. Dissertation Structure 27	

2 Background and Related Work 28	

2.1. Security Taxonomy 28	

2.2. Types of Security Vulnerability 29	

2.3. Detection of Security Vulnerabilities 32	

2.3.1. Manual Inspection 33	

2.3.2. Dynamic Analysis 39	

2.3.3. Static Analysis 41	

2.4. False Positives and False Negatives 44	

2.5. Late Detection and Early Detection 46	

2.6. Related Work 49	

2.6.1. Lapse+ 50	

2.6.2. ASIDE 50	

2.6.3. CodePro Analytics 51	

2.7. Lack of Knowledge on Secure Programming 51	

3 Data-Flow-Driven Heuristics for Vulnerability Detection 54	

3.1. Data Flow Analysis with Context-Sensitivity 55	

3.2. Entry-Point 57	

3.3. Exit-Point 58	

3.4. Sanitization-Point 59	

3.5. Algorithm 60	

3.6. Supported Vulnerabilities 62	

3.6.1. Command Injection 63	

3.6.2. Cookie Poisoning 64	

3.6.3. Cross-Site Scripting (XSS) 66	

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

3.6.4. HTTP Response Splitting 67	

3.6.5. LDAP Injection 68	

3.6.6. Log Forging 70	

3.6.7. Path Traversal 71	

3.6.8. Reflection Injection 72	

3.6.9. Security Misconfiguration 74	

3.6.10. SQL Injection 75	

3.6.11. XPath Injection 76	

3.7. Current Limitations 78	

4 Early Vulnerability Detector: Implementation 80	

4.1. Architecture 80	

4.1.1. Verifier 81	

4.1.2. Analyzer 82	

4.1.3. Manager 83	

4.1.4. Reporter 83	

4.2. Call Graph 84	

4.2.1. Clean Call Graph 84	

4.2.2. Prime Call Graph 85	

4.3. Features 85	

5 Evaluation 87	

5.1. Study 1: Accuracy Benchmarking 88	

5.1.1. Testing Environment 89	

5.1.2. Open-Source Projects 90	

5.1.3. Supported Vulnerabilities 91	

5.1.4. Precision, Recall and F-measure 93	

5.1.5. Study 1: Results 94	

5.2. Study 2: Late vs. Early Detection−A Quasi-Experiment 104	

5.2.1. Methodology 105	

5.2.2. Study 2: Results 109	

5.3. Concluding Remarks 119	

6 Conclusion 121	

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

6.1. Contributions 122	

6.2. Future work 123	

7 References 125	

Appendix 1 - Participant Profile Questionnaire 132	

Appendix 2 - System Requirements 133	

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

List of Figures

Figure 1 False positive from a tool (ASIDE [Zhu 2012]) that uses

pattern matching. 20	

Figure 2 False positive from a tool (Lapse+ [Livshits 2006]) that uses

pattern matching. 22	

Figure 3 Lapse+ view displaying the detected vulnerabilities. 22	

Figure 4 False negative from a tool (ASIDE [Zhu 2012]) that uses

pattern matching. 23	

Figure 5 Sample of several security vulnerabilities in a small piece of code. 35	

Figure 6 Exception message being displayed to the user. 38	

Figure 7 ZAP’s screenshot. 41	

Figure 8 Lapse+ view displaying the detected vulnerabilities. 42	

Figure 9 Examples of pattern matching limitations. 43	

Figure 10 ASIDE’s false negative of SQL injection. 45	

Figure 11 Late detection workflow. 46	

Figure 12 Early detection workflow. 47	

Figure 13 Early vulnerability detection from ASIDE and ESVD (section 4). 48	

Figure 14 Code snippet with SQL injection vulnerability. 52	

Figure 15 Code snippet without SQL injection vulnerability. 52	

Figure 16 Data Flow Analysis representation. 55	

Figure 17 Data Flow - Context Insensitive - CodePro Analytics [Google 2001]. 57	

Figure 18 Data Flow - Context Sensitive - ESVD. 57	

Figure 19 Example of Entry-Point. 58	

Figure 20 Example of Exit-Point. 59	

Figure 21 Sanitization-Point. 60	

Figure 22 Infinite loops. 62	

Figure 23 Command Injection vulnerability. 63	

Figure 24 Command Injection mitigation. 64	

Figure 25 Cookie Poisoning - Problem. 65	

Figure 26 Cookie Poisoning - Mitigation. 66	

Figure 27 Cross-Site Scripting - Problem. 66	

Figure 28 Cross-Site Scripting - Mitigation. 67	

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

Figure 29 HTTP Response Splitting - Problem. 67	

Figure 30 HTTP Response Splitting - Mitigation. 68	

Figure 31 LDAP - Problem. 69	

Figure 32 LDAP - Mitigation. 69	

Figure 33 Log Forging - Problem. 70	

Figure 34 Log Forging - Mitigation. 71	

Figure 35 Path Traversal - Problem. 72	

Figure 36 Path Traversal - Mitigation. 72	

Figure 37 Reflection Injection - Problem. 73	

Figure 38 Reflection Injection - Mitigation. 74	

Figure 39 Security misconfiguration - Problem. 75	

Figure 40 Security misconfiguration - Mitigation. 75	

Figure 41 SQL injection - Problem. 76	

Figure 42 SQL injection - Mitigation. 76	

Figure 43 XPath Injection - Problem. 77	

Figure 44 XPath Injection - Mitigation. 78	

Figure 45 False positives on containers generated by ESVD. 79	

Figure 46 False positives on containers generated by ASIDE, CodePro

Analytics and Lapse+. 79	

Figure 47 ESVD Plugin Architecture. 81	

Figure 48 Implemented Verifiers. 82	

Figure 49 Verifiers of the Security Vulnerability Analyzer. 82	

Figure 50 Security Vulnerability View. 84	

Figure 51 Types of Interactions. 84	

Figure 52 Clean Call Graph. 85	

Figure 53 Prime Call Graph. 85	

Figure 54 Equation of Precision. 94	

Figure 55 Equation of Recall. 94	

Figure 56 Equation of F-measure. 94	

Figure 57. BlueBlog. 96	

Figure 58 PersonalBlog. 96	

Figure 59 PersonalBlog false positive. 97	

Figure 60 WebGoat. 97	

Figure 61 False positive on WebGoat. 98	

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

Figure 62 Roller. 98	

Figure 63 Roller false positive. 99	

Figure 64 Pebble. 99	

Figure 65 Pebble false positive. 100	

Figure 66 NCO. 100	

Figure 67 NCO false positive. 101	

Figure 68 Compilation of results from all analyzed projects. 102	

Figure 69 Memory Usage. 103	

Figure 70 Execution time. 104	

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

List of Tables

Table 1 Brief description of the top 10 most found security vulnerabilities. 32	

Table 2 Example of a simple checklist to perform manual inspection. 34	

Table 3 List of Entry-Points. 58	

Table 4 List of Exit-Points. 59	

Table 5 List of Sanitization-Points. 60	

Table 6 Characteristics of the tools used in our evaluation. 88	

Table 7 Benchmark applications. 91	

Table 8 Supported vulnerabilities. 93	

Table 9 Compilation of results from all analyzed projects. 102	

Table 10 Description of the tasks of the coding exercise. 106	

Table 11 Number of participants and average of years of experience. 110	

Table 12 Final number of participants and average of years of experience. 111	

Table 13 Distribution of the participants on each group. 112	

Table 14 Programming time (hours) per group. 113	

Table 15 Experiment time (hours) and tasks performed by each participant. 114	

Table 16 Number of vulnerabilities added, removed and left. 115	

Table 17 Vulnerabilities added, removed and left during the experiment. 116	

Table 18 Security vulnerabilities reported during the experiments. 117	

Table 19 Average time (hours) until a vulnerability was added. 118	

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 16

1
Introduction

Secure programming is the practice of writing software systems that are

resistant to attacks by malicious people or programs [Apple 2013]. In order to

promote secure programming, developers have to be continuously aware of

security vulnerabilities when writing their program statements. They need to be

prepared to continuously perform actions for preventing and removing

vulnerabilities from their programs. Security vulnerability (or simply

vulnerability) is a flaw within a software system that can be exploited to allow an

attacker to reduce the system's information assurance [Organization for Internet

Safety 2004]. An attacker is a person or application that intends to cause damage

to a software system. By exploiting a security vulnerability, an attacker takes

advantage of this vulnerability, typically for malicious purposes, such as stealing

information or causing damage to a computer system.

In the context of this dissertation, we are particularly concerned with

security vulnerabilities introduced by programmers when adding or editing code

statements. Unfortunately, existing software development environments, such as

Eclipse [“Eclipse” [S.d.]], NetBeans [“NetBeans” [S.d.]] and others, often do not

offer the means to make programmers aware they are writing insecure code.

Therefore, if a company or a developer wants support for performing secure

programming, they have to use additional external tools, such as: IBM Appscan

[IBM 2001], Lapse+ [Livshits 2006] and others. However, these solutions

frequently do not fit properly on the development workflow, because they either

are not integrated into the development environments or do not detect the

vulnerabilities exactly when they are added into the source code. Consequently,

they only support “a posteriori” security analysis in the source code rather than

supporting actual secure programming. Thus, both novice and experienced

developers are not encouraged to detect and remove security vulnerabilities in the

code they are editing.

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 17

According to a well-established report about security statistics of

vulnerabilities found in the source code, published in May 2013 [Grossman 2013],

86% of all audited websites contained at least one serious security vulnerability in

their source code. By serious it means a vulnerability through which an attacker

could take control over all, or some part of the website. Unfortunately, developers

commonly become concerned about security vulnerabilities only after someone

reports a critical security problem. In other words, developers become aware when

the vulnerabilities have already been exploited and, as a result, finance and

reputation might have been harmed.

For instance, in 2001 a single vulnerability present in the source code of the

Microsoft’s Internet Information Server (IIS) cost an estimated $2 billion dollars

of damage [Cowley 2001]. After that, Microsoft’s chairman Bill Gates demanded

employees to focus on building more secure software to avoid this type of

problems in the future. This is simply one case from many, where a company only

starts to worry about security when it is already too late. However, this passive

behavior is not recommended, companies should take pro-active actions in order

to truly make a software system secure or at least resistant to attacks. This can be

accomplished by adding security awareness among developers and into the

development workflow. To corroborate this information, there is a study from the

National Institute of Standards and Technology (NIST) that states that the number

of new source code vulnerabilities discovered each year has more than doubled in

the last decade and this number is still rising [Telang and Wattal 2005].

The aforementioned scenarios are alarming and reinforce that secure

programming should be intertwined in the workflow of software programmers.

Explicit support for early vulnerability detection would likely encourage both

students and developers to acquire concrete knowledge about the subject in the

context of their academic and industrial software projects. Every software

programmer should become aware of, at least, the most common security

vulnerabilities when writing statements and functions in their code, so they can

early observe and treat security vulnerabilities accordingly.

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 18

1.1.
Problem Description

Developers should be aware of emerging security vulnerabilities as they

write their program statements. The expectation that every developer would

become a security specialist is not feasible in software projects. However, if a

company wants to perform secure programming on all of its projects, at least the

most common security vulnerabilities should be handled by the programmer who

is adding or editing the code, leaving only the more complex ones to actual

security specialists. These specialists are highly skilled workers and they cost

significantly more than programmers. Therefore, their time on each project should

be optimized to the fullest. In order to achieve this, developers should receive

tooling support to continuously detect and remove security vulnerabilities in their

programming context. The early detection and removal of security threats are

expected to decrease the chances of vulnerabilities being exploited by attackers.

Support for early detection should be provided in the context of program

edition. Otherwise, developers might be unconscious about the security

vulnerabilities emerging in their code. Vulnerabilities should be fixed before the

program goes to testing or production. Ideally, they should be detected and fixed

before the programmer’s code is committed into the project’s repository. If done

afterwards, developers might spend hours, days or weeks to find out and fix

vulnerabilities in their code [Baca et al. 2008]. In fact, there is recently a trend to

investigate solutions that support early detection of some implementation

problems, such as modularity problems [Albuquerque et al. 2014] and exception

handling flaws [Barbosa et al. 2012]. However, there is limited knowledge on

how to specifically support early detection of security vulnerabilities in programs.

Zhu et al. [Zhu 2012] were the only authors to recently (2013) create a prototype

solution, called ASIDE (Application Security plugin for Integrated Development

Environment), that performs early detection of security vulnerabilities. However,

when ASIDE was compared to other static analyzers (see section 5.1.5), it resulted

in a much higher amount of false positives. False positive is the incorrect

indication of the presence of a vulnerability [“An Overview Of Vulnerability

Scanners” 2008]. As described by Nadeem et al. [Nadeem et al. 2012], several

false positives discourage the use of existing static analysis solutions (including

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 19

Zhu’s prototype)for security vulnerability detection. Unfortunately, according to

Nadeem et al. [Nadeem et al. 2012], existing solutions result in a high rate of false

positives, because most of them are strictly based on a low-accurate technique

called pattern matching.

Pattern matching is a technique for checking if a pattern matches a given

sequence of tokens (letters, numbers, punctuation, and certain symbols) [Kohli

and Joshi 2013]. In order to be positive, this match has to be exact, otherwise the

outcome is negative. In the context of security vulnerabilities, this technique

compares the source code that is being analyzed against a code template that

usually represents a security vulnerability. These code templates are stored on

what is known as knowledge base. One problem with this technique is the fact that

it does not consider program's context (of variables and methods) when searching

for vulnerabilities. For instance, some important contextual information about

variables are: where they were created, which values were assigned to them, and

the like. As far as methods are concerned, the vulnerability detection should be

sensitive to which methods invoke the current one, what are possible contents of

the provided parameters, and so forth. All these contextual issues are simply

ignored by solutions that apply pattern-matching technique. ASIDE [Zhu 2012],

the only existing solution (to the best of our knowledge) that supports early

vulnerability detection, is also a representative of tools that apply pattern

matching to identify security vulnerabilities in the source code.

Pattern matching solutions usually perform four main actions for analyzing

and finding security vulnerabilities in the source code. First, they read line by line

in each program file. Second, when they find a method, they verify if that method

matches with one of the code templates from their knowledge base. Third, if the

method matches, they verify what is the element that is being passed as a

parameter to the method, Finally, if the parameter is one of the elements, they

consider unsecure, they report it as vulnerable, otherwise, they consider it as

secure. In order to demonstrate this behavior, Figure 1 has a code snippet that was

analyzed by ASIDE. ASIDE does not recognize line 58 as vulnerable, because the

method System.out.println with a string literal is not in its knowledge base. The

reason for that is the idea that a string literal is inserted into the code by the

developer. Therefore, s/he does not want to insert vulnerabilities into her/his own

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 20

source code. Thus, a string literal cannot have a malicious content in it and is

considered secure.

On the other hand, the technique flags (icon on the left - red devil) line 60 as

vulnerable, because the method System.out.println with a variable is registered in

its knowledge base. The reason is that variables can receive their content from

users and this content can contain malicious code, which can be used to attack the

application. Therefore, such variables should not be trusted. Although variables

can, in fact, contain malicious content, if we carefully analyze the code snippet

depicted in Figure 1, it is possible to observe that the only possible content from

variable name is a string literal “abcd”. Therefore, following the rule that a string

literal cannot have a malicious content in it, this line should also be considered

secure.

Figure 1 False positive from a tool (ASIDE [Zhu 2012]) that uses pattern matching.

The strict use of pattern matching is not able to correctly state that the line

is secure in the example above, because it does not have the ability to follow the

data flow of the variable being passed into the method System.out.println(). The

consequence of the limitations of this nature is that existing security analysis tools

yield from 20% to 30% of false positives [Baca 2009]. These percentages may not

seem very high at first, but the corresponding absolute values often represent

hundreds of false warnings (code elements incorrectly flagged as vulnerable) even

for small or medium-sized programs. Therefore, the underlying technique used to

find security vulnerabilities should produce results that are more accurate.

In particular, the use of early detection without employing a high accuracy

technique would not be sufficient for achieving secure programming. Developers

would be discouraged to write secure programs if they often become frustrated by

continuously treating a high amount of false positives when editing their code.

Unfortunately, we downloaded and tested all the existing operational solutions

and they presented these problems. To this end, this dissertation proposes the use

of a different technique, named context-sensitive data flow analysis [Hammer et

al. 2006]. This technique is able to consider program's context (of variables and

methods) when searching for vulnerabilities in the context of early detection. We

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 21

will investigate if the use of this technique affects the final program security

positively or negatively. To the best of our knowledge, we have not seen any other

study addressing this problem in the literature.

1.2.
Limitations of Related Work

There are dozens of available solutions intended to perform detection of

security vulnerabilities in the source code [OWASP 2003a]. Some noteworthy

examples are SSVChecker [Dehlinger et al. 2006], FindBug [Pugh and Loskutov

2006], ASIDE [Zhu 2012], Lapse+ [Livshits 2006], CodePro Analytics [Google

2001], Fortify HP [HP 2002] and AppScam IBM [IBM 2001]. They can be

categorized in several different ways, such as which vulnerabilities they give

support and how they perform their detection. However, none of them properly

address the problems mentioned in the previous section.

First, the vast majority of the existing solutions are not integrated in the

developer’s workflow. In other words, they are executed only a posteriori, when

developers have fully produced (and compiled) a method, a class or the code

relative to entire days or weeks of programming. This disconnection of

vulnerability detection with the developer’s workflow, compounded with

additional reasons [Xie et al. 2011], such as tight deadlines, will increase the

probability of developers forgetting or simply deciding not to run the external

detection tools. In fact, developers may assume it is not their responsibility to

perform secure programming, as the software development environment does not

naturally encourage her/him to do it. This behavior of performing vulnerability

detection only after the code has been completed is known as late detection of

security vulnerabilities.

Late detection does not enable to fully realize the notion of secure

programing (section 1), because it reports any possible vulnerability only

afterwards, when the code is already complete. In other words, these solutions

only support security analysis in the source code rather than actual secure

programming. A consequence of applying late detection approaches is that all

those hours and lines of code written by developers may have been worthless.

Even worse, developers usually spend a considerable amount of time actually

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 22

removing vulnerabilities of their code [Baca et al. 2008]. Existing late detection

approaches report a long list of vulnerabilities. Then, a programmer has to

examine each one in a location of the source code where they not always

remember about the context required to fully understand and remove the

vulnerability.

The second problem of existing solutions is the exploitation of a

vulnerability detection technique with low accuracy. Lapse+ [Livshits 2006] is an

example of a tool that also applies pattern matching to identify security

vulnerabilities in the source code. As it can be seen in Figure 2 and Figure 3,

Lapse+ correctly recognizes line 18as secure. As already mentioned, a string

literal is inserted into the code by the developer and s/he does not want to insert

vulnerabilities into her/his own source code. Thus, a string literal cannot have a

malicious content in it. On the other hand, it incorrectly flags lines 19 and 20 as

vulnerable to cross-site scripting (XSS) [OWASP 2013a]. Cross-site scripting

(XSS) is a vulnerability that occurs whenever an application takes untrusted data

and sends it to a web browser without proper validation. After that, this untrusted

data could be used to cause a severe damage on the website’s visitors. Lapse+

produces these false warnings as it does not analyze the data flow of the

parenthesis (line 19) and the ternary operator (line 20) being passed into the

method response.getWriter().print() to discover that these contents are also

secure.

Figure 2False positive from a tool (Lapse+ [Livshits 2006]) that uses pattern matching.

Figure 3Lapse+ view displaying the detected vulnerabilities.

 In another example (Figure 4), the statement on line 69 is using a

preparedStatement object, which is the recommended object to handle database

queries. However, this fact alone is not sufficient to prevent SQL (Structured

Query Language) injection [OWASP 2013b] vulnerability, because the query (sql

variable) is concatenating the SQL command (line 68) with the login variable,

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 23

which might contain unsafe data sent by the user. SQL injection occurs when

untrusted data is sent to an interpreter as part of a command or query. This data

can trick the interpreter into executing unintended commands or accessing data

without proper authorization. The knowledge base of ASIDE [Zhu 2012] states

that if the code is using a preparedStatement object, it can be considered secure.

However, as it will be described in more detail in section 3.6.10, this is not

sufficient and the vulnerability persists.

Figure 4 False negative from a tool (ASIDE [Zhu 2012]) that uses pattern matching.

Therefore, existing automated approaches support inaccurate security

analysis and do not encourage secure programming. These characteristics might

also lead to a number of other side effects. For instance, the execution time of the

security detection tool might be high if the developer runs it after they concluded

the implementation of its program. We noticed on Lapse+ [Livshits 2006] and

CodePro Analytics [Google 2001] that, depending on the size of the project, the

report with all the security vulnerabilities may take minutes to be generated.

Developers do not want to wait a long period to receive feedback about potential

security problems in their code. This problem happens because every time the tool

runs, it scans all the files of the selected projects, even if only one file has been

modified since the last time the tool ran, thus, making developers more prone to

execute it only occasionally. This is a design choice explicitly made by developers

of these tools as they are typically used for posterior security analysis of the entire

software project. If the code edits by the programmer are checked early - i.e. as

soon as they introduce new code statements, the list is not going to be exhaustive.

Incremental checking could be applied and developers will be encouraged to fix

and avoid it while coding. However, the high rate of false negatives, imposed by

pattern-matching solutions, would not make the realization of incremental

checking viable. The programmers would have to handle too many false warnings

for every change made in the program.

In summary, the key limitation of existing solutions is twofold: late

detection and the use of pattern matching leading to a high rate of false positives.

Late detection seems to be the most common approach. However, it does not fully

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 24

enable secure programming. We found only ASIDE [Zhu 2012] partially support

early detection (see section 2.6.2). However, it also relies on pattern matching to

identify vulnerability candidates. From all the solutions we have analyzed, most

of them use pattern matching as their underlying detection technique. The only

exception is CodePro Analytics [Google 2001], which relies on a limited form of

data flow analysis (section3.1). CodePro Analytics also does not support early

vulnerability detection. Finally, for all existing solutions, the rate of false positives

is high, reaching up to 50% in certain cases [Baca 2009].

1.3.
Goals and Overview of the Solution

There are several existing solutions [OWASP 2003a] to find security

vulnerabilities in the source code (section 1.2). However, only a subset of them

was operational. In other words, developers are actually able to download and

work with only a small set of existing solutions. For all the cases, including the

operational ones, they did not fit properly in the development’s workflow and

presented a high rate of false positives. These may be two of the key reasons that

explain why these tools are not being widely used by programmers, even though

the importance of security is recently growing [Xie et al. 2011][Blyth

2004][Willis et al. 2006].

Based on these motivating factors, we propose the combination of two ideas

on this dissertation. First, we propose to support a change from the default

behavior of late detection to early detection. We believe this is the best way to

provide actual support for secure programming. Second, we propose new

heuristics to find security vulnerabilities using a technique named context-

sensitive data flow analysis [Hammer et al. 2006] instead of using pattern

matching or context-insensitive data flow analysis [Hammer et al. 2006], the most

frequently used techniques. We expect the use of data flow analysis will decrease

the rate of false positives yielded by existing solutions. Consequently, the

improvement on the accuracy detection will likely to encourage developers to

detect and remove vulnerabilities in their source code. Finally, we design and

execute two empirical evaluations. They are aimed to improve our understanding

about the use of early vulnerability detection based on data flow analysis. The first

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 25

evaluation intends to verify if developers receiving continuous detection support

(i.e. early detection) could produce more secure code than developers receiving

support afterwards, i.e. only at the end (late detection) of their programming

session. The second evaluation was specifically targeted at measuring the

accuracy of our prototype (using data flow analysis) compared to other existing

solutions.

After our detection heuristics were created, we designed and implemented a

prototype. This prototype enabled us to verify if and to what extent our detection

heuristics could decrease the rate of false positives when compared to other

techniques. Our heuristics focused on vulnerabilities that occur on web

applications that stem from program input and output not being properly

validated. Although these heuristics are generic and can be implemented to the

context of other programming languages, the first (and current) version of our

prototype only provides support for the Java1 programming language. This choice

was driven by the fact that Java is one of the most popular programming

languages in the world [Zeichick 2012]. The prototype is a plugin for the Eclipse2

IDE (integrated development environment), which is the most popular IDE used

for the Java programming language[Geer 2005]. The plugin, called ESVD - Early

Security Vulnerability Detector, can be downloaded from the Eclipse Marketplace

[Sampaio and Garcia 2014].

1.4.
Research Questions

The main goal of our research was to find out if and to what extent, early

vulnerability detection, based on the use of data flow analysis, could help

developers on improving the security of their programs. To achieve this goal, as

previously mentioned, we developed a prototype that performs constant

background verifications in the source code being edited by a programmer. The

vulnerability detection algorithm takes into consideration the data flow of the

program statements under analysis. The technical objectives of our investigation

can be better characterized in two research questions, which are individually

1https://www.oracle.com/java/
2https://www.eclipse.org

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 26

described and discussed below. We address our research questions through two

empirical studies, as stated in section 1.3.

Our first research question aims at confirming (or refuting) whether the use

of data flow analysis improves the accuracy of vulnerability detection in the

source code:

RQ1: Can data flow analysis decrease the rate of false positives when

compared to pattern matching?

For a technique to be considered accurate, it should not result in a high

number of false positives. To achieve this goal, the technique should also take into

consideration possible contents of variables, values returned by methods,

reflection, recursion and others. However, it is not clear if and to what extent the

use of data flow analysis outperforms the use of pattern matching. For instance,

the use of the former can eventually generate other unknown forms of false

positives, i.e. not currently generated by the use of pattern matching.

Our second research question is concerned in checking whether an early

detection approach can help developers produce more secure software systems:

RQ2: Can the early detection approach help developers produce more secure

code when compared to late detection?

Early vulnerability detection might encourage proper involvement from

developers in secure programming. Developers will receive real-time vulnerability

notifications about the source code they are currently working on. Then,

developers are likely to have proper knowledge to understand those vulnerabilities

and perform repairing actions. When vulnerability detection is performed

afterwards, the developer might not have the same knowledge to understand the

vulnerable code. As a consequence, they might leave more vulnerabilities

unhandled. Therefore, we want to investigate: (i) if making the programmer aware

early about security problems can help them to produce more secure source code,

or (ii) if promoting this constant involvement can frustrate developers into a point

where they are discouraged to think about secure programming.

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 27

1.5.
Dissertation Structure

The remainder of this dissertation is structured as follows. Section 2

presents the theoretical background required to understand the main concepts of

this dissertation. This section also describes the main existing studies about the

subject discussed on this dissertation. Section 3 describes the heuristics created to

find security vulnerabilities in the source code. This section also describes the

components, which compose our algorithm. It also discusses which vulnerabilities

are supported by our heuristics, how these vulnerabilities occur in the source code

and what is necessary to remove them. Section 4 presents the software

architecture of our implemented solution. Section 5discusses the empirical

evaluations to explicitly address our research questions (section 1.4). Finally,

section 6 concludes this dissertation, by showing the main contributions made and

discussing some possibilities and future research directions.

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 28

2
Background and Related Work

This section presents the theoretical background required to understand the

main concepts of this dissertation. Section 2.1 describes the main keywords used

in the field of software security. Section 2.2 discusses the concept of security

vulnerability and presents the most common vulnerability types found on web

applications. Section 2.3 presents the existing techniques and respective tooling

support for detecting occurrences of security vulnerabilities. As all the existing

static analysis techniques are of heuristic nature, they lead to detection mistakes.

These detection mistakes are classified as either false positives or false negatives.

These concepts are discussed in section 2.4, and enable us to assess and

understand the degree of accuracy of existing techniques. Section 2.5 presents the

main advantages and disadvantages of both early and late detection for

vulnerability detection. Section 2.6 presents the main existing studies about the

subject discussed on this dissertation. Finally, Section 2.7 describes empirical

evidence about the developer’s lack of knowledge on how to perform secure

programming.

2.1.
Security Taxonomy

Software security, as any other field of software engineering, has its own

unique terminology. The understanding of this terminology is required in order to

understand the topics presented in this dissertation. We used the commonly

referenced taxonomy from [Tsipenyuk et al. 2005] and their definitions are

presented below.

• Input - Data provided by the user of a software system or by another

application.

• Malicious input - Input that is intended to cause harm to the application or

to other users.

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 29

• Untrusted/Unvalidated input - Input that has not been compared to a range

of expected values or has not removed malicious data from its content to

ensure it is safe to use.

• Trusted/Validated/Sanitized input - Input that has been compared to a

range of expected values and has removed (if any) malicious data from its

content to ensure it is safe to use.

• Encode/Escape input - The process of converting some input, e.g. a

sequence of characters (letters, numbers, punctuation, and certain symbols)

into a specialized digital format, such as HTML tags.

• Decode/Unescape input - The process of converting an encoded input back

into its original sequence of characters.

• Security vulnerability - Security vulnerabilities (or simply vulnerabilities)

is a flaw within a software system that can be exploited to allow an

attacker to reduce the system's information assurance [Organization for

Internet Safety 2004]. In other words, an attacker can exploit a program

vulnerability to cause damage to the application or its users.

• Process/Analyze/Scan a file - In the context of this dissertation, it means

searching (reading and processing) all lines of a program file for security

vulnerabilities.

2.2.
Types of Security Vulnerability

In the context of this dissertation, a program is considered secure when it is

able to resist attacks by malicious people or programs. These attacks can have

different goals, such as stealing information/money, shutdown the application, or

pretending a user is someone else. Most of these attacks are only possible because

the source code of a software system contains security vulnerabilities.

Some examples of security vulnerabilities are cross-site scripting (XSS)

[OWASP 2013a] and unauthorized access [OWASP 2013c]. They are well-

known types of security vulnerability for the damage they can cause. An

explanation about XSS is presented in section 1.2. Unauthorized access occurs

when an attacker is able to access a resource, such as web page or a specific file

without the proper credentials. Credentials are a unique identification (e.g. login,

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 30

user id, or email) and password used to identify a person that wants to access an

application.

A web software system can be exposed to several other types of security

vulnerability. Therefore, there are some initiatives to support the development of

secure web systems. The most well known of these initiatives is the Open Web

Application Security Project (OWASP). OWASP is an open community dedicated

to enabling organizations to develop, purchase, and maintain applications that can

be trusted [OWASP 2003b]. In early 2013 the OWASP initiative released the fifth

edition of one of the most referenced and respected reports with regard to security

vulnerabilities in web applications, known as OWASP Top 10 [OWASP 2013d].

The report contains the top 10 most common type of vulnerabilities found in web

applications. Their frequency was computed based on the analysis of more than

500,000 vulnerabilities identified in thousands of applications [OWASP 2013d].

These data are shared by eight datasets from seven companies, including Aspect

Security, HP, Minded Security, Softtek, Trustwave - SpiderLabs, Veracode and

WhiteHat Security Inc. These companies are specialized in application software

security.

The report also ranks the types of vulnerabilities from the most critical to

the least critical, in terms of estimates of exploitability, detectability and impact.

Exploitability means how easy an attacker can exploit the vulnerability.

Detectability means how easy a developer can detect the vulnerability. Impact

means how severe is the impact in case the vulnerability is exploited by an

attacker. Although the report focuses on vulnerabilities of web software systems,

some of them can occur in desktop applications as well.

Table 1presents a brief characterization of the top 10 security

vulnerabilities, following the same order as in the original report. A more

complete description of each type of vulnerability can be found in [OWASP

2013d]. Several of these vulnerabilities depart from the same main root problem;

they exist only because developers rely on user-provided input and do not

properly sanitize them. These vulnerabilities that stem from untrusted inputs are

recognized as being the most common and capable of causing severe damage

[OWASP 2013d]. Consequently, as it will be presented on section 3.6, these are

the vulnerabilities that characterize the focus of this dissertation. Other types of

vulnerabilities, such as broken authentication and missing function level access

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 31

control,are more complex to be detected by automated solutions, because each

program can implement different types of authentication and access control, e.g.

using sessions, cookies, URL rewriting, and so forth.

1. (SQL/Command) Injection
Injection flaws, such as SQL (Structured Query Language), OS (operating system), and LDAP

(lightweight directory access protocol)injection occur when untrusted data is sent to an

interpreter as part of a command or query. The attacker’s hostile data can trick the interpreter

into executing unintended commands or accessing data without proper authorization[OWASP

2013b]. Authorization is the process of giving someone permission to do or have something

[Tsipenyuk et al. 2005].

2. Broken Authentication and Session Management
Application functions related to authentication and session management are often not

implemented correctly, allowing attackers to compromise passwords, keys, or session tokens,

or to exploit other implementation flaws to assume other users’ identities[OWASP 2013c].

Authentication is the process by which a system verifies the identity of a user who wishes to

access it [Tsipenyuk et al. 2005].

3. Cross-Site Scripting (XSS)
XSS flaws occur whenever an application takes untrusted data and sends it to a web browser

without proper validation or escaping. XSS allows attackers to execute scripts in the victim’s

browser, which can steal user sessions, deface web sites, or redirect the user to malicious sites

[OWASP 2013a].

4. Insecure Direct Object References
A direct object reference occurs when a developer exposes a reference to an internal

implementation object, such as a file, directory, or database key. Without an access control

check or other form of protection, attackers can manipulate these references to access

unauthorized data [OWASP 2013d]. Access control is a mechanism by which a system grants

or revokes the right to access some data or perform some action [Tsipenyuk et al. 2005].

5. Security Misconfiguration
Good security requires having a secure configuration defined and deployed for the application,

frameworks, application server, web server, database server, and platform. Secure settings

should be defined, implemented, and maintained, as defaults are often insecure. Additionally, in

the context of the security of the source code, sensitive information (e.g. passwords, personal

information etc.) should never be stored in plain text or hard-coded into the source code. They

should be stored encrypted [OWASP 2013e].

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 32

6. Sensitive Data Exposure
Many web applications do not properly protect sensitive data, such as credit cards, tax IDs, and

authentication credentials. Attackers may steal or modify such weakly protected data to conduct

credit card fraud, identity theft, or other crimes. Sensitive data deserves extra protection such as

encryption at rest or in transit, as well as special precautions when exchanged with the browser

[OWASP 2013d].

7. Missing Function Level Access Control
Most web applications verify function level access rights before making that functionality

visible in the UI. However, applications need to perform the same access control checks on the

server when each function is accessed. If requests are not verified, attackers will be able to

forge requests in order to access functionality without proper authorization [OWASP 2013d].

8. Cross-Site Request Forgery (CSRF)
A CSRF attack forces a logged-on victim’s browser to send a forged HTTP request, including

the victim’s session cookie and any other automatically included authentication information, to

a vulnerable web application. This allows the attacker to force the victim’s browser to generate

requests the vulnerable application thinks are legitimate requests from the victim [OWASP

2013d].

9. Using Known Vulnerable Components
Components, such as libraries, frameworks, and other software modules, usually run with full

privileges. If a vulnerable component is exploited, such an attack can facilitate serious data loss

or server takeover. Applications using components with known vulnerabilities may undermine

application defenses and enable a range of possible attacks and impacts [OWASP 2013d].

10. Unvalidated Redirects and Forwards
Web applications frequently redirect and forward users to other pages and websites, and use

untrusted data to determine the destination pages. Without proper validation, attackers can

redirect victims to malware sites, or use forwards to access unauthorized pages [OWASP

2013f]. A malware site is a site intended to cause damage of any of its visitors [Tsipenyuk et al.

2005].

Table 1 Brief description of the top 10 most found security vulnerabilities.

2.3.
Detection of Security Vulnerabilities

Security vulnerabilities and their consequences to software projects are not

new topics [Telang and Wattal 2005][Blyth 2004][Howard et al. 2009]. However,

in recent years, they are significantly attracting the growing interest of academic

and commercial communities [Nadeem et al. 2012][Xie et al. 2011][Willis et al.

2006]. One of the key reasons for this change is the increasing number of

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 33

vulnerabilities being discovered and exploited on software programs from small to

big companies, such as: Oracle, Microsoft, Apple and others [Telang and Wattal

2005]. There are three main different approaches to find security vulnerabilities in

a software program [Chess and McGraw 2004]: manual inspection, dynamic

analysis and static analysis.

These three approaches have been the main subject of several studies [Meier

et al. 2005][Kupsch and Miller 2009][Artho and Biere 2005]. These studies have

helped us understand that there is no automated solution (based on either dynamic

or static analysis) able to fully replace manual inspection. On the other hand,

automated solutions are cheaper to be executed and can cover more ground in less

time than manual inspection. The next sections discuss the advantages and

disadvantages of each of these approaches. We also discuss their applicability for

early detection as well as their accuracy in the detection of security vulnerabilities.

2.3.1.
Manual Inspection

Manual inspection consists of developers themselves or security specialists

carefully reviewing the source code [Kupsch and Miller 2009]in order to find

security vulnerabilities. They usually rely on a checklist (as presented in Table 2)

to perform this inspection [Meier et al. 2005]. The checklists are available either

in specialized books or on-line publications. For instance, Microsoft has created

and released its full list of items that its developers should check when performing

manual inspection [Meier et al. 2005]. For the sake of illustration and brevity,

Table 2 shows two examples of these items in Microsoft’s checklist. The first

column is the name of the item that is going to be verified. The second column is

the corresponding action that developers should take in order to validate if the

source code is secure. The full list containing all the items is available from

Microsoft’s website [Meier et al. 2005].

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 34

Check item What to look for in code

Input/data validation Look for client-side validation that is not backed by server-side

validation, poor validation techniques, and reliance on file names or

other insecure mechanisms to make security decisions.

Hard-coded secrets Look for hard-coded secrets in code by looking for variable names

such as "key", "password", "pwd", "secret", "hash", and "salt".

Table 2 Example of a simple checklist to perform manual inspection.

One of the major advantages of manual inspection is the fact that the

vulnerability analysis is performed by human beings. Therefore, if the person who

is performing the inspection finds something that is not in her/his checklist, but it

looks as a suspicions code, she/he is able to investigate the code and discover if it

is indeed a vulnerability or something else. For instance, the second item

presented on Table 2, informs the code reviewer that she/he needs to look for

variable names as “password” or “secret”. However, if she/he finds a variable

with the name “MyCredentialsInfo”, the reviewer is still able to understand that

although the name is syntactically different from the examples in the checklist, it

falls into the same category. This flexible analytical behavior cannot be fully

automated.

On the other hand, manual inspection is hard to be successfully performed

in programs of reasonable size. Each program under analysis can have hundreds

or millions of lines of code and each program unit can contain multiple security

vulnerabilities. Therefore, this kind of inspection is an error prone and daunting

task [Kupsch and Miller 2009]. Thus, developers can fail to identify one or more

of these security vulnerabilities, leaving the software vulnerable to attacks. In fact,

the high number of security vulnerabilities is not feasible to be identified and

tackled even by experienced programmers of secure software [Kupsch and Miller

2009][Meier et al. 2005].

Figure 5 illustrates how a few code elements – i.e. a method and its accessed

attributes – are the source of several instances of security vulnerabilities. The code

snippet in Figure 5 contains six vulnerabilities. Each of them is briefly explained

below. We also discuss why it might not be trivial to detect each of them with

manual inspection.

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 35

Figure 5 Sample of several security vulnerabilities in a small piece of code.

The first vulnerability in the code of Figure 5 represents a denial of service

(DoS). DoS is the act of performing an attack, which prevents the system from

providing services to legitimate users [Kessler and Levine 2009]. This

vulnerability is a typical type of vulnerability that is hard to be detected even by

experienced programmers. The difficulty results from the fact the person, who is

reviewing the source code, has to mentally track all variables that were initialized

and were not released. Additionally, she/he needs to verify if variables used

within loop statements (e.g. for and while blocks) are receiving their content from

user’s input. The problem is that users (attackers) could provide values that could

make the loop execute forever. For instance, consider the three variables of type

Connection, PreparedStatement and ResultSet declared on lines 18-20 of Figure 5.

These variable declarations individually require a high amount of resources

(memory) from the server. Therefore, it is important that each one of these

resources must be released so they can be returned to the server and reused by

other users of the application. A non-well-intentioned user could send thousands

or even millions of requests to this page, eventually making the server run out of

resources. Then, this server would stop serving the legitimate users, whereby

causing a denial of service. In the example of Figure 5, the code was small and

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 36

simple. However, each class in real life projects can have hundreds of lines of

code, making it complicated or impeditive to track where these variables were

created and where they were released (if they were) through manual inspection.

The second case of vulnerability in Figure 5 is the occurrence of cross-site

scripting (XSS). The lines 24-25 are storing some inputs submitted by the users

and sending them on lines 42-43 back to the browser without performing any type

of sanitization on them [OWASP 2013a]. An attacker could submit malicious

content, such as e.g. <script>alert(1);</script>.When this content is executed, it

could steal information from other users. According to the OWASP Top 10 report

[OWASP 2013a], much more damage can be caused by XSS occurrences. In

principle, the line 26seems to have the same problem as lines 24-25, what could

induce a developer to think that this statement might also cause a XSS

vulnerability. However, because the only two possible values of this variable are

FALSE or TRUE, even if a malicious code was submitted, it could not cause any

harm. Thus, this line can be considered secure. For the sake of brevity, the code

snippet above was created containing XSS vulnerability in the same class and

same method. However, XSS is also a complicated vulnerability to be found by

manual inspection in real programs. There might be a significant “distance” in the

program between: (i) the places (e.g. classes) where the variables receive user-

provided content, and (ii) the places where this content is sent back to the

browser. Additionally, several intermediate classes could be intertwined in this

path, thus making the tracking even more difficult.

The third existing vulnerability is a SQL injection. Line 29is in charge of

creating a dynamically composed SQL statement from concatenating values

submitted by the user with a pre-defined SQL query. This is an opportunity for a

not well-intentioned user to submit malicious data, such as ' or '1' = '1' and gain

control of all the data in the database. Again, lines 30-31can make the

programmer think she/he is safe because the code is using a PreparedStatement

object. However, as it will be explained on section 3.6.10, if not properly used, the

simple fact of having it does not make the source code safe from SQL Injection.

What makes SQL injection hard to be detected by manual inspection is the fact

that if the code reviewer, who is performing the inspection, might not be fully

familiarized with all types of SQL Injection (e.g. error-based, boolean and blind)

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 37

[Halfond et al. 2008]. She/he could mistakenly believe the program is secure

because the code is not concatenating any strings.

The forth vulnerability is a cookie poisoning. Lines 35-38 create a cookie

that is sent to the browser. However, there are at least two problems in this case.

The first one is the fact that sensitive information is being added as plain text,

which is not recommended. The reason is that the user (or anyone), who is

sniffing this connection, is able to read this content with no problem. Sniffing the

connection means to capture any data that is being transmitted over a network.

Therefore, some sort of encryption should be used. The second problem is the fact

that the developer did not set the HttpOnly [OWASP 2013g] attribute. If the

browser supports it (in fact, most of modern browsers do), it will not allow the

user to change the value of this cookie. In the current example, it is added the type

of the user into the cookie. However, if the user changes this value from User to

Admin, then the application will accept the next requests of this user as admin

requests. A third and possible problem is the fact that the developer did not set the

Secure [OWASP 2013h] attribute. Again, if the browser supports it (as most of

modern browsers do), it will only send cookies via secure connection (HTTPS),

thus not allowing attackers to sniff the connection and obtain the content inside

the cookie. However, as not all web applications use HTTPS, it may count as a

problem. Nevertheless, it is important developers know and consider this

possibility. Developers usually store all sorts of information in cookies. Because

cookies are easy to be manipulated, they can exchange information from the

server to the browser and vice-versa. The difficulty of finding a vulnerability in

this process lies on the fact that the use of cookies is usually intertwined among

several other program statements. These other statements are more important to

the functionality being implemented, which ends up hiding the importance of

cookies (and their harmfulness). Thus, developers or reviewers may not feel the

need to not pay attention on them.

The fifth vulnerability is an information leakage. In case an exception is

thrown due to some error detected during the program execution, the try-catch

block will catch it. However, the line 49 re-throws the error up in the call chain,

thus eventually being displayed to the end user. The problem with this

undisciplined exception propagation is the nature and amount of information

being displayed to the user. This problem can be seen in Figure 6.The printed

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 38

error message contains the web server’s name, the server version, the database’s

name, the full stack trace and more information that end users should not know

[OWASP 2013i]. These information items are always the first ones an attacker

tries to obtain. The knowledge of the server’s name, the server version and which

programming language the website is using allows the attacker to search for

known vulnerabilities and exploit them. This vulnerability is hard to be detected

by manual inspection in programs without a well-structured exception handling

policy, which is a very common scenario [Barbosa et al. 2012]. In these programs,

it becomes very hard for the code reviewer to inspect all classes and execution

paths, in order to know what exceptions are being thrown, which ones are being

properly handled and, finally, which ones are not. In medium and large-sized

projects, this can be very complicated and time consuming.

Figure 6 Exception message being displayed to the user.

The sixth and final vulnerability is a security misconfiguration. The line 55

has the database’s login and password hard coded, which is not recommended.

The problem with this attitude is related to the fact there are projects, such as Java

Decompiler [“Java Decompiler” [S.d.]],which are able to decompile java byte

code, extract the content of classes and reveal this login and password to

unauthorized people. This type of information should be encrypted or at least

stored in another file [OWASP 2013e]. Sometimes developers are so focused on

implementing the requested functionalities that they do not pay attention on basic

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 39

things, such as the use of a hard-code password. Maybe that password was only

used for testing, but eventually was forgotten in the code and nobody else has ever

noticed the need to store the password in another proper location.

All the aforementioned cases of security vulnerability show how secure

programming is difficult to be achieved by relying only on manual inspection. If a

simple code snippet with only 57 lines of code (Figure 5) contains six security

vulnerabilities, someone can imagine the huge number of vulnerabilities emerging

in a project with hundreds or millions of lines of code. Additionally, with

developers constantly creating and committing new code statements in a project,

an inspection performed a few hours ago could immediately become obsolete.

Therefore, manual inspection on medium or large-sized programs can certainly

become an error prone and daunting task. Automated support could ameliorate the

aforementioned limitations in order to promote secure programming.

2.3.2.
Dynamic Analysis

Another approach to find security vulnerabilities is based on dynamic

analysis or simply DA. Dynamic analysis is a technique that executes the

application and tries to find problems by submitting malicious inputs and

checking the returned results [Artho and Biere 2005]. In other words, it analyzes

the program behavior during runtime. An advantage of this technique over static

analysis (section 2.3.3) is the fact that DA is able to identify vulnerabilities

independent on how the source code was implemented. For instance, developers

can implement an authentication mechanism on several different ways, e.g. using

cookies, sessions and so forth. However, because DA submits the malicious

content to the running webpage, it does not need to know how the page was

implemented. Additionally, once dynamic analysis finds problems based on the

returned results, the rate of false positives is close to zero[Artho and Biere 2005].

Some examples of existing solutions that perform dynamic analysis on web

application are ZAP [Bennetts 2012] and Burp [“Burp Suite” [S.d.]]. The features

of such dynamic analysis tools for vulnerability detection are very similar. ZAP is

used here to illustrate the features of dynamic analysis tools. We selected this tool

as it was created and released by the OWASP initiative [Bennetts 2012] (section

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 40

2.2). Figure 7presents a screenshot from the ZAP tool. In order to run the tool, it is

necessary to: (i) provide the URL of the website that will be tested, and (ii) select

which types of vulnerabilities should be verified. Once the run button is pressed,

the tool starts submitting thousands of requests containing malicious inputs. A log

with the returned results is produced. The lower part of Figure 7 shows the

returned results from each of these requests. Based on these results, it is possible

to detect the presence of security vulnerabilities in the target web application. For

instance, it is possible to observe that, if the tool submitted invalid credentials for

the login page and the return was “welcome user admin”, this page contains a

security vulnerability.

Based on this illustration, we can note a few other advantages of using

dynamic analysis solutions, such as ZAP. For instance, applications that contain

hundreds of URLs can be analyzed for vulnerabilities in a matter of seconds. In

case vulnerabilities are discovered, developers can fix them and execute the

process repeatedly. On the other hand, a disadvantage is the fact that DA requires

fully-implemented programs in order to test the web pages. Therefore, as already

mentioned (section 1.1), if a vulnerability is only detected afterwards, the effort

and cost to fix it might be much higher. Additionally, DA usually results in a high

rate of false negatives, because the DA tool can only analyze the web pages which

it has access to. Finally, DA does not inform the exact location of the vulnerability

in the source code. It only informs which vulnerabilities were exploited, leaving

developers responsible to find each of the program statements contributing to the

security vulnerability.

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 41

Figure 7 ZAP’s screenshot3.

2.3.3.
Static Analysis

Finally, the last approach for security vulnerability is static analysis or

simply SA. SA analyzes the application by examining the source code without

executing it [Artho and Biere 2005]. It scans the source code to either compute

source code measures or search for known code structure patterns. When the

measures are computed or patterns are identified, a report is presented. In the

context of this dissertation, this report provides vulnerability warnings and let

developers know, among other things, the exact location of each vulnerability

candidate.

One of the biggest advantages of this technique is the fact that it does not

require fully implemented programs. In other words, it can be executed since the

initial programming stages of a software system, even on unfinished program

modules. Consequently, SA is the technique selected by most of the existing tools

that perform verification on source code to detect security vulnerabilities. Static

3https://www.owasp.org/index.php/File:ZAP-ScreenShotHistoryFilter.png

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 42

analysis was also the technique chosen to be used on our proposed solution

(section 4).

We can mention several examples of SA tools for vulnerability detection in

source code, such as ASIDE [Zhu 2012], Laspe+ [Livshits 2006], CodePro

Analytics [Google 2001], Fortify [HP 2002], SSVChecker [Dehlinger et al. 2006]

and dozens more. Figure 8 is a screenshot from one of these tools, called Lapse+

[Livshits 2006]. The figure presents the security vulnerabilities found in the

source code of the analyzed project. Developers are presented with detailed

information about each vulnerability, including the code element (e.g. variable,

method or statement) that caused the vulnerability, the type of vulnerability

(section 2.2), the project name, the file name and line of code where the

vulnerability was found. All these information entries help developers verify if

indeed this is a problem that needs to be resolved or it is a false warning yielded

by the detection tool.

Figure 8Lapse+ view displaying the detected vulnerabilities.

The main disadvantage of static analysis is the fact that most of existing

implementations rely on simple techniques, such as pattern matching [Nadeem et

al. 2012].The code fragment below depicts a real example used to illustrate some

of the limitation of the pattern matching technique.

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 43

Figure 9 Examples of pattern matching limitations.

One of the main problems of pattern matching is the fact that it only

compares the code that is being analyzed, against a code template (examples of

code templates are presented in sections3.2, 3.3 and 3.4) that usually represents a

security vulnerability. However, this is not enough to confirm that it is or not a

vulnerable code. Other aspects, such as the application's context (variables and

methods) are not taken into consideration when searching for vulnerabilities. In

Figure 9, the method print from class PrintWriter appears five times (lines 22, 23,

26, 28 and 29). For now, it is enough to know that this method should have its

parameters investigated for untrusted values.

Applications based on pattern matching, such as ASIDE and Lapse+

consider line 22 secure, because the parameter is an element of type string literal

from the AST (Abstract Syntax Tree) [Kuhn and Olivier 2006] created and

hardcoded into the code by the developer. Therefore, considered trusted data.

However, line 23 as depicted by the left icon (red devil), is reported as vulnerable

to cross-site scripting (XSS)[OWASP 2013a] because the parameter is something

that is not in their knowledge base. The element is of type parenthesized

expression. If this line is manually analyzed, it is possible to notice it does not

contain any vulnerable code. It is printing the same thing as the previous line

simply in a different way.

Line 26 is also marked as vulnerable by both tools. This time the parameter

is of type conditional expression. Nevertheless, the only two possible outputs

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 44

from this condition are a string literal “c” or another string literal “d”. Once

more, not really a vulnerability. In line 28, the parameter is of type method

invocation. It has three possible outputs; lines 35 and 39 return values considered

untrusted and 42 return a trusted value. Based on this, line 28 should be flagged as

vulnerable, because it has at least one possible untrusted output. Both tools

correctly flag it. They do it not because they were able to identify the untrusted

output, but because they flag everything that they do not understand. Finally, line

29 is also flagged as vulnerable. However, the only possible output is a Boolean

(true or false) value even if the user provides malicious content. The final score in

this simple code fragment is two (lines 22 and 28) out of five (lines 22, 23, 26, 28

and 29), thus making pattern matching not entirely accurate and trustworthy.

Consequently, they discourage many programmers of using them (section 1.2).

The concepts of false positive and false negative are presented in the next section.

2.4.
False Positives and False Negatives

No matter which of the aforementioned techniques for vulnerability

detection is used, there will always be the possibility of a false positive or false

negative. False positive is the incorrect indication of the presence of a

vulnerability. In other words, a warning that does not actually represent a security

vulnerability in the program being analyzed. False negative is the failure to

recognize an existing vulnerability in a program. There is a security vulnerability

in the source code, but it is not revealed by the detection technique employed.

The reason for the possibility of having false positives and false negatives is

threefold. First, manual inspection is able to find vulnerabilities not specified in an

inspection checklist. However, because it is a time consuming task it may lead to

false negatives, in case one or more modules are not analyzed. Second, dynamic

analysis is able to identified vulnerabilities without knowing how it was

implemented. However, it only analyzes functionalities which it has access to, this

also may lead to false negatives. Finally, static analysis is able to analyze the

source code of unfinished modules. However, if the applied technique has a low

accuracy, this may lead to false positives.

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 45

Figure 10 presents an example of what was stated above. The code snippet

was analyzed by a static analysis tool (ASIDE [Zhu 2012]), which correctly flags

line 3.Because the developer concatenated the content of variable sql and passed

that content to the statement object. The statement object is known for not making

any type of validation on the receiving input, which is certainly not recommended.

However, ASIDE assumes that because the code in line 4 is using a

preparedStatement object, the code can be considered secure. This is a mistake, as

it will be described in section 3.6.10, because this fact alone is not sufficient and

the code snippet still has a SQL injection vulnerability in it. In other words, this is

a false negative, which can be very harmful. Because it might give the false

impression that the application is secure when in reality is not.

Figure 10 ASIDE’s false negative of SQL injection.

Therefore, companies and developers should not rely solely on one of these

approaches. They should think of them as extra layers of security. For instance,

static and dynamic analysis solutions could be used to maximize the detection of

vulnerabilities. In addition, security specialists should perform manual inspection

in order to detect remaining false negatives. In any case, secure programming

should be inserted into the developer’s workflow so that developers become aware

of vulnerabilities as soon as possible, i.e. when writing their code statements. By

doing this, developers can handle the most common vulnerabilities as well as

discarding false positives. Then, the most complex vulnerabilities and false

negatives could be left for the specialists. However, it is important to come up

with a high-accuracy solution for vulnerability detection, i.e. with the lowest

possible rate of false positives and false negatives. This goal is particularly

important if vulnerability detection is integrated into the developer’s workflow.

Then, the cost of manual inspection by specialists would be kept at a minimum,

thereby further reducing the risk of vulnerabilities prevailing in the source code.

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 46

2.5.
Late Detection and Early Detection

The vast majority of the existing solutions are built in a way they are

applied a posteriori, only when developers have already fully produced (and

compiled) a method, a class or an entire day or week of coding. This existing

approach is known as late detection of security vulnerabilities. The late detection

workflow is depicted in Figure 11. The workflow is usually as follows. First,

developers spend hours, days and even weeks implementing their code. Second, if

there is any time left until the deadline, they run the security detection tool, which

have to scan all the files in all the selected projects. Finally, as a result, a large

report of vulnerabilities is presented to the programmer. The developer’s next step

is to start fixing the code. Although late detection may impose certain drawbacks

(section 1.2), it is something that still brings its benefits. Studies [Baca et al. 2008]

state that, on average, 17% of cost savings can still be achieved simply by the fact

that a late detection tool is used to find security vulnerabilities.

Figure 11 Late detection workflow.

The later and longer it takes to fix a security vulnerability in a program, the

more it costs [Guarnieri et al. 2011]. It also increases the chances of that specific

vulnerability being exploited by an attacker. Thus, it is important that developers

receive tooling support in order to find and remove vulnerabilities as early as

possible from their source code. Developers should be aware of security

vulnerabilities when they are adding or editing their code statement. This

approach is known as early detection. As soon as the developer writes a code that

is considered vulnerable, warnings of security vulnerability should be displayed.

The early detection workflow is depicted in Figure 12. This time, the verification

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 47

happens in the source code as new statements are added. As a result, a report

containing a few vulnerabilities is presented. Thus, developers have the chance to

consider and remove them as they appear, i.e. while their minds are focused in the

current context.

Figure 12 Early detection workflow.

By using the approach of early detection, developers will no longer have to

waste time redoing work that could have been done potentially quicker and once.

Early detection of vulnerabilities has the goal of constantly supporting developers

on the task of secure programming. Developers are constantly reminded about

security in the implementation of their program statements. Warnings are

displayed to let developers know there is something wrong that requires their

attention. However, when these warnings are presented to developers, they should

investigate the problem and then fix it or simply ignore it (in case it is a false

positive). Thus, if the detection is not accurate enough and generates a high

amount of false positives, they may eventually lose interest and even stop using

this support. An example is shown in Figure 13.

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 48

Figure 13 Early vulnerability detection from ASIDE and ESVD (section 4).

Figure 13 presents a code snippet that was analyzed by two solutions that

perform early vulnerability detection. This example was created in order to

illustrate the importance of high accuracy when performing early vulnerability

detection. Figure 13is organized in two parts. On the left side, a code fragment

analyzed by ASIDE [Zhu 2012], which was the only tool we found that performs

early detection. On the right side, the same code fragment analyzed by ESVD, our

prototype (section 4). This figure highlights the problem of facing a high amount

of false positives in early detection, it also mimics the steps performed by a

developer when creating the code fragment above: (i) Step 1 - line 21, the

developer starts writing the statement that will retrieve data sent from users; (ii)

Step 2 - line 21, the statement is completed; (iii) Step 3 - line 23, the method print

is sending the content from variable bad back to the user. Therefore, as it will be

explained in section3.6.3, this leaves the application opened to cross-site scripting

(XSS) and should be avoided;(iv) Step 4 - lines 24 and 26, the developer fixes the

code by using the encodeForHTML method, which is a known sanitization

method that removes (if any) malicious characters. This method and dozens of

other ones are available in the ESAPI [Williams 2010] library, created by

OWASP, tested and used by programmers from all over the world. Developers

have no need to create sanitization methods on their own and no excuse on why

not use them.

The idea of early detection is to help developers avoid adding vulnerable

code as soon as possible. However, as shown in step 1, the statement is not even

finished and the pattern-matching tool is already reporting a security

vulnerability. As already explained, as soon as they match a code e.g.

request.getParameter, that is in their knowledge base, they report it as vulnerable.

On the right side of the figure, it is possible to observe an error icon. However,

this error was generated by Eclipse and not by our prototype. This error is because

there is no semicolon “;” in the end of the line, besides that, the line is correct.

Step 2 cannot be considered vulnerable yet, because even if variable bad receives

a malicious content, it is not doing anything with it. ASIDE still flags the line as

vulnerable and our prototype does nothing (it considers the line secure). On the

other hand, in step 3 it is possible to observe a security vulnerability and in this

case, both tools correctly report it. As the developer continues to write the code, in

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 49

step 4, he/she fixes the code. However, there are two interesting points that should

be mentioned. First, the pattern-matching tool is incorrectly reporting variable

safe (line 25) as vulnerable, because it does not “understand” that the variable has

been sanitized in a previous line (23). Second, the tool considers line 26 secure,

because the method encodeForHTML is registered as a sanitization method in its

knowledge base. The interesting part is the fact that if we analyze this code, it is

possible to notice that they are doing the same thing, just in two different ways.

Our prototype can correctly identify these two lines (25 and 26) as secure and

remove the warning from the previous step. ASIDE is just one from the several

existing solutions we tested, in order to verify how accurate the techniques they

use to find security vulnerabilities are. The description and more information

about the other tools are presented on the next section.

2.6.
Related Work

There are dozens of available solutions that are intended to perform

detection of security vulnerabilities in the source code[OWASP 2003a]. Some

noteworthy examples are SSVChecker [Dehlinger et al. 2006], FindBug [Pugh

and Loskutov 2006], ASIDE [Zhu 2012], Lapse+ [Livshits 2006], CodePro

Analytics [Google 2001], Fortify HP [HP 2002] and AppScam IBM [IBM 2001].

They can be divided in several different categories. First, the programming

languages (Java, C#, PHP, etc.) they give support. Second, the type of

vulnerabilities (SQL injection, Cookie Poisoning, etc.) they give support. Third,

how the detection is performed (dynamic analysis or static analysis). Fourth, if

they are open-source or private. Finally, which technique (pattern matching or

data flow analysis) they use to find security vulnerabilities. Therefore, before we

even decided to create our own tool, we downloaded and tested several of these

tools in order to find the strengths and limitations of each one of them. It is

important to mention that we did not test all the existing ones, because there are

too many, instead, from the existing list, we tested the most popular ones (based

on blogs and forums). The next sub-sections describe our findings on the best

three of them.

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 50

We noticed that some existing tools that try to find security vulnerabilities,

started by finding code anomalies and after achieving good results, migrated to

security. However, most of them did not evolve, because in order to find if a

method is a long method or has a high level of coupling, all there is to do is count

the number of lines from the method and the number of references to other

classes. These are simply two examples from code anomalies. However, in the

context of security vulnerabilities, the idea of simply counting something does not

work. For instance, to report a code as vulnerable to SQL injection, simply the

fact that the developer used the statement object instead of the preparedStatement,

does not suffice, because it is necessary to gather more information, such as how

the query was created or if the parameters were sanitized. Therefore, the fact that

a technique (pattern matching) successfully worked for code anomalies does not

mean it will also work on detecting security vulnerabilities.

2.6.1.
Lapse+

The first analyzed tool was Lapse+. A free security scanner tool that

performs source code static analysis. It was created at Stanford University for

detecting vulnerabilities of untrusted data injection in Java EE applications

[Livshits 2006]. The advantage of this plugin is the fact that it is able to identify a

well-defined set of security vulnerabilities, including, but not limited to, Cookie

Poisoning [OWASP 2013f], SQL injection [OWASP 2013b] and Cross-site

Scripting (XSS) [OWASP 2013a]. The disadvantages are: First, it uses pattern

matching to search for security vulnerabilities. Second, it performs late detection

and every time the tool is executed it scans all files on all opened projects not

focusing only on the changes made since the last scan.

2.6.2.
ASIDE

The second analyzed tool was ASIDE (Application Security plugin for

Integrated Development Environment). ASIDE is a free open source plugin with

real time verification (or early detection) created at University of North Carolina.

This tool performs early detection and focus mainly on vulnerabilities that stem

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 51

from input validation. However, the fact that it uses pattern matching to find

vulnerabilities, cause it to have a high rate of false positives. According to the

OWASP page about ASIDE4, it is still evolving and the last version was released

in early 2013.

2.6.3.
CodePro Analytics

CodePro Analytics also known as CodePro is an Eclipse plugin, able to

identify security vulnerabilities and code anomalies. Therefore, instead of having

to install multiple tools, developers have the option to choose what they want to

search for within the context of the same tool. This was the only plugin we found

that did not use pattern matching. It uses data flow analysis with context-

insensitivity (see section3.1). This means that it is able to correctly identify

vulnerabilities in Figure 16, but not the ones in Figure 17. This was the only tool

that presented different results (amount of warnings and even different warnings)

from one execution to another. In other words, running the tool on the same

source code two or more times could result in different warnings. As Lapse+, this

tool also performs late detection.

2.7.
Lack of Knowledge on Secure Programming

The later and longer it takes to fix a security vulnerability in a program, the

more it costs [Guarnieri et al. 2011]. Thus, it is important that developers receive

the necessary support to perform secure programming as early during

development as possible. We performed an experiment where 07 participants were

asked to review a source code containing 37 security vulnerabilities. From those

participants, only two participants were able to find 11 and 15 vulnerabilities,

respectively. These two participants were much more experienced as they

periodically receive security training at their work place. The other participants

found 0,1 or 2 vulnerabilities. There was no single type of security vulnerability

that was consistently detected by all or most of the novice or experienced

4https://www.owasp.org/index.php/OWASP_ASIDE_Project

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 52

developers. This corroborates with our claim that developers without training and

even the ones who have received training would still benefit from a tooling

support.

Figure 14 shows a code snippet with an example of SQL injection

vulnerability. The code in Figure 15 seems to be almost the same as the one

shown in Figure 14. However, it does not have the vulnerability observed in

Figure 14. The main difference between them is the fact that Figure 15 is using a

preparedStatement object, which sanitizes the value submitted by the user. We

believe that professional developers should be able to notice this problem on

Figure 14 and remove it from the source code as in Figure 15. In fact, SQL

injection is one of the most common security vulnerabilities. SQL injection is also

a type of vulnerability that, in theory, is easy to spot. It can be noticed by

analyzing just a few code statements. However, this was not the case in our

experiment. Most of the participants did not notice this problem in the source

code.

Figure 14 Code snippet with SQL injection vulnerability.

Figure 15 Code snippet without SQL injection vulnerability.

Most developers do not have the necessary knowledge to find nor to fix

security vulnerabilities on their own. Even if they have knowledge, it is a daunting

and error prone task. One of the main reasons for this lack of knowledge is

because secure programming is almost never present in the curricula of computer

science courses, and even when it is, it is usually introduced as an isolate and

theory-based discipline [Lester and Jamerson 2009]. Some of these courses are of

theoretical nature and may be lacking tooling support to improve student's

learning. Students and developers might benefit from learning in the context of

their source code which and why they should reason about vulnerabilities. Proper

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 53

assistance for supporting secure programming should be neatly integrated in the

software-programming environment used by students and developers.

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 54

3
Data-Flow-Driven Heuristics for Vulnerability Detection

Data flow analysis hereinafter referred to simply as DFA for brevity, has the

ability to follow the path of an object until its origins or to paths where it had its

content changed [Hammer et al. 2006]. DFA is commonly used for optimizations

on compilers [Hammer et al. 2006], because of its ability of inter and intra-

procedural inspection. Our idea was to use this ability to find security

vulnerabilities. For instance, if a method receives a variable as a parameter, DFA

is able to trace all possible paths of this variable in order to try to identify if there

is a path where this variable received untrusted data. If and only if a vulnerable

path is found, the variable is flagged as vulnerable. However, in order to know

what to search for and what is a vulnerable path, we need to provide our heuristics

to the modified (to find security vulnerabilities) DFA algorithm. Our heuristics are

composed of three elements, i.e. the lists of entry-points, exit-points and

sanitization-points. They are presented in sections 3.2, 3.3 and 3.4, respectively.

Figure 16has the same code fragment as Figure 9with the addition of arrows

indicating the data flow of the parameters being used by the print methods in lines

22, 23, 26, 28 and 29. The use of the DFA approach would correctly report lines

28, 35 and 37 as vulnerable as shown by the “red shield” on the left of the editor

and all other lines as secure. Because DFA does not only search for methods

known for being insecure, rather it searches for possible paths where these

methods’ outputs (entry-point) reach methods that send data externally to the

application (exit-point), without passing through any sort of validation

(sanitization-point). Even though this use of DFA is a more complex and time-

consuming task, it can drastically decrease the rate of false positives, as it will be

described in the next sections. In our technique evaluation (section 5.1.5.2), we

will assess whether the use of DFA significantly impacts the detection

performance. The following sections present relevant concepts before the

presentation of our algorithm.

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 55

Figure 16 Data Flow Analysis representation.

3.1.
Data Flow Analysis with Context-Sensitivity

DFA can be implemented in two different ways, namely context-insensitive

and context-sensitive. When implemented with context-insensitivity, it means that

every instance of a class share the same context (variable, methods, etc.). In other

words, it does not differentiate one instance from another and the result from the

analysis of one will be repeated to others. On the other hand, when implemented

with context-sensitivity, it means that it creates a context for every instance of a

class. Consider for instance the following two figures with the same simplified

code fragment. When the source code is being verified, every time there is a

method invocation e.g. line 59 or a new object is created e.g. lines 57 and 61, a

new context is created with a copy of all the fields and methods of that class. This

context handling is necessary to make sure, if one instance receives vulnerable

content, it will not affect other instances of the same class. This improves the

accuracy of reported warnings but also increases the amount of memory used

during scan [Lhoták and Hendren 2006]. From the existing solutions for

vulnerability we analyzed (section 2.6), CodePro Analytics [Google 2001] was the

only one to perform some sort of data flow analysis. In our experiments (see

section 5.1.5) CodePro Analytics was, in fact, able to achieve a lower rate of false

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 56

positives when compared to tools relying on pattern matching. However, the DFA

of CodePro Analytics is context-insensitive, while our proposed approach relies

on DFA with context-sensitivity.

Our expectation is that our approach will yield higher accuracy and,

therefore, be more appropriate to be used in the context of early vulnerability

detection. We present here a comparative example to illustrate why context-

sensitivity can be a better choice than context-insensitivity for vulnerability

detection. The code snippets in Figure 17 and Figure 18were specifically designed

to demonstrate one of the limitations of data flow using context-insensitive

analysis. They consist of the same source code, excluding lines 58 and 62, which

are swapped in each image. Figure 17depicts vulnerabilities reported by a tool (i.e.

CodePro Analytics) that uses context-insensitive data flow analysis and Figure 18

by a tool (our prototype) that uses context-sensitive data flow analysis. On the left

side, the object animal1 created in line 57 is receiving the content of variable ok in

line 59. This content is not vulnerable because it is simply a string literal. On the

other hand, the object animal2 created in line 61 is receiving the content of

variable bad in line 63. This content might be vulnerable because it has not been

sanitized. When this code is processed by data flow analysis, using context-

insensitivity, the results will be either two warnings or nothing will be flagged at

all. However, if this code is manually analyzed, it is possible to notice that

animal1 has not received vulnerable content but animal2 has. The opposite

happens on the right side of the image, where animal1 receives vulnerable content

and animal2 does not. Figure 18 depicts the expected results from this code

fragment, which is animal1 from the left side and animal2 from to right side being

considered secure and animal2 from the left side and animal1 from to right side

being considered vulnerable. Our prototype using context-sensitivity is able to

correctly differentiate these two instances from each other, and present only the

expected security vulnerabilities.

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 57

Figure 17 Data Flow - Context Insensitive - CodePro Analytics [Google 2001].

Figure 18 Data Flow - Context Sensitive - ESVD.

3.2.
Entry-Point

An entry-point also referred as source [Tripp et al. 2009][Livshits and Lam

2005], is a point in the source code where external and untrusted input enters the

application. Additionally, they are not specific to a particular vulnerability. Figure

19 has a variable login (in line 20) receiving its content from the method

getParameter. This method is considered an entry-point because it brings data

from outside (data inputted by a user in a web browser) of the application into

inside to be processed. When the developer created this code, she/he was

expecting that users would only provide valid content related to their credentials

(login and password). However, if a user provides malicious content, such as

<script>doBadThings();</script>, and the application uses it without any sort of

sanitization, the application might be exploited and damaged.

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 58

Figure 19 Example of Entry-Point.

Before trying to create our own list of entry-points, a complete search in the

literature was performed. However, only a few websites [“Searching for Code in

J2EE/Java” 2010][“Secure Coding Guidelines for Java SE” 2014] were found and

even those ones, contained only a small list of methods, which we knew was not

complete. Therefore, our solution was to try to find and download the source code

of dozens [OWASP 2003a] of open source tools and analyze which methods they

considered as entry-points. The next step was to perform a compilation of all

those methods. After that, the final list was submitted to the approval by the

OWASP committee. However, the result has yet to be returned. For the sake of

brevity, Table 3 presents just a few examples of the methods that are in our list of

entry-points. For the context of Java programming language, we have identified

75 entry-points, the full list is available in our study website [Sampaio 2014a].

Qualified Name Method Name Parameters

javax.servlet.ServletRequest getParameter java.lang.String

javax.servlet.ServletRequest getAttributeNames -

javax.servlet.http.HttpServletRequest getQueryString -

javax.servlet.ServletConfig getInitParameter java.lang.String

Table 3 List of Entry-Points.

3.3.
Exit-Point

An exit-point also referred as sink [Tripp et al. 2009][Livshits and Lam

2005], is a point in the source code where untrusted output goes out of the

boundaries of the application. Additionally, they are specific to a particular

vulnerability. Figure 20 depicts in line 21that the developer is sending the content

of the variable login back to the browser, using the method setAttribute. However,

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 59

the content is unknown and has not been sanitized. This leaves the application

opened to cross-site scripting vulnerability.

Figure 20 Example of Exit-Point.

The same process that was performed for the creation of the entry-point list

was executed to create the list of exit-points. For the sake of brevity, Table 4

presents just a few examples of the methods that are in our list of exit-points. For

Java, we have identified 141 exit-points, the full list is available in our study

website [Sampaio 2014a].

SQL Injection

Qualified Name Method Name Parameters

java.sql.(Prepared)?Statement executeQuery java.lang.String

Cross-Site Scripting

Qualified Name Method Name Parameters

javax.servlet.ServletRequest setAttribute java.lang.String

java.lang.Object

Cookie Poisoning

Qualified Name Method Name Parameters

javax.servlet.http.Cookie setValue java.lang.String

Table 4 List of Exit-Points.

3.4.
Sanitization-Point

A sanitization-point also referred as sanitizer [Tripp et al. 2009][Livshits

and Lam 2005], is a point in the source code where a method or class receives an

untrusted input and returns it as a trusted output. Figure 21, depicts in line 23, that

the untrusted variable unsafeLogin is being passed into the method

encodeForHTML that converts HTML characters that otherwise would be

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 60

considered as code, into a format that makes it become pure data. e.g. the

character “<” is replaced by “<” and “>” is replaced by “>”. By doing these

replacements, the content of variable safeLogin can now be safely sent back to the

browser and displayed to the user. There are some special cases that more actions

are required. However, for most cases, this is sufficient.

Figure 21 Sanitization-Point.

The same process that was performed for the creation of the entry-point and

exit-point lists was executed to create the list of sanitization-points. For the sake

of brevity, Table 4 presents just a few examples of the methods that are in our list

of exit-points. For Java, we have identified 52 sanitization-points, the full list is

available in our study website [Sampaio 2014a].

Qualified Name Method Name Parameters

java.net.URLDecoder decode java.lang.String

org.owasp.esapi.Encoder encodeForHTML java.lang.String

org.owasp.esapi.Encoder encodeForCSS java.lang.String

Table 5 List of Sanitization-Points.

3.5.
Algorithm

Our algorithm reports a source code as vulnerable every time an entry-point

reaches an exit-point without passing through a sanitization-point. This will be

true for all 11 vulnerabilities we support (see section 3.6). For Java, we have

identified 268 methods divided in these three categories. To the best of our

knowledge, no other existing solution identifies more methods. Code Fragment 1

depicts the pseudo-algorithm that performs the data flow analysis.

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 61

1. While thereIsCodeToProcess() {
2. ASTNode node = getNextNode();
3. if (isExitPoint(node)) {
4. for each(parameter in node.getParameters()) {
5. if (hasVulnerablePath(parameter)) {
6. reportParameterAsVulnerable();
7. }
8. }
9. }
10. }

Code Fragment 1 Data Flow Analysis Pseudo-Algorithm

The algorithm receives Java files as input. After that, it processes and

creates the necessary contexts for all elements (variables, fields, methods and etc.)

from each line. If the element is an exit-point, e.g. request.setAttribute or

printWriter.print, then its parameters (if any) are investigated. This is the main

difference from data flow analysis to pattern matching, the ability to navigate

through the source code in order to find the content of an element. If the element

receives its content from an entry-point, the element becomes vulnerable also

referred as tainted. After this point, every other element that interacts with the

tainted element also becomes tainted. This behavior is called tainted propagation.

However, if the element receives its content from a trusted element, such as a

string literal or an output from a sanitization method, this element is considered

secure. After all possible paths of an element are investigated; the algorithm is

able to safely state if the element is vulnerable or secure. In case there is at least

one path that receives tainted content, a warning is reported. In order to improve

the chances of helping developers remove the vulnerability, this warning contains:

the file and line where the vulnerability entered the source code and where it

could be exploited. It also contains the type of the security vulnerability, such as

SQL injection or XSS. This can help in case the developer is interested in

removing vulnerabilities related to a specific type of vulnerability. The last piece

of information is called full path. It contains the complete path (each and all

method invocations) of the identified vulnerability. This information is important

because on medium and large size projects, the amount of possible paths can grow

to a size that makes it nearly impossible to perform manual inspection.

The ability to follow the path of variables and methods creates some

problems that do not exist when performing static analysis with pattern matching.

Figure 22 depicts a code fragment that has a method named infiniteLoop. This

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 62

method has some statements and in line 124, it invokes itself. Although there is no

compilation error in it, if this code is ever executed it will be in a loop until the

JVM (Java Virtual Machine) runs out of memory. However, this should not

prevent our algorithm from analyzing it. To handle this situation, our algorithm

has a recursion control implemented. When it detects a recursion, it does not scan

that method invocation repeatedly. Otherwise the scan would never finish.

Nonetheless, the rest of the statements are normally analyzed.

Figure 22Infinite loops.

3.6.
Supported Vulnerabilities

We were able to implement the heuristics to provide support to 11 security

vulnerabilities, namely: Command Injection [OWASP 2013j], Cookie Poisoning

[OWASP 2013f], Cross-Site Scripting (XSS)[OWASP 2013a], HTTP Response

Splitting [OWASP 2013f], LDAP Injection [OWASP 2013k], Log Forging

[OWASP 2013l], Path Traversal [OWASP 2013m], Reflection Injection [OWASP

2013n], Security Misconfiguration [OWASP 2013e], SQL Injection [OWASP

2013b] and XPath Injection [OWASP 2013o]. These vulnerabilities were selected

to receive our support, because they all stem from untrusted inputs (data sent from

the user) that are not properly validated also referred as sanitized. These inputs do

not have their content compared to a range of expected values or they do not have

malicious data removed from its content to ensure they are safe to use. We also

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 63

decided to support these types of vulnerabilities, because of all vulnerabilities

identified in web applications, untrusted inputs are recognized as being the most

common and capable of causing severe damage [OWASP 2013d].

With the idea to show the reader how the vulnerabilities occur in the source

code and how they can be mitigated, the next sections present the security

vulnerabilities supported by our heuristics. The examples that will be presented,

reveal a key characteristic for most of the security vulnerabilities: these security

vulnerabilities tend to affect only a few lines of code. Then, their detection and

removal from the source code might be considered trivial even for inexperienced

developers (section 2.3.1). However, when developers are working on large

projects with dozens or hundreds of classes and undersized deadlines, this can

become a daunting task. Although our examples only contain a few lines of code,

the main idea is to show how to identify a specific vulnerability and what actions

could be performed to remove it from the source code.

3.6.1.
Command Injection

Command injection is an attack aimed at executing arbitrary commands on

the host operating system via a vulnerable application [OWASP 2013j]. This

attack is possible when an application passes unsafe user supplied data (forms,

cookies, HTTP headers and etc.) to a system shell.

In line 21, the exec method is going to execute an operating system

command with the content supplied by the application’s user (variable command

on line 20). However, there is no guarantee that the user will not provide

malicious commands, such as: cmd.exe /k rd /s /q c:\Windows\. In case this truly

happens, the user can cause severe damage to the host operating system, such as:

steal information, delete files and much more.

Figure 23Command Injection vulnerability.

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 64

Figure 24 depicts some simple modifications in the code that are sufficient

to mitigate the vulnerability. Most of the time, developers know which possible

values a user can provide. In this case, the application is going to execute some

commands on the operating system. Thus, there is a finite and probably small list

of possible commands. Therefore, the developer can verify if the provided input is

among that list. In line 22, the method isValidCommand is invoked in order to

verify if the user correctly provided input as expected by the application. If that is

not the case, an exception is thrown (line 25) preventing the user to cause any

damage to the application or operating system.

Figure 24 Command Injection mitigation.

3.6.2.
Cookie Poisoning

Cookie poisoning is an attack in which the content stored in the cookies is

modified in order to bypass security mechanisms [OWASP 2013f]. Cookies can

be used to store the price of products, user’s information such as ids and

passwords or any other type of information the application desires. The cookies

are saved on the browser (client) and are sent back and forth upon each request

(sent by the browser) and response (sent by the server). However, there are ways

(tools, JavaScript, etc.) that a user can deliberately change the contents of a

cookie.

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 65

As depicted in the code snippet of Figure 25, the application is storing the id

and price of the product that the user wants to buy into a cookie. This may seem

hard to believe. However, cases such as this exist and have been exploited in the

past [Linden 2009]. There are tools available that allow users to deliberately

change the values inside a cookie. For instance, if the user changes the price from

U$100,00 dollars to U$1,00 dollar, the application will suffer financial damages.

Figure 25 Cookie Poisoning - Problem.

Although applications can use information stored inside cookies, they

should only be used on specific situations and should never be trusted. As it can

be seen in the code below, just a simple modification is sufficient to remove the

vulnerability. Instead of retrieving the price of the product from the cookie, the

price should be retrieved from the database, based on the product id that the user

has selected. After that, even if the user selects an expensive product, then

changes the product id to the id of a cheaper one, the price that will be retrieved

will be the price of the cheaper product. Therefore, if the user pays less money,

he/she will receive a cheaper product.

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 66

Figure 26Cookie Poisoning - Mitigation.

3.6.3.
Cross-Site Scripting (XSS)

Cross-Site Scripting occurs whenever an application takes untrusted data

and sends it back to a web browser without proper validation or escaping

[OWASP 2013a, 2013d]. The browser then executes the data (possible malicious

script) that is capable of stealing user sessions, deface web pages or redirect users

to malicious sites. To avoid this, all data sent to the browser should be sanitized

and properly escaped.

In Figure 27, the login variable is receiving the content submitted by the

user in the login parameter. Without any sort of validation to verify the content of

the parameter, this content is being sent back to the browser. However, the content

is unknown and has not been sanitized, in case there is a malicious script in it, the

browser will execute it and the vulnerability will be exploited.

Figure 27Cross-Site Scripting - Problem.

In line 23 of Figure 28, the code uses the method encodeForHTML that

converts HTML characters that otherwise would be considered as code, into a

format that makes it become pure data. e.g. the character “<” is replaced by

“<” and “>” is replaced by “>”. By doing this, the content can now safely

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 67

be sent back to the browser and displayed as content (instead of html tags) to the

user.

Figure 28 Cross-Site Scripting - Mitigation.

3.6.4.
HTTP Response Splitting

HTTP Response Splitting is a vulnerability that happens when an attacker

passes malicious data to a vulnerable application, and the application includes this

data in a HTTP response header [OWASP 2013f]. If the attacker adds a CRLF

(carriage return and line feed) to the end of that untrusted input, he/she can start

inserting his/hers own headers into the response. Among others, one consequence

of this vulnerability is to make users of the application fetch contaminated pages

[Howard et al. 2009] that can cause harm to them.

In Figure 29, the method sendRedirect (line 21) adds a 302 (Object Moved)

header to the response. The response is then sent to the user, containing among

other header information, the page, which the browser should redirect to.

However, the content of variable page has not being sanitized and if it would

contain data such as Hacker\r\nHTTP/1.1 200 OK\r\n.... The browser would then

receive two split responses instead of simply one. Usually attackers exploit this

vulnerability to increase the options for a larger attack.

Figure 29HTTP Response Splitting - Problem.

To mitigate this vulnerability, developers have to validate the input and

remove CRs and LFs from it. In line 25, the method encodeForURL does exactly

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 68

that. The sendRedirect method can be used to redirect users to a local or external

page. In case it is to a local page, it is also recommended to verify if the content

has any extra URL information. e.g. An IP address, www or http.

Figure 30HTTP Response Splitting - Mitigation.

3.6.5.
LDAP Injection

LDAP (Lightweight Directory Access Protocol) is commonly used on

medium-large companies that want to provide a “single sign on” to its employees.

In other words, one user name and password can be used on several different

applications. A LDAP injection occurs when untrusted user input is used to

construct LDAP statements, e.g. queries, searches or any other LDAP function

[OWASP 2013k].

In lines 31 and 36 depicted in Figure 31, the developer is using the content

of variables a and b. However, these two variables have received their content

from the method getParameter (lines 25 and 26), which is an entry-point (see

section 3.2) and all content received from it should be sanitized before being used.

Consequently, creating a LDAP search query with these variables is not

recommended. In case an attacker manages to provide malicious content, she/he

would be able to sign in as a different person (or application) and perform actions

(probably causing damage) in their name.

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 69

Figure 31 LDAP - Problem.

One possible solution could be to use regular expression to verify if there is

unwanted content in the input. Then, encode all characters to make sure they are

interpreted as data and not as html tags (code). Another possible solution is

depicted on Figure 32, the developers created two helper methods called

sanitizeInput and sanitizeOutput. As the name is saying, these methods will

handle (if any) malicious content from input data and before sending it back to the

browser (output data). Now, variables a and b on lines 27 and 28 have been

sanitized and are safe to be used on lines 33 and 38.

Figure 32 LDAP - Mitigation.

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 70

3.6.6.
Log Forging

There are several reasons why an application could store information in log

files. It could be to store history of events, transactions for later review, auditing

purpose and others. Whatever the reason is, developers should be aware that

attackers can exploit logging vulnerabilities in order to disguise a bigger attack

[OWASP 2013l].

Line 23 is trying to convert the content of variable value from type String to

Integer. However, if the variable does not contain a content that can be converted,

the method parseInt will throw an exception of type NumberFormatException. In

case this happens, line 27 will store the information that a parsing failed,

combined with the value that caused the problem. However, attackers can

provides content such as one%0aINFO:+user+status%3dokwith the intention to

make the log file more complicate for a later review.

Figure 33Log Forging - Problem.

As already described, the best way to mitigate a vulnerability is to sanitize

all external (user, other applications) input. Line 23, will decode html characters

(if any) into their corresponding ASCII values. This will guarantee that they are

interpreted as data and not as tags (code). Besides that, the code behaves in the

same way as in Figure 33. In case the method parseInt is not able to convert the

value from variable safeValue, it will throw an exception that will be logged on

line 30. However, in this case, even if the content of variable safeValue originally

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 71

contained malicious data, it will be inserted into the log file as pure data and will

no be interpreted as code.

Figure 34Log Forging - Mitigation.

3.6.7.
Path Traversal

Path traversal is a vulnerability that allows attackers to access files and

directories that are stored outside the application’s folder or that they were not

supposed to have access [OWASP 2013m]. For instance, some web applications

allow their users to download files, such as pdfs, images etc. A common way to

perform this is by providing an URL (see URL 1 below). However, if an attacker

provides an URL with a path to a different file or directory (see URL 2 below)

and the developer does not verify if the content being requested is indeed a valid

value, the application might be exploited.

1. http://site.com/get-files.jsp?file=report.pdf

2. http://site.com/get-files.jsp?file= /../../../../etc/passwd

In the current example (Figure 35), the developer is using the method

getParameter to receive the content submitted by the user. However, without

performing any type of sanitization on the variable filename, she/he created a new

File object and than tried (using the delete method) to delete the file informed by

the user. As it was mentioned on the previous section, if the user provides a path

to a file outside of the domain of the application, the code will delete it, thus,

probably causing damage to the application or even to the operating system.

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 72

Figure 35 Path Traversal - Problem.

In order to mitigate this problem (Figure 36), the developer can verify if the

user is requesting a file that is inside the correct directory. Other types of

verification might be, to verify if the extension (pdf, doc, etc.) of the file is correct

and if the user is the real owner of that file. In summary, simply a few

verifications can make the software more secure.

Figure 36Path Traversal -Mitigation.

3.6.8.
Reflection Injection

Reflection is commonly used by programmers that want to modify the

runtime behavior of the application [Oracle [S.d.]]. Therefore, this relatively

advanced feature should not be used indiscriminately. Fortunately, developers

know about this and the use of reflection is most common on libraries and

frameworks, such as Hibernate5 and Struts6, not so much on regular programs. A

5http://hibernate.org/

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 73

reflection injection vulnerability occurs when the developer incorrectly uses

external un-sanitized input in one of the reflection construct methods [OWASP

2013n]. If an attacker is able to exploit this vulnerability, she/he can cause

unexpected classes to be loaded, or change which methods or fields are accessed

on an object.

Suppose the code snippet below (Figure 37) is used to create a protected

connection where data can be safely transferred. The developer is expecting a

concrete class, such as HttpsUrlConnection from the javax.net.ssl package, which

implements the interface HttpURLConnection and sends data in a secure mode.

However, if an attacker provides the class HttpURLConnection from the java.net

package, this class also implements the interface HttpURLConnection.

Consequently, the code will work with no error but the fact that the connection

and the transfer of the data will be in an insecure mode.

Figure 37 Reflection Injection - Problem.

Once again, to mitigate this problem, the programmer can restrict the values

that are accepted as valid content. In Figure 38, before creating a new instance on

line 27, the developer is verifying on line 26 if the user provided one of the

expected class names in order to create a protected connection. In case this is not

true, the connection will simply not be created. Therefore, removing any

possibility of having unsecure connections that can be intercepted.

6http://struts.apache.org/

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 74

Figure 38 Reflection Injection - Mitigation.

3.6.9.
Security Misconfiguration

Security misconfiguration usually happens when default accounts are not

removed, software systems or libraries are not updated or in the context of source

code, when encrypted passwords are hard-coded into the source code [OWASP

2013e]. The problem with this attitude is related to the fact that there are projects,

such as Java Decompiler [“Java Decompiler” [S.d.]],which are able to decompile

java byte code, extract the content of classes and reveal information, such as login

and password to unauthorized people. This type of information should be

encrypted or at least stored in another file [OWASP 2013e].

The line 23 in Figure 39is creating a Connection object, which will be used

to connect and send commands to the database. In order to create this connection,

the method getConnection must be invoked passing three different parameters.

First, the URL of the JDBC7 driver that will be used to establish and maintain the

connection opened. The second and third parameters are the user name and

password to authenticate into the database server. The problem with this code

snippet is the fact that it has the database’s login and password hard coded and in

a decrypted form, which as already mentioned, is not recommended.

7http://www.oracle.com/technetwork/java/javase/jdbc/index.html

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 75

Figure 39 Security misconfiguration - Problem.

The proper way to mitigate the problem of having a hard coded user name

and password, is to store them (in a encrypted form) in a configuration file. Then

the developer can read this file, decrypt the content and use it in the application.

The code snippet below does not show the full implementation for the sake of

simplicity. However, the important lesson to learn from this vulnerability is that

user names and password should always be kept encrypted.

Figure 40 Security misconfiguration - Mitigation.

3.6.10.
SQL Injection

SQL Injection affects programs in all programming languages and it is

based on the same principle (untrusted data) as cross-site scripting (XSS)

(see3.6.3). It occurs when developers do not perform the proper validation on

inputs originated from users or other applications. These inputs should not be

trusted because it is not clear what are the intentions of these users and

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 76

applications [21], [19]. When these inputs are passed to an interpreter as part of a

command or query and it contains malicious data, it can trick the interpreter into

executing unintended commands or access data without proper authorization. To

prevent this problem every input should be validated.

In Figure 41, it is possible to observe that the code has at least three

mistakes. (1) The login variable is being used without receiving any sanitization.

(2) The sql variable is being created by the concatenation of the "SELECT *…"

with the information submitted by the user and (3) the code is using the statement

instead of the preparestatement, which is the recommended for interacting with

the database. Therefore, if an attacker submits malicious content, she/he will be

able to execute unintended actions, such as login as another person, maybe delete

some content that she/he was not supposed to have access, delete tables and cause

much more severe damage.

Figure 41SQL injection - Problem.

Although Figure 42 appears similar to Figure 41, it is possible to observe

that the sql variable has a “?” (question mark, also known as place holder) that

will be replaced with the content of the variable login. However, before the

replacement, the content will be sanitized by the method setString from the

preparedStatement object. These differences are enough to mitigate the SQL

injection vulnerability and make the source code secure.

Figure 42SQL injection - Mitigation.

3.6.11.
XPath Injection

XPath injection occurs in the same way as SQL injection (see section

3.6.10), which is when the XPath queries for XML data are created with user-

supplied information that has not been sanitized [OWASP 2013o]. XPath

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 77

Injections might be even more dangerous than SQL Injections, because XPath

does not contain access control and allows querying of the complete database

(XML document) [OWASP 2013o].

Figure 43 depicts a source code containing an XPath vulnerability. The

reason for that is the fact that the developer is using the login and password

variables to create an XPath expression on line 30. The variables login and

password have not being sanitized, thus, they might contain malicious content. If

the user provides her/his expected credentials, the application will work as

expected. However, if an attacker provides content, such as ' or 1=1 --', she/he

could be able to login as any user, usually the first registered user is the admin.

Thus, this vulnerability is considered extreme dangerous to an application.

Figure 43 XPath Injection - Problem.

The same idea of how to mitigate other vulnerabilities can be used on XPath

injection. User-provided information should never be trusted and before being

used, they should be sanitized. The solution presented on Figure 44, was to create

a method call sanitizeInput on line 42 and invoke it for all the input parameters,

i.e. lines 27 and 28. Now, the XPath object on line 37 can safely execute the

desired search.

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 78

Figure 44 XPath Injection - Mitigation.

3.7.
Current Limitations

In summary, the types of security vulnerabilities (presented in this section)

reveal a key characteristic of most of the security vulnerabilities: each of them

tends to affect only a few lines of code but, at the same time, they are responsible

for causing severe damage on real applications. Therefore, developers should be

aware of security vulnerabilities when creating their software systems. All the

presented vulnerabilities are supported by our heuristics. However, there are still

known vulnerabilities that are not detected. There are at least two reasons for this

limitation. First, this is the first version of our heuristics and, just as any other

existing solution, it has its limitations. Second, we focused on vulnerabilities that

stem from untrusted input. There are other vulnerabilities that are not affected by

this problem. Consequently, they are not detected by our approach.

This section also discusses other potential features that were not

implemented due to time constraints. Therefore, they are limitations of our current

prototype and not limitations from data flow analysis. For example, containers,

such as arrays, lists, maps and vectors. Vectors are an important part of modern

programming languages [Dillig et al. 2011]. The fact that a container might

receive a tainted element does not mean that all other elements of its internal

structure are also tainted. The current version of our heuristics is not able to make

this distinction. In other words, as depicted in Figure 45, variable x (line 20)is an

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 79

array initialized with three elements. Untrusted variables a and b and string literal

(trusted content) “c”. Once a container receives untrusted data, the object itself

and all of its indexes are incorrectly marked as vulnerable. Every attempt to use

that object will be reported as a security vulnerability, as is depicted in lines 22,

25 and 26, which in this case are false positives. In this example, only lines 23 and

24 should have been reported are vulnerable.

Figure 45False positives on containers generated by ESVD.

For now, it is enough to know that we tested some existing solutions (see

section 2.6) in order to verify how accurate our prototype was, when compared to

other tools. Figure 46 depicts the results from the same code snippet (from Figure

45) being analyzed by these tools. The first image on the left is a screenshot from

the vulnerabilities reported by ASIDE. The second image on the right belongs to

CodePro Analytics. This tools reports two vulnerabilities on each line, because it

identifies two vulnerable paths (lines 17 and 18) reaching the vulnerable code

(lines 23, 24, 25 and 26). The last image on the bottom is the Lapse+ view where

the vulnerabilities found are displayed. As it can be seen just as the other tools, it

also incorrectly reports lines 25 and 26.

Figure 46 False positives on containers generated by ASIDE, CodePro Analytics and Lapse+.

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 80

4
Early Vulnerability Detector: Implementation

After our detection heuristics were created, we designed and implemented

our tool prototype. Although our heuristics are generic and can be implemented to

the context of other programming languages, the first (and current) version of our

prototype only provides support for the Java8 programming language, which is

one of the most popular programming languages [Zeichick 2012]. The prototype

is a plugin for the Eclipse9 IDE (integrated development environment), which is

the most popular IDE used for the Java programming language[Geer 2005].

Another fact that contributed for choosing Eclipse (and not other IDE) was the

amount of available tutorials [51][70][71] and engagement from the community.

The plugin, called ESVD - Early Security Vulnerability Detector, is free of charge

and can be downloaded from the Eclipse Marketplace [Sampaio and Garcia 2014].

4.1.
Architecture

Although this prototype was created to find security vulnerabilities in the

source code of Java programs, the architecture was designed to flexibly allow the

incorporation of detectors for other programming flaws. Some examples of these

additional programming flaws are: detection of code anomalies (code smells

[Fowler et al. 1999]), detection of empty or poor exception handlers, and others.

The reason is that our early vulnerability detector could be used in conjunction

with other early detectors, intended to support other practices for modular and

robust programming. For instance, our research group has other students studying

these subjects [Albuquerque et al. 2014; Barbosa et al. 2012].These studies are

probably going to result in the creation of other Eclipse early detector plugins.

Thus, the architecture foundation for promoting the detector’s integration is

8https://www.oracle.com/java/
9https://www.eclipse.org

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 81

already prepared. Figure 47 depicts the plugin’s architecture, which consists of

four main modules: Manager, Analyzer, Verifier and Reporter. Each of them will

be described in the next sections. This section also presents the mechanism (call

graph) that made our prototype feasible. In order to be constantly running in the

background, it would not be possible to process all files from all projects all the

time. Therefore, the call graph object is able to identify modified elements

(classes and methods), its interactions and to inform to the DFA algorithm, what

are the elements that should be processed.

Figure 47ESVD Plugin Architecture.

4.1.1.
Verifier

The verifier is the module that has all the necessary knowledge to find the

vulnerabilities in the source code. It combines the knowledge from lists of entry-

point, exit-point and sanitization-point with the data flow analysis of the analyzed

code. By dividing the architecture into several layers, when a new vulnerability

appears it will only be necessary to create a new verifier. In case there are false

positives in the cookie poisoning verifier, it is known exactly where to search for

the problem. Developers must understand that each verifier will only detect one

security vulnerability. Therefore, if they unselect one or more verifiers and the

source code has the vulnerability of that verifier, the plugin will not be able to

detect and report it. Thus, unless there is a specific reason to unselect them, they

should be left selected. Figure 48 depicts the already 11 implemented verifiers.

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 82

Figure 48 Implemented Verifiers.

4.1.2.
Analyzer

The analyzer is the module responsible to aggregate all the verifiers of its

type. Thus, the Security Vulnerability Analyzer has several verifiers: SQL

injection Verifier, Cookie Poisoning Verifier, and so forth. When the user selects

an analyzer, it automatically selects all of its verifiers. However, if the user does

not want to execute a specific verifier, he/she can unselect it, as can be seen in

Figure 49 and the verifier will not be executed.

Figure 49Verifiers of the Security Vulnerability Analyzer.

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 83

4.1.3.
Manager

The Manager is the main module of the plugin, which is responsible to

interact with the user (in our context, the developer) by providing an interface

where the user can define basic settings. First, the developer selects what will be

executed when the plugin runs. These options that the user can select to run or not,

are called Analyzers (section 4.1.2). In the current version of our plugin, there is

only one analyzer, which is the Security Vulnerability Analyzer. Second, the

developer selects where the results should be displayed. These options where the

results can be displayed are called Reporters. Currently, there is only one reporter,

which is the Security View Reporter. In the future, other analyzers and reporters

can be added.

In order to make the plugin perform early detection, it is necessary to

monitor all files (*.java) that are being modified from a selected project.

Fortunately, Eclipse already provides the ability to attach one or more classes into

its compilation process. Therefore, the user selects which analyzers are going to

be executed and the manager attaches them into Eclipse’s compilation process.

After that, the analyzers are invoked every time Eclipse compiles a class. The

Eclipse’s infrastructure already handles multiple threads, how to update the user

interface (UI) and other aspects that the plugin does not need to worry about.

4.1.4.
Reporter

Finally, the last entity is the reporter; it is the module responsible to receive

a list with all found problems (vulnerabilities, code anomalies and etc.) and writes

them out on the output selected by the developer. This output can be (1) Eclipse

Console, (2) Eclipse Problems View, (3) Text file, (4) Xml file or (5) ESVD

Security View (see Figure 50). The idea of allowing the writing of the results into

other places, such as a file, is that other tools can read this file and perform other

operations that we do not perform, or present them in a different way. An example

is a chart showing the most found vulnerabilities or who is the developer that is

adding more vulnerabilities into the source code.

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 84

Figure 50 Security Vulnerability View.

4.2.
Call Graph

In order to make our prototype constantly running on the background, it was

not possible to process all files from all projects all the time. Therefore, the goal

of the Call Graph object is to store all the interactions between the classes of the

project being analyzed. Thus, these interactions will guide the data flow algorithm

when the analysis is performed. As it can be seen in Figure 51, we have three

types of class interactions: (i) Forward connection occurs when class A invokes

one or more methods of any other class(es), (ii) Backward connection occurs

when class C has one or more methods being invoked by any other class(es), and

(iii) Bi connection occurs when class B invokes one or more methods of class C

and has one or more methods being invoked by any other class.

Figure 51 Types of Interactions.

4.2.1.
Clean Call Graph

The first time the source code is analyzed, it is necessary to process all

resource (*.java) files. In a process called Call Graph Construction. Figure 52

depicts a project containing six classes with names Class A - F. The names of the

classes and their methods are simply illustrative. The idea here is to show that all

these classes and their methods will be scanned. The meaning of scan, process,

analyze in this dissertation is that our algorithm will follow the data flow of

variables, fields and method invocations in all methods of the current class being

processed.

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 85

Figure 52 Clean Call Graph.

4.2.2.
Prime Call Graph

The next time the code is analyzed, only the modified resources since the

last analysis and the classes that have connection with them are scanned, because

the Call Graph already has the interactions of the other classes that do not interact

with the current modified resources. In Figure 53, it is possible to observe that if a

developer is working on class F, only classes F and E will be processed. Classes

A, B, C and D (from Figure 52) cannot affect the result of the analysis. This

ability decreases the amount of time, memory required to perform a full

verification and makes it feasible to perform early vulnerability detection using

DFA on large projects.

Figure 53 Prime Call Graph.

4.3.
Features

The developers are the end users of our prototype and not security

specialists. Thus, we avoided adding features in our prototype that no average

programmer will ever use, or that are so complex that only security specialists are

able to use. We planned carefully to only add features that make sense to the

developer’s point of view. These features will be described next.

1. Early Detection: The developer will not need to activate the tool execution

(i.e. press a “Run” button) for starting the scanning of files and searching for

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 86

security vulnerabilities in the program. As default configuration, the tool will

always be running in the background. As soon as it finds a vulnerability, a

warning containing information about the vulnerability is displayed to the

developer.

2. Data Flow Analysis with Context-Sensitivity: In order to reduce the rate of

false positives that are normally present in most existing solutions (section

1.2),we implemented our DFA-based algorithm to detect vulnerabilities with

context sensitivity, aiming at obtaining higher accuracy.

3. Description of the vulnerability: When a security vulnerability is found in the

source code, a complete description is presented to the developer. This

description contains: the name of the vulnerability, the file name, the line

number, and the path showing where the vulnerability entered the source code

and where it can be exploited.

4. Improved Performance: Eclipse provides all necessary information related to

the files that are currently being edited by the developer. We believe there is

no reason to re-scan all the other unchanged files. The plugin performs this

verification before performing a full code analysis. This is necessary to

compensate the constant processing of the plugin. Otherwise, it would be

impossible to perform this kind of detection on all files in the projects.

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 87

5
Evaluation

We performed two empirical studies in order to evaluate if secure

programming can be improved through: (i) context-sensitive data flow analysis

(section3.1), and (ii) early vulnerability detection (section 2.5). The first study was

intended to verify if and to what extent data flow analysis could reduce the rate of

false positives in comparison to other techniques (supported by other existing

static analysis tools). This verification was carried out by comparing the accuracy

of our technique against other automated techniques (section 2.6). To this end, we

ran our tool prototype and the other techniques on five open-source software

projects and one custom-made project (section 5.1.2). These projects are

representative of different domains and exhibit different trends on security

vulnerability.

The second study focused on assessing the accuracy of early detection. We

designed and executed a controlled experiment, where participants were asked to

implement some functionalities of a program. Each participant was assigned to

one of two groups, early detection group and late detection group. The former

group was equipped with continuous detection support for identifying

vulnerabilities (early detection). The latter group of participants was only able to

trigger the vulnerability detection analysis at the 40 minutes mark of their

programming session. Therefore, this group was actually employing a late

detection procedure, which is stimulated by the conventional techniques for

program security analysis. We then compared which of the groups of participants

produced code with higher security. This comparison was based on the analysis of

the amount of security vulnerabilities created, fixed and found in the source code

they produced (section 5.2.2).

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 88

5.1.
Study 1: Accuracy Benchmarking

This section reports the procedures and results of the first exploratory study.

The first study was aimed at assessing if and to what extent our approach – i.e.

supported by context-sensitive data flow analysis – could reduce the rate of false

positives in comparison to other techniques (supported by other existing static

analysis tools). In this study, we were not concerned with assessing the influence

of early and late detection on the produced code’s security. The evaluation of

accuracy in this study was based on three metrics presented in section 5.1.4.

In order to conduct this first study, we executed our prototype and the three

existing solutions (Lapse+, ASIDE and CodePro) selected to participate on our

study (section 2.6). However, it is important to mention that our focus is on their

underlying techniques employed to find security vulnerabilities and not in

anything else, such as user interface or usability. In particular, we intend to

compare: (i) the accuracy of pattern matching against data flow analysis. Table 6

presents the underlying techniques supported by each tool, i.e. if they use pattern

matching or data flow analysis and if they perform late detection or early

detection.

 Pattern Matching Data Flow Analysis Late Detection Early Detection
Lapse+ X X
ASIDE X X
CodePro X (context-insensitive) X
ESVD X (context-sensitive) X

Table 6 Characteristics of the tools used in our evaluation.

We ran these four tools on six open-source projects, namely BlueBlog

[Burén 2003], PersonalBlog [Payne 2003], WebGoat [OWASP 2006], Roller

[Johnson 2002], Pebble [Brown 2006] and NCO [Sampaio 2013]. We recorded

the security vulnerability reports for each one of them. Almost all of these projects

were selected because they were also used on previous studies [Livshits 2005],

[Tripp et al. 2009] for evaluating security analysis tools. The only exception is

NCO, a personal project created by the author of this dissertation. This decision

will be justified later.

The original motivation in using many projects in common with previous

studies was to compare our results against theirs. However, this comparison was

not possible because the aforementioned studies did not make their results

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 89

publicly available. In any case, we still used all these projects as independent

researchers considered them good benchmarks for assessing the accuracy of

vulnerability detection (section 5.1.2). Therefore, we had to derive our own results

without a direct comparison with the vulnerabilities found in those previous

studies. We then analyzed whether each reported warning was actually a security

vulnerability. This analysis was based on an oracle (or ground truth) containing a

list with all known security vulnerabilities of each project. As the original

developers and the main authors of the aforementioned studies were not available,

the oracle was produced through a careful manual inspection of each possible case

of security vulnerability. The author of this dissertation has carefully examined if

each of the possible security vulnerabilities was a true or false positive. The

comparison of the ground truth and the reported warnings enabled us to validate

or invalidate each warning produced by a particular tool. The final report

containing all reported warnings and the ground truth of each of the open-source

projects can be downloaded from our study website[Sampaio 2014b].

5.1.1.
Testing Environment

The testing environment comprised an Apple laptop running OS X

Mavericks, with a 2,7 GHz Intel Core i7 processor and 16GB of RAM. The

plugins ran on top of Java Standard Edition Runtime Environment (JRE), build

1.7.0_55-b13. The maximum amount of memory granted to each plugin was set to

1GB of RAM. In order to improve our confidence on the results, we performed

each test five times for each plugin. These multiple tests were necessary because

we noticed differences in time, memory usage and the list of vulnerabilities

reported for some of the tools when executed on the same source code. The results

presented on the next sections are the average of these five executions. The

average was used to compensate any possible external process running on the

background of the used laptop.

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 90

5.1.2.
Open-Source Projects

This section describes the six applications used in our study. All the selected

projects are open source in order to allow others to replicate our study in the

future. The selection of these projects was also based on three main criteria. First,

they have been recently used as benchmark applications for evaluating security

analysis tools, in studies such as SecuriBench [Livshits 2005] and TAJ [Tripp et

al. 2009]. Second, previous studies have reported a wide range of security

vulnerabilities in these programs, and finally, they rely on different programming

technologies and have different sizes (Table 7). As aforementioned, satisfying the

first criterion above was also originally intended to enable us to compare our

results against the results from previous empirical studies.

Table 7 presents some details about these six applications. The first row

presents the names of each application. The second one describes the number of

the program version used in our study. Although some of the applications have

newer versions, we used the same versions from previous empirical studies in

order to contrast the results. Rows 3, 4, 5 and 6 contain the number of packages,

classes, methods and lines of code respectively. The size of the program varies

from close to 2 thousand lines of code to more than 36 thousand. The inclusion of

both small and large programs in our evaluation was important as execution time

of the detection algorithm can be influenced by the program size. Our proposed

detector is continuously running when the programmer is editing the code

statements. Therefore, we needed to check to what extent the execution time

significantly increases (or not) for larger programs.

BlueBlog [Burén 2003] is a blogging software, based on the use of Java10 and

Servlet11 technologies. It was designed for non-professional users, in other words,

with easy installation and extreme flexibility. PersonalBlog [Payne 2003] is a

lightweight application for personal blogging. This project is written in Java and

in a variety of J2EE technologies, including: Ant12, Servlets, JSP13, JDBC14,

10https://www.oracle.com/java/index.html
11http://www.oracle.com/technetwork/java/index-jsp-135475.html
12http://ant.apache.org/
13http://www.oracle.com/technetwork/java/javaee/jsp/index.html

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 91

Hibernate15, Struts16, Tiles17 and Log4J18.WebGoat [OWASP 2006] is a deliberately

insecure web application maintained by OWASP, designed to mimic recurring

security problems of web applications. Users of this application can demonstrate

their understanding of relevant secure programming issues by exploiting real

vulnerabilities in the WebGoat application. Roller [Johnson 2002] is the open

source Java blog server used by blogs.oracle.com, the Apache Software

Foundation and many others. Pebble [Brown 2006] is a lightweight, open source,

Java EE blogging tool. NCO (Nova Clínica Odontológica) is a custom-made J2EE

application created for a dental clinic, developed by the author of this dissertation.

The benefit of using this application was the fact that it follows a MVC[Deacon

2009]architecture and has hundreds of method invocations and class instantiations

intertwined. Thus, this program can expose data flow analysis to its limits. The

source code of this application can be downloaded from our study website

[Sampaio 2013].

 BlueBlog PersonalBlog WebGoat Roller Pebble NCO

Version 1.0 1.2.6 5.4 0.9.9 2.6.4 1.0

of packages 22 10 24 70 100 49

of classes 38 38 159 283 743 84

of methods 227 253 1.453 2.704 3.445 517

Lines of Code 2.200 2.933 24.483 34.301 36.709 6.048

Table 7 Benchmark applications.

5.1.3.
Supported Vulnerabilities

A list with dozens of recommended tools to find security vulnerabilities can

be found at the OWASP website [OWASP 2003a]. However, each one of them

focuses on the detection of only a few specific types of vulnerabilities. The tools

selected for our study focus on vulnerabilities that stem from program input and

14http://www.oracle.com/technetwork/java/javase/jdbc/index.html
15http://hibernate.org/
16http://struts.apache.org/
17https://tiles.apache.org/
18http://logging.apache.org/log4j/2.x/

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 92

output not being properly validated. The reason was twofold. First, from all

vulnerabilities identified in web applications, untrusted inputs and outputs are

recognized as being the most common ones [OWASP 2013d]. Second, these

vulnerabilities are not dependent on how developers create their code or which

technologies are being used. For instance, when developers pass an unsafe content

to a log method, it is guaranteed that there is a vulnerable code, as opposed to

other types of vulnerabilities such as: unauthorized access. The reason is that each

program can implement different types of authorization, e.g. using sessions,

cookies, URL rewriting, and so forth. In other words, vulnerabilities that stem

from input and output not being properly validated can be detected without the

need of any input or configuration from developers. In addition, in case they are

exploited, they can cause a great amount of damage.

Table 8 presents the vulnerabilities supported by all three external tools and

our prototype. The first column is simply a number for the row. The second one is

the vulnerability’s name and columns 3, 4, 5 and 6 are the names of the tools that

participated on the benchmark. Even though ASIDE only supports four

vulnerabilities, it was used on our study because of two reasons. First, ASIDE is

the only available tool we found that performs early detection of security

vulnerabilities for Java. Second, when we were first testing several tools from the

OWASP list, trying to decide which of them would we add to the benchmark

experiment, ASIDE showed decent accuracy results when compared to some

others.

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 93

Nr	 Vulnerability	 ASIDE	 Lapse+	 CodePro	 ESVD	

1	 Command Injection -‐	 ✔	 ✔	 ✔	

2	 Cookie Poisoning ✔	 ✔	 ✔	 ✔	

3	 Cross-Site Scripting (XSS) ✔	 ✔	 ✔	 ✔	

4	 HTTP Response Splitting -‐	 ✔	 ✔	 ✔	

5	 LDAP Injection -‐	 ✔	 ✔	 ✔	

6	 Log Forging ✔	 ✔	 ✔	 ✔	

7	 Path Traversal -‐	 ✔	 ✔	 ✔	

8	 Reflection Injection -‐	 -‐	 ✔	 ✔	

9	 Security Misconfiguration -‐	 -‐	 ✔	 ✔	

10	 SQL Injection ✔	 ✔	 ✔	 ✔	

11	 XPath Injection -‐	 ✔	 ✔	 ✔	

	 	 Total	 4	 9	 11	 11	

Table 8 Supported vulnerabilities.

5.1.4.
Precision, Recall and F-measure

The precision, recall and f-measure metrics are frequently used to evaluate

the accuracy of static analysis techniques, and they are also particularly used to

assess techniques for vulnerability detection [Sasaki 2007]. These metrics are

composed by three other metrics, namely number of true positives, number of

false positives and number of false negatives. True positive is when a security

vulnerability is reported and it is an actual vulnerable code. False positive is when

a security vulnerability is reported and it is not an actual vulnerable code. False

negative is when a security vulnerability is not reported but it is an actual

vulnerable code.

The figures below depict the equations used to calculate precision, recall

and f-measure. The symbols tp, fp and fn in the figures below represent

respectively: number of true positives, number of false positives and number of

false negatives.

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 94

Figure 54 Equation of Precision.

Precision quantifies the rate of security vulnerabilities correctly identified

by the number of detected vulnerabilities [Sasaki 2007].

Figure 55 Equation of Recall.

Recall quantifies the rate of security vulnerabilities correctly identified by

the number of existing vulnerabilities [Sasaki 2007].

Figure 56 Equation of F-measure.

F-measure or balanced f-score can be interpreted as a weighted average of

the precision and recall, where the highest value is one and the lowest is zero

[Sasaki 2007]. F-measure is not frequently used as the other metrics. However, it

was used in our study because our technique achieved a lower rate of false

positives when compared to the other solutions, but in some specific situations, it

achieved a higher rate of false negatives. Therefore, the f-measure was responsible

to balance these two metrics and produce a better final score. False negatives are

also considered very harmful to secure programming, because it might give the

wrong impression that the source code is secure when in reality is not.

5.1.5.
Study 1: Results

This section addresses the results related to our first research question. We

compute, collect and discuss the results of the accuracy metrics, which are

presented in section 5.1.5.1. We also present the results concerning memory and

time spent (section 5.1.5.2). The goal is to support our understanding if the best

accuracy results of one technique do not negatively lead to a significantly higher

use of computation resources.

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 95

5.1.5.1.
Accuracy Results

The histograms presented in this section follow a similar structure: each of

the three sets of bars respectively represent: the percentage of true positives, false

positives and false negatives on each of the analyzed applications. Each of these

sets have bars representing the results of the four tools: the first bar represents

ASIDE, the second represents CodePro, the third represents Laspe+ and fourth

represents ESVD. On the right side, there is a legend with the name of the tool

and the number of vulnerabilities it reported on the analyzed application. In the

following paragraphs, we report the comparative results individually for each

project as there was some variation across the three accuracy metrics being

computed. We explicitly mention when there are similarities and divergences in

the results.

The first analyzed project was BlueBlog. This project contains 2.200 lines

of code and the total amount of found vulnerabilities was18. ASIDE and Lapse+,

which use pattern matching, reported 43 and 32 warnings respectively. From those

warnings, 32 warnings (or 74%) from ASIDE and 19 warnings (or 59%) from

Lapse+ were false positives. CodePro and ESVD, which use data flow analysis,

reported five and eight warnings, respectively. From those warnings, 1 warning

(or 20%) from CodePro and 0 warnings (or 0%) from ESVD were false positives.

The DFA tools were able to achieve lower rates of false positive, because as

mentioned earlier (section 3.1), the data flow technique only reports warnings

when it is able identify a path where an entry-point reaches an exit-point, without

passing through a sanitization-point, thereby decreasing the rate of false positives.

However, as complementary results demonstrate, the rate of false negatives

was higher than the ones from the pattern matching tools. ASIDE and Lapse+ had

7 (or 39%) and 5 (or 28%) false negatives while CodePro and ESVD had 14 (or

78%) and 10 (or 56%) false negatives respectively. This is explained because

pattern-matching tools flag anything they are not able to verify. On the other hand,

data flow analysis tools, only flag vulnerable paths. However, as already

explained (section 3.5), there are some types of code, such as containers, that if

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 96

the data flow algorithm is not able to properly identify, will generate a false

negative.

Figure 57. BlueBlog.

The PersonalBlog project contains 2.933 lines of code and the amount of

found vulnerabilities was148. ASIDE and Lapse+ reported 68 and 42 warnings,

respectively. From those warnings, 9 (or 13%) warnings from ASIDE and 7 (or

17%) warnings from Lapse+ were false positives. CodePro and ESVD reported 4

and 119 warnings; from those warnings, 1 (or 25%) from CodePro and 3 (or 3%)

from ESVD were false positives. On this project, ESVD achieved the lowest/best

rate of false positive and false negative from all tools, 3% and 22% respectively.

Figure 58 PersonalBlog.

One of the most important benefits from the benchmark was to have enabled

us to investigate the false positives in order to understand what was the reason our

technique did not reach 100% of true positive. Figure 59 depicts a code snippet

where our technique flagged lines 866 and 867, because as explained in section

3.6.9, a user name and password should not be hardcoded. However, the problem

on this code is the fact that the developer concatenated strings literals and our

heuristics were not able to differentiate these strings from the actual user name

and password. Because of this, it incorrectly flagged the code as vulnerable.

26%	

74%	

39%	

80%	

20%	

78%	

41%	

59%	

28%	

100%	

0%	

56%	

0%	

50%	

100%	

%	 True	 Positives	 %	 False	 Positives	 %	 False	 Negatives	

BlueBlog	
ASIDE	 (43)	

CodePro	 (5)	

Lapse+	 (32)	

ESVD	 (8)	

87%	

13%	

60%	
75%	

25%	

98%	
83%	

17%	

76%	

97%	

3%	 22%	
0%	

50%	

100%	

%	 True	 Positives	 %	 False	 Positives	 %	 False	 Negatives	

PersonalBlog	
ASIDE	 (68)	

CodePro	 (4)	

Lapse+	 (42)	

ESVD	 (119)	

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 97

Figure 59 PersonalBlog false positive.

The WebGoat project contains 24.483 lines of code and the amount of found

vulnerabilities was488. ASIDE and Lapse+ reported 702 and 465 warnings,

respectively. From those warnings, 355(or 51%) warnings from ASIDE and

148(or 32%) warnings from Lapse+ were false positives. CodePro and ESVD

reported 86 and 253 warnings; from those warnings, 43(or 50%) from CodePro

and 53 (or 21%) from ESVD were false positives. Once again, ESVD achieved

the lowest/best rate of false positives.

Figure 60 WebGoat.

Although ESVD achieved the lowest rate of false positives compared to the

other tools when analyzing the WebGoat project, there were still several cases of

them. As depicted in Figure 61, the code correctly used preparedStatement on line

279. However, there is a string concatenation on line 273, and a string

concatenation as a query to the database is not allowed by our heuristics. Thus,

flagging the code as vulnerable. However, on this particular case even with the

string concatenation, there is no possible way to inject a malicious code because

the type of variable nextId is int and numbers cannot hold malicious code.

Although we believe our heuristics should be prepared to identify these special

cases, string concatenation is not recommended even in cases like this.

49%	 51%	

29%	

50%	 50%	

91%	

68%	

32%	 35%	

79%	

21%	

59%	

0%	

50%	

100%	

%	 True	 Positives	 %	 False	 Positives	 %	 False	 Negatives	

WebGoat	
ASIDE	 (702)	

CodePro	 (86)	

Lapse+	 (465)	

ESVD	 (253)	

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 98

Figure 61 False positive on WebGoat.

The Roller project contains 34.301 lines of code and the amount of found

vulnerabilities was 521. ASIDE and Lapse+, reported 209 and 212 warnings

respectively. From those warnings, 147 warnings (or 70%) from ASIDE and 125

warnings (or 59%) from Lapse+ were false positives. CodePro and ESVD

reported 58 and 466 warnings, respectively. From those warnings, 13 (or 22%)

warning from CodePro and 3 (or 1%) warnings from ESVD were false positives.

Figure 62 Roller.

Once again, our heuristics was close to but did not achieve 100% of true

positives, the reason this time is shown in Figure 63. Our heuristics is prepared to

identify a path that comes from an entry-point (line 93) and goes to an exit-point

(line 115) without being properly sanitized. This is what happened in this

example. However if we take a closer look at it, it is possible to observe that even

if the user provides malicious content, the constructor new Locale(…) on line 112

can only return a valid locale object or the default one in case the content of

variable newLang is not recognized as a valid option for a language. In other

30%	

70%	

88%	
78%	

22%	

91%	

41%	

59%	

83%	
99%	

1%	 11%	
0%	

50%	

100%	

%	 True	 Positives	 %	 False	 Positives	 %	 False	 Negatives	

Roller	 ASIDE	 (209)	

CodePro	 (58)	

Lapse+	 (212)	

ESVD	 (466)	

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 99

words, there is no vulnerability in this case. Line 116 is a case of true positive of

log forging.

Figure 63 Roller false positive.

The Pebble project contains 36.709 lines of code and the amount of found

vulnerabilities was 440. ASIDE and Lapse+ reported 315 and 258 warnings,

respectively. From those warnings, 158 (or 50%) warnings from ASIDE and 139

(or 54%) warnings from Lapse+ were false positives. CodePro and ESVD

reported 38 and 289 warnings; from those warnings, 11(or 29%) from CodePro

and 14(or 5%) from ESVD were false positives. Once again, ESVD achieved the

lowest/best rate of false positives.

Figure 64 Pebble.

The source code of the Pebble project is the perfect example of the possible

consequences of having different developers working on different tasks without

having a well-defined security police. Figure 65 presents a code snippet, which

the developer created and used his own sanitization method, called filterHTML.

There is no problem with that. However, s/he only used it on some variables,

leaving the others insecure. For instance, on line 68, variable name was not

50%	 50%	
64%	

71%	

29%	

94%	

46%	
54%	

73%	

95%	

5%	
38%	

0%	

50%	

100%	

%	 True	 Positives	 %	 False	 Positives	 %	 False	 Negatives	

Pebble	 ASIDE	 (315)	

CodePro	 (38)	

Lapse+	 (258)	

ESVD	 (289)	

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 100

sanitized and used on line 79. After that on line 72, variable newName was

sanitized and used on line 79. If we analyze this code, it is possible to observe that

it has a possible vulnerable path. However, the line 72 should not be flagged

because the variable was indeed validated. Our heuristics failed to identify the

method filterHTML because it was a custom made sanitization method not known

by our heuristics.

Figure 65 Pebble false positive.

The NCO project contains 6.048 lines of code and the amount of found

vulnerabilities was 77. ASIDE and Lapse+ reported 38 and 82 warnings,

respectively. From those warnings, 11(or 29%) warnings from ASIDE and 50(or

61%) warnings from Lapse+ were false positives. CodePro and ESVD reported 11

and 121 warnings; from those warnings, 7(or 64%) from CodePro and 74(or 61%)

from ESVD were false positives. On the NCO project, ESVD achieved one of the

worst rates of false positives, 61%.

Figure 66 NCO.

NCO was created using the MVC design and one of the ideas of the author

was to reuse as much code as possible. In order to do that, he created a series of

constants that could be configured on each class and after that could be used

always in the same way. As presented in Figure 67, every query was previously

71%	

29%	

65%	

36%	

64%	

95%	

39%	

61%	 58%	

39%	

61%	

39%	

0%	

50%	

100%	

%	 True	 Positives	 %	 False	 Positives	 %	 False	 Negatives	

NCO	 ASIDE	 (38)	

CodePro	 (11)	

Lapse+	 (82)	

ESVD	 (121)	

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 101

created and whenever the developer wanted, s/he simply needed to invoke it. The

problem with this approach was the string concatenation (line 385). Our heuristics

search for concatenated queries that reach the preparedStatements or statements

objects. Whenever that happens, the source code is flagged as vulnerable, because

as explained in section 3.6.10, queries should not be concatenated. However, this

is a case of false positive, because the code is concatenating two string literals

created by the developer and that should not be considered vulnerable.

Figure 67 NCO false positive.

Figure 68 and the Table 9 present the compiled results from all the analyzed

projects. Our research question RQ2, asked if data flow analysis could decrease

the rate of false positives when compared to pattern matching. According to our

experiments, our prototype using DFA with context sensitivity was able to

achieve the final rate of 11,70% of false positives. CodePro using DFA with

context insensitivity achieved 37,62% of false positives. Finally, the closest value

from a pattern matching tool, was from Lapse+ with 44,73% rate of false

positives.

Although we were able to successfully decrease the rate of false positives,

this fact alone is not sufficient to state that DFA is a better approach than pattern

matching, taking the CodePro numbers for example. It also had a lower rate of

false positive when compared to the pattern matching tools. However, it had the

lowest/worst rate of Recall and F-measure. This means that, although it did not

have too many false positives it did not find a minimum amount of vulnerabilities

either. The compilation of all results state that our prototype achieved 0,88 of

precision, 0,66 of recall, resulting in a 0,75 score for the F-measure metric. In

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 102

other words, our prototype achieved the best results from all tools. The final and

most important result was the 11,70% of false positive, that being the best from all

tools and successfully answering our RQ2.

Figure 68Compilation of results from all analyzed projects.

Precision Recall F-Measure

ASIDE 0,48 0,39 0,43

CodePro 0,62 0,07 0,13

Lapse+ 0,55 0,36 0,43

ESVD 0,88 0,66 0,75

Table 9 Compilation of results from all analyzed projects.

5.1.5.2.
Memory and Time

Data flow analysis with context-sensitivity, as the name states, has the

ability to analyze the flow of each object creation or method invocation. We

created and implemented a special algorithm to compute these data flow

properties. The algorithm has to remember what methods have been analyzed and

what is the current reference or value of an object. This algorithm is much more

complex than pattern matching algorithms, which only need to scan the source

code once and compare if the code structure (being analyzed) matches a code

template that usually represents a security vulnerability.

48%	 51,78%	
61%	 62%	

37,62%	

93%	

55%	
44,73%	

64%	

88%	

11,70%	
34%	

0%	

50%	

100%	

%	 True	 Positives	 %	 False	 Positives	 %	 False	 Negatives	

Total	 ASIDE	 (1375)	

CodePro	 (202)	

Lapse+	 (1091)	

ESVD	 (1256)	

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 103

Our prototype was conceived with the impact of such difference son

resources usage in mind. The impact of using a high amount of memory could be

to slow down the IDE or even worst, shut down the whole system. Figure 69

presents the average (from the five executions) memory usage by all tools when

analyzing the open-source projects. This information was collected using the

memory profiler plugin from the Eclipse IDE. Although CodePro also performs

data flow analysis, its DFA is context-insensitive. In other words, it does not

remember the context of object and methods. This is the reason its memory usage

did not increase alongside with the project size.

Figure 69 Memory Usage.

As presented in Figure 70, both tools using pattern matching performed the

analysis in just a couple milliseconds, even in large projects such as Roller and

Pebble. This information was collected using the memory profiler plugin from the

Eclipse IDE, which besides showing the memory that is being currently used, it

also show the time of one (or more) specific thread. The main benefit of using this

technique is the fact that even if a method is invoked several times, it is analyzed

once only. In other words, all classes and methods are scanned one by one in no

particular order and just once. On the other hand, DFA needs to follow method

invocation in order to find if a possible entry-point can reach an exit-point without

being properly sanitized. Based on this characteristic of DFA, as the analyzed

applications grew in size (lines of code, number of classes and methods) so did

the time spent to analyze them. CodePro and ESVD, which implement DFA, went

from a few milliseconds to proximally 10 and 6 minutes respectively.

On the first experiment, the largest (amount of classes and lines of code)

project was Pebble containing 743 classes with 36.709 lines of code. However,

there are real life projects that can be much bigger than this. Therefore, this might

be a problem for DFA solutions. In our prototype, a mechanism was implemented

0	
100	
200	
300	
400	
500	
600	
700	
800	
900	
1000	

ASIDE	 CodePro	 Lapse+	 ESVD	

Memory	 (MB)	
Blueblog	
Personalblog	
NCO	
WebGoat	
Roller	
Pebble	

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 104

in order to ease this problem. The mechanism made use of the clean call graph

and the prime call graph. As explained in section 4.2, the first time our prototype

runs it creates the call graph (method interactions) of the source code. This call

graph is then passed to the data flow analysis algorithm. After that, every time the

developer changes one class, only this class and the classes it interacts to are re-

scanned. Thereby, significantly decreasing the total time of analysis.

Figure 70 Execution time.

5.2.
Study 2: Late vs. Early Detection−A Quasi-Experiment

We also performed a controlled experiment to observe if developers, who

receive support for early vulnerability detection, are able to produce more secure

software than those who receive late detection support. We analyzed if the use of

early detection reduced (or increased) the number of security vulnerabilities when

compared with the use of late detection. To do that, we could not simply inject

vulnerabilities into a source code and ask participants to search for them. Thus,

the experiment was carefully designed to increase the chances of making

developers create security vulnerabilities on their own, while developing typical

programming tasks (section 5.2.1). The complete description of the programming

tasks, questionnaires and results from the experiment can be download from our

study website [Sampaio 2014c].

00:00,00	

01:26,40	

02:52,80	

04:19,20	

05:45,60	

07:12,00	

08:38,40	

10:04,80	

ASIDE	 CodePro	 Lapse+	 ESVD	

Time	 (minutes)	

Blueblog	
Personalblog	
NCO	
WebGoat	
Roller	
Pebble	

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 105

5.2.1.
Methodology

We designed and executed a quasi- experiment in order to observe if early

detection outperforms (or not) late detection in terms of encouraging developers to

address vulnerabilities in their source code. The hypothesis tested in the

experiment was the following: “H1: Early detection helps developers to produce

more secure code when compared to the late detection approach”.

In order to confirm or refute this hypothesis, we performed a controlled

experiment to observe if developers, who receive early support in code editing,

were able to produce more secure software than those developers who receive late

support. In order to avoid biased results from using different tools that performs

early detection and late detection, we decided to use our prototype (i.e. the same

tool) on both parts of the experiment. The first step of the experiment was the

creation of the coding exercise (Section 5.2.1.1). After that, we created two groups

where the participants were assigned. Each participant was assigned to one of the

two groups (Section 5.2.1.2).

5.2.1.1.
Coding Exercise

The coding exercise was composed of five programming tasks (see Table

10). Each task was specifically created with the intention of exposing participants

to situations where they would introduce (by their own) security vulnerabilities in

their source code. The tasks were also independent from each other and

participants could choose which tasks they would like to implement first. As we

did not want participants to waste time creating HTML pages, we already

provided a project containing all basic files. The participants were only requested

to create the Java source code to handle these pages.

The first task was to create a login page where a user could provide her/his

credentials (e.g. login and password) and then login in the application. This task

opens the opportunity for several security vulnerabilities. Because the developer

has to handle credentials (security misconfiguration), connection with the

database (sql injection), data being sent back and forth from the server to the

browser (cross-site scripting) and so forth.

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 106

The second task was to create a page where all the comments stored in the

database from the application could be displayed to the user. To perform the task

the participant had to handle connections with the database, handle sessions or

cookies to store information about the logged in user. Therefore, several

vulnerabilities could be created.

The third task was to create a page where the user could see all comments

created by her/him, and then select one or more and delete them. Usually

developers create delete pages by passing the ids on the URL. In this situation is

common that if the developer does not properly verify the identity of the user who

is deleting the data, an attacker can provide other ids and delete data from other

users.

The fourth task was to create a page where comments could be added by the

user and saved into the database. If not properly implemented, this page could

allow attackers to insert malicious content into the database, perform SQL

injection, cross-site scripting and so forth.

The fifth and final task was to create a page where a user logged in as an

administrator could see all stored comments and could select and delete any of

them. To perform this task, the participant would have to create an access control

check in order to verify if the user is a normal user or an administrator. This leads

to several types of vulnerabilities, such as unauthorized access, cookie poisoning,

SQL injection and so forth.

Nr. Description

1 Create a login page.

2 Create a page where all comments stored in the database are displayed.

3 A page where each user can delete its own comments.

4 A page where a user can add comments.

5 Create a special user (administrator), who can delete any comment.

Table 10 Description of the tasks of the coding exercise.

The author of this dissertation tried himself to execute all the five tasks. He

needed 37 minutes to complete all these tasks. A task was considered completed,

only if the page was working as expected. Therefore, we estimated that 90

minutes for each subject would be more than enough to participate in our

experiment. However, the six companies, which allowed their developers to

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 107

participate, explicitly constrained the time their employees could spend in our

experiment. They mentioned that 90 minutes was too much and they allowed their

developers to participate in our experiment for the maximum of one hour.

Therefore, we recalculated the amount of time dedicated for each part of the

experiment. As each participant could spend one hour, we could not design our

experiment in a way the same subject would participate in both groups, i.e.

performing some programming tasks with early detection and other programming

tasks with late detection. This experiment design would be more complex and

would also require more time from the participants to complete all the tasks. An

important information is that some participants stated that they would not mind to

stay until they could finish all tasks. Therefore, some participants performed the

experiment for more than one hour. More information about that will be provided

on section 5.2.2.

5.2.1.2.
Early and Late Detection Groups

The participants were divided in two groups, namely early detection group

and late detection group. The main difference between them was how the

participants were allowed to use our prototype. For the early detection group, they

would have one hour to complete all the tasks, they were allowed to activate our

plugin at the beginning of the experiment and receive its support throughout the

whole time. For the late detection group, we enforced they were following the

typical behavior of late detection, which is encouraged by most of the existing

security detection tools (section 2.5). Then, they had 40 minutes for the

programming tasks; after that, they had 20 minutes to run the prototype and fix or

ignore the vulnerability warnings.

We tried to find participants with at least some basic knowledge of secure

programming. The distribution of the 27 developers, from which 11 are

professionals and 16 are undergrad students (or novice programmers) in these two

groups was not random. Instead, we wanted to have an equal number of

professionals and students on each group. As the number of subjects was not very

high, we did not want to favor one group over the other in terms of programming

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 108

expertise. Therefore, in order to characterize the expertise of the participants, they

had to answer a questionnaire [Sampaio 2014c] related to the their background.

The selection of the participants for the experiment relied on two explicit

criteria. First, the participant had to have some degree of knowledge on Java web

development (JSP, JSF or any other Java web technology), because the tasks were

based on these technologies. Second, they should have worked with Eclipse

before, because we did not want to have participants wasting time trying to find

how to do something on Eclipse and our prototype is built as an Eclipse plugin.

These developers were found by different ways, such as: companies contacted by

the author of the dissertation, Twitter19 and LinkedIn20. We contacted dozens of

companies, from which six allowed their developers to participate on our

experiment. Through Twitter and LinkedIn, it was possible to find seven

international developers: two of them to participate in the experiment, and five of

them to provide feedback about our tool. Some developers did not want to or had

time to spend on the experiment, but watched our online video on how to use the

ESVD plugin [Sampaio 2014d] and provided us valuable feedback.

5.2.1.3.
Experiment setup

The participants were informed they were participating on a study to

evaluate a prototype plugin that would check the quality of the source code. We

also informed them they could choose to read the warnings and try to fix them (if

any) or simply ignore them. The participants did not receive any training on how

to interact with our plugin because every message or page of the plugin has

security keywords on them. The training would tell them we were analyzing

security vulnerabilities and it was not our intention to change their normal

behavior. In other words, we did not want to force them to think about security

only because of their participation in our experiment.

When the experiment was being designed, there were two main concerns in

mind: the quality of the resulting data and how to increase the number of

participants. Based on this, we created a list of necessary software that remote

19 http://www.twitter.com
20 http://www.linkedin.com

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 109

participants could install in order to participate. The installation process was

performed by the participants prior the experiment. In other words, the time they

took to install all the required software systems was not part of the time from the

experiment. These required systems were Eclipse21 Kelper (4.3) or Luna (4.4 - the

latest one), our plugin (ESVD22 - Early Security Vulnerability Detector), and any

DBMS23 where data from the experiment could be stored. We recommended

MySql24 and provided all initial scripts in order to create the schema, users and

tables. The last software was a screen recorder. For Mac, we used and

recommended a trial version of ScreenFlow25; for Windows, we used a free

version of CamStudio26. The video of the participants provided a wide variety of

valuable information. For instance, we could observe: (i) how the participants

interacted with the warnings, and (ii) how long they took to remove vulnerabilities

from the source code and much more information.

5.2.2.
Study 2: Results

This section presents the results observed from the second experiment and is

structured as follows. Section 5.2.2.1 presents the number of participants on each

group and their years of experience. Section 5.2.2.2 describes the amount of time

spent by each group in the experiment. Section 5.2.2.3 presents the amount of

finished tasks by each participant. Section 5.2.2.4 discusses the number of

vulnerabilities added, removed and ignored by the participants. Section 5.2.2.5

presents the average amount of time until a vulnerability is inserted into the source

code. Section 5.2.2.6 discusses the threats to the validity of our study. Finally,

section 5.3 presents our conclusions about results gathered in the experiment.

21https://www.eclipse.org
22https://marketplace.eclipse.org/content/early-security-vulnerability-detector-esvd
23Data Base Management System
24http://www.mysql.com
25http://www.telestream.net/screenflow/overview.htm
26 http://camstudio.org

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 110

5.2.2.1.
Participant Characterization

The experiment was open to participation for a period of 30 days. In that

time, we were able to find 27 developers, from which11 are professionals and 16

are undergrad students (or novice programmers). As already mentioned (section

5.2.1.2), we wanted to have a similar number of professionals and students on

each group. Table 11 presents the number of participants and the average of years

of experience on development (not necessarily on secure programming) for the

corresponding participants in each group. After they answered the questionnaire

about their expertise, they were assigned to either the early detection or late

detection group. We managed to have six professionals in the early group and five

professionals in the late group. Although the number of participants in each group

was also the same, the average of years of experience on the late detection group

was almost double than the early detection group. Therefore, the strategy we used

to divide the participants was not equitable from this perspective. On the other

hand, this division somehow favored the late detection group rather the early

detection group. In addition, we managed to have eight students in both groups

and their average of experience were almost the same..

	 	 Early	 Late	
	 	 Quantity	 Years	 of	 experience	 Quantity	 Years	 of	 experience	

Professional	 6	 5,8	 5	 9,4	
Student	 8	 2,0	 8	 1,75	

Table 11 Number of participants and average of years of experience.

After the division, all participants received the written instructions. These

instructions mainly described the five tasks they had to perform. After the period

of one hour, they were informed about the end of the time. However, we decided

we would allow the participant to continue in case he/she explicitly requested,

independently if he/she was in the early detection or late detection group. Our

understanding was that they were still eager and motivated to perform their

programming and vulnerability detection tasks. Then, when they were satisfied

with their tasks, the produced source code and screen recording were requested

from the participant. The time spent by each participant will be presented later.

Several (8) participants stated they would like to have more time in order to try to

finish all tasks and 7 participants finished the experiment in one hour or less.

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 111

On the other hand, some (9) other participants stated they were not

confortable delivering their source code to us, because “there was not much done”

or because “the code contained too many bugs”. We reminded them that the

experiment was private and no source code would be shared. This argument was

not enough to convince them and we had to discard those participants. Therefore,

Table 12 presents the final numbers, containing only participants that, at the end

of the experiment, delivered the source code to us. The total amount of

participants went from 27 to 18 developers, from which 10 are professionals and 8

are students (or novice programmers). From the participants who decided not to

deliver the source code, one was a professional and eight were students.

	 	 Early	 Late	
	 	 Quantity	 Year	 of	 experience	 Quantity	 Year	 of	 experience	

Professional	 6	 5,8	 4	 10,8	
Student	 2	 3,5	 6	 1,7	

Table 12 Final number of participants and average of years of experience.

Table 13 presents the final distribution of the participants on each group.

Column 1 represents the unique id of each participant, because no names were

requested during the experiment. Column 2 presents, for the corresponding

participant (in Column 1), which of the two groups of the experiment – i.e. early

and late detection group – he/she took part. Column 3 informs if the participant

was a professional or a student. The final numbers were: (i) 8 participants in the

early group, from which6 are professionals and 2 are students, and (ii) 10

participants in the late group, from which4 are professionals and 6 are students.

Therefore, the difference in number of participants between the two groups was

not significant.

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 112

Part.	 Id	 Group	 Type	
1	 Early	 Professional	
2	 Late	 Professional	
3	 Early	 Professional	
4	 Late	 Professional	
5	 Early	 Professional	
6	 Late	 Professional	
7	 Late	 Student	
8	 Early	 Student	
9	 Late	 Student	
10	 Late	 Student	
11	 Late	 Student	
12	 Late	 Student	
13	 Late	 Student	
14	 Early	 Professional	
15	 Early	 Professional	
16	 Early	 Professional	
17	 Early	 Student	
18	 Late	 Professional	

Table 13 Distribution of the participants on each group.

5.2.2.2.
Programming Time per Group

Table 14 presents the total amount of hours spent by participants on the

experiment. Column 2 represents the total amount of hours spent by professionals

and students on the early detection group. Similarly, Column 3 presents the total

amount of hours spent by professionals and students on the late detection group.

The total amount of hours was 18 hours and 34 minutes. From those hours, 11

hours and 16 minutes were spent by the early detection group, while 7 hours and

17 minutes were spent by the late detection group. The difference in between the

two groups is approximately 4 hours. Therefore, it was expected that the early

detection group would produce more source code and vulnerabilities than the

other group. However, in order to be fair and equitable, we will consider, for

instance, the proportion of vulnerabilities introduced and fixed rather than

absolute measures. Professionals on both groups worked several hours more than

students.

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 113

	 	 Early	 Late	
Professional	 9:32:40	 4:31:07	

Student	 1:44:18	 2:46:15	
Partial	 11:16:58	 7:17:22	
Total	 18:34:20	

Table 14 Programming time (hours) per group.

5.2.2.3.
Programming Time per Participant and Performed Tasks

Table 15 presents the list of participants, their experiment time and the

number of tasks completed by each one of them. From this table, the first

observation is that three participants (7, 11 and 13) had their experiment time as

00:00:00. Unfortunately, this happened because the screen recorder crashed when

they tried to save the file, thereby losing all evidence of the amount of time they

spent on the experiment and how they interacted with our prototype. Additionally,

because they were remote participants, we were not able to help them. On the

other hand, they executed either one or two programming tasks.

Another observation is the fact that, although the experiment was supposed

to last one hour, some participants decided to end it earlier. When we asked them

why, some stated that developing for one hour straight was exhausting. On the

other hand, participants 3, 5, 6, 10, 14, 15, 17 and 18 asked for more time. All 18

participants were able to finish at least one task. Additionally, eight participants

finished two tasks, four participants finished three tasks, two participants finished

four tasks and finally only two participants were able to finish all five tasks.

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 114

Part.	 Id	 Experiment	 Time	 Task	 1	 Task	 2	 Task	 3	 Task	 4	 Task	 5	
1	 00:48:00	 1	 0	 0	 0	 0	
2	 00:52:43	 1	 0	 0	 0	 0	
3	 02:04:10	 1	 1	 0	 0	 0	
4	 00:54:51	 1	 0	 0	 0	 0	
5	 01:20:15	 1	 0	 0	 0	 0	
6	 01:17:59	 1	 1	 1	 0	 0	
7	 00:00:00	 1	 0	 0	 0	 0	
8	 00:32:21	 1	 0	 0	 0	 0	
9	 00:32:18	 1	 0	 0	 0	 0	
10	 01:16:43	 1	 1	 0	 0	 0	
11	 00:00:00	 1	 1	 0	 0	 0	
12	 00:57:14	 1	 1	 0	 0	 0	
13	 00:00:00	 1	 0	 0	 0	 0	
14	 01:04:54	 1	 0	 0	 0	 0	
15	 03:18:42	 1	 1	 1	 1	 1	
16	 00:56:39	 1	 1	 0	 0	 0	
17	 01:11:57	 1	 0	 1	 0	 0	
18	 01:25:34	 1	 1	 1	 1	 1	
	 	 18:34:20	 18	 8	 4	 2	 2	

Table 15 Experiment time (hours) and tasks performed by each participant.

5.2.2.4.
Vulnerabilities Added, Removed and Left

Table 16 presents the number of vulnerabilities added, removed and left by

each participant. What is important to notice is the fact that all participants but one

added at least one vulnerability into their source code. Participant 2 did not add

vulnerabilities because of two factors. First, he created a few lines of source code

only. Second, he knew that PreparedStatement should be used when interacting

with the database. Therefore, he avoided the creation of a SQL injection. There

was also a trend that more vulnerabilities were introduced by participants that

spent more time programming. For instance, participants 3 and 15 worked for two

and three hours, respectively, and both created eight vulnerabilities each in their

source code.

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 115

Part.	 Id	 Experiment	 Time	 Added	 Removed	 Left	
1	 00:48:00	 1	 1 0	
2	 00:52:43	 0	 0 0	
3	 02:04:10	 8	 2 6	
4	 00:54:51	 2	 0 2	
5	 01:20:15	 5	 2 3	
6	 01:17:59	 2	 0 2	
7	 00:00:00	 2	 0 2	
8	 00:32:21	 2	 0 2	
9	 00:32:18	 2	 0 2	
10	 01:16:43	 2	 0 2	
11	 00:00:00	 2	 0 2	
12	 00:57:14	 2	 0 2	
13	 00:00:00	 3	 1 2	
14	 01:04:54	 5	 0 5	
15	 03:18:42	 8	 4 4	
16	 00:56:39	 4	 1 3	
17	 01:11:57	 2	 2 0	
18	 01:25:34	 5	 1 4	
-‐	 18:34:20	 57	 14	 43	

Table 16 Number of vulnerabilities added, removed and left.

The amount of vulnerabilities that were added, removed and left in the

delivered source code is presented on Table 17. During the 18 hours and 34

minutes of experiments, the plugin was able to detect 57security vulnerabilities in

the source code of the participants, from which 35 (or 61,4%) were added by

participants from the early group and 22 (or 38,6%) from the late group. Although

the participants from the early group added more vulnerabilities than the other

group, this is partially justified by the fact that they worked for 11 hours and 16

minutes while the late group worked only for 7 hours and 17 minutes.

Another important information from Table 17 is that although 57

vulnerabilities were detected by our prototype, only 14 (or 24%) vulnerabilities

were removed (fixed) from the source code. This is a quite low percentage. If this

was a real (and single) software project, the application would be under serious

risks. From the vulnerabilities that were removed, developers receiving early

support were able to remove 12 (or 34,2%), while developers receiving late

support only removed 2 (or 9,09%). Therefore, the early detection approach was

able to encourage programmers to remove more vulnerabilities than the late

detection approach.

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 116

The final observation from the Table 17 is the amount of vulnerabilities left

unhandled in the source code. The total amount was 43, from which23 (or 53,5%)

were left by participants from the early group and 20 (or 46,5%) from the late

group. However, we cannot confirm or refute our hypothesis H1 based only on

this column. In order to be fair with both groups, it is more appropriate to analyze

the amount of added vulnerabilities divided by the amount of left vulnerabilities

of each group. In other words, the early detection group added 35 vulnerabilities

and left 23 unhandled (or 65,7%). On the other hand, late group added 22

vulnerabilities and left 20 unhandled (or 90,9%). Based on these observations,

there is an indication that our hypothesis H1 that states that early detection helps

developers to produce more secure code when compared to the late detection

approach is true.

	 	 Added	 Removed	 Left	
	 	 Early	 Late	 Early	 Late	 Early	 Late	

Professional	 31	 9	 10	 1	 21	 8	
Student	 4	 13	 2	 1	 2	 12	
Partial	 35	 22	 12	 2	 23	 20	
Total	 	 57	 14	 43	

Table 17 Vulnerabilities added, removed and left during the experiment.

Table 18 describes in detail the vulnerabilities that were added, removed and

left on the delivered source code during the experiment. Misconfiguration was the

most common vulnerability, appearing 27 times. Several participants stated they

hardcoded the username and password of the database in the source code, because

it would not be possible to create the complete infrastructure to store this

information in an encrypted file during the experiment time. Although this is a

reasonable explanation, we did not consider this as a false positive, because

indeed it is how this security vulnerability typically finds its way in mainstream

software projects [OWASP 2013e]. Log forging was the vulnerability that was

removed more times. The screen recording helped us understand the reason

behind this trend. The reason was debugging, in other words, developers usually

log what they are doing in order to know if the code is working properly. In some

of these occasions, the code was actually logging untrusted data and the plugin

correctly identified the vulnerability. However, after verifying that the code was

working as expected, the developers just deleted the code statement and,

therefore, removed the vulnerability.

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 117

Vulnerability	 Added	 Removed	 Left	
HTTP	 Response	 Splitting	 1	 1	 0	

Cookie	 Poisoning	 2	 0	 2	
SQL	 Injection	 3	 1	 2	
Log	 forging	 10	 6	 4	

Cross-‐Site	 Scripting	 14	 3	 11	
Misconfiguration	 27	 3	 24	
Total	 57	 14	 43	

Table 18 Security vulnerabilities reported during the experiments.

5.2.2.5.
Average Time for New Vulnerabilities

The total amount of hours spent by participants on the experiment and the

total amount of vulnerabilities that were added during the experiment were

presented on Table 14 and Table 17, respectively. Therefore, if we divide the

amount of hours by the amount of added vulnerabilities, we will obtain the results

presented on Table 19, which means the average time it took for a vulnerability to

be inserted into the source code. For this measure, both groups have an average

close to 22 minutes. In other words, a new vulnerability was added into the source

code every 22 minutes. If we imagine that developers work 8 hours per day, we

could estimate 21 vulnerabilities are added every single day by a single developer.

Even though this is simply an estimate, we believe this information corroborates

with our claim that developers should received tooling support as early as

possible. Otherwise, vulnerabilities could be left unhandled in the code, eventually

reaching the production environment.

When we were analyzing the screen recording of the participants from the

late detection group, it was possible to observe several cases where by the time

developers discovered that their code contained one or more vulnerabilities, they

had already finished one or more tasks. Therefore, they had to return to previous

tasks, remove the vulnerable code and re-implement the requested functionality.

Based on this fact, it became clear to us that, if developers receive early

vulnerability detection support, they no longer will have to waste time redoing

work that could have been done potentially quicker and once.

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 118

	 	 Early	 Late	
Professional	 0:18:28	 0:30:07	

Student	 0:26:05	 0:12:47	
Average	 0:22:16	 0:21:27	

Table 19 Average time (hours) until a vulnerability was added.

5.2.2.6.
Threats to Validity

Every empirical study has threats to validity that need to be addressed. This

section discusses key threats to validity relevant for this study, and actions we

have taken in order to reduce their impact.

Total time for the experiment: When we designed the experiment and its

tasks, we had in mind that developers would have enough time available to finish

all tasks. However, most companies only allowed their developers to participate

for the maximum of one hour. As a consequence, only a few participants were

able to complete all tasks from the experiment in one hour, what could reduce

opportunities for introducing vulnerabilities and/or discouraging their handling

(due to lack of time). However, in order to try to mitigate this problem, we

decided to accept the request of several participants for more time. Then, several

participants could naturally complete more tasks.

Number of participants: For a period of 30 days, we tried to find

developers through the Internet and our personal contacts. However, our

population in the experiment was constrained to 18 subjects, out of 27 subjects

that started to participate in the experiment. Even though someone could consider

our population is limited, we did our best to involve both experienced and novice

programmers in both groups (using early and late detection). In addition, many

experiments in software engineering have even fewer participants than in our

experiment due to the difficulty in finding volunteers. Finally, we run our

experiment remotely in order to increase the participation of professional

developers (but this leads to other threats discussed in the following).

Remote participants: In other to increase the number of participants, we

prepared the experiment in a way it could be applied remotely. Therefore, we did

not have full control over the subjects. As they are developing their tasks at a

distance, the participants could do other things not related to the experiment. As a

consequence, we cannot fully ensure our time-spent measures were fully reliable.

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 119

In order to try to mitigate this threat, we recorded the video and participants’

actions. As far as we could observe, all the participants were fully dedicated to

execute only the experiment tasks. A few remote participants had problems that

nobody else had, e.g. the screen recorded crashing, slow machines and so forth.

However, fortunately, only a few participants faced these problems.

Skills of the participants: When we were selecting the participants, we

tried to find developers with at least some basic knowledge of secure

programming. Otherwise, for instance, if our tool reported a SQL injection, the

participant would not know anything about it. However, it was possible to watch

on the screen recording that a considerable number of participants tried to find

basic information at the Internet about the reported vulnerabilities, so that they

could fix them. On the other hand, we observed the frequency of this behavior

was similar across the early and late detection groups.

5.3.
Concluding Remarks

During our second study, it was possible to notice that even developers with

several years of development experience had very limited knowledge about

security vulnerabilities. This idea was further observed by (i) the amount (57) of

vulnerabilities added into the source code, and (ii) the number (43) of

vulnerabilities left unhandled on the delivered source code. Even though our

prototype correctly identified all 57 vulnerabilities, some participants tried to find

a solution for a couple minutes and then gave up. When these participants were

asked why they left vulnerabilities unresolved in the source code, a few of them

justified their negligence because they knew they were participating in an

experiment and, therefore, the vulnerabilities would not cause any actual harm.

However, these same participants stated that if that had happened on their

workplace, they would have tried harder.

Fortunately, as observed in our first study, our DFA-based approach

presented a much higher accuracy than other existing DFA and pattern-matching

approaches. This means that, at least, our approach would be more effective if

developers were deeply concerned in addressing security vulnerabilities. In

addition, our DFA-based approach did not cause significant overhead in terms of

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 120

memory and execution time. In addition, in the second experiment, no participant

reported about such overhead problems. Even though the produced programs were

not large, the programs used in the first study were of reasonable size.

In the controlled experiment, the participants, who received the detection

support from our tool, were constantly aware of the vulnerabilities that they were

adding into the source code. On the other hand, participants from the late group

were unconscious about the security vulnerabilities emerging in their code until

the 40 minutes mark. Only after that, they started searching for help and removing

vulnerable code. Amongst many observations, we noticed that developers

receiving early detection support were able to remove 12 (or 34,2%)

vulnerabilities, while developers receiving late support only removed 2 (or

9,09%). Based on the reported results, the early detection approach tended to

encourage programmers to remove more vulnerabilities than the late detection

approach. For the sample of our, it is possible to observe our hypothesis H1 (in

the second study), which stated, “Early detection helps developers to produce

more secure code when compared to the late detection approach”.

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 121

6
Conclusion

One of the main goals of software engineering is to create dependable

software, i.e. software that users can trust. To achieve this goal, it is necessary that

software systems provide their services properly even if being under attack by

malicious people or programs. To this end, developers should be aware of security

vulnerabilities when creating their software. Developers without accurate tooling

support struggle to perform secure programming and, in particular, are not able to

find neither to fix security vulnerabilities from their source code.

In this context, we studied the state-of-the-art on security vulnerability

detection in source code. We also proposed the combination of two ideas. First,

we proposed to support a change from the default behavior of late detection to

early detection. We believed and were able to observe that early detection can

provide better support for secure programming. Second, we also proposed a

vulnerability detection solution based on a particular variant of data flow analysis.

We evaluate two static analysis techniques – i.e. pattern matching and data flow

analysis– to support vulnerability detection in several industry-strength projects.

According to the results of our first study, our prototype achieved the lowest

rate of false positives, i.e. 11,70%. For this measure, the best result from a pattern-

matching tool was 44,73%, which was much worse than in our DFA approach.

From the results obtained in the study, it was also possible to observe that the

strict use of false positives is not enough to assess the real support of a tool for

secure programming. For instance, when analyzing the CodePro measures, for

example, it also had a much lower rate of false positives when compared to the

pattern matching tools. However, it had the lowest/worst rate of Recall and F-

measure. Although it did not have too many false positives, it did not find a

minimum amount of vulnerabilities either. The compilation of all results state that

our prototype achieved 0,88 of precision, 0,66 of recall, resulting in a 0,75 score

for the F-measure metric. The best results from all other tools.

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 122

The second part of our proposal evaluation wanted to observe if early

detection could encourage (or not) developers create more secure software. We

were able to observe that, during the 18 hours and 34 minutes of experiments, our

prototype was able to detect 57 security vulnerabilities in the source code of the

participants. Developers receiving early support added35 vulnerabilities and were

able to remove 12 (or 34,2%) vulnerabilities, while developers receiving late

support added 22 and only removed 2 (or 9,09%). Therefore, the early detection

approach was able to help developers remove more vulnerabilities that late

detection.

6.1.
Contributions

The fact that novice and experienced developers need support to perform

secure programming is no secret. Thus, in our study we observed that if this

support is provided as early during programming (rather than posterior analysis)

as possible, the chances of security vulnerabilities reaching the deployed software

system may decrease substantially. However, in order to be truly successful on

this support, we confirmed that early detection by itself is not sufficient if the

technique used to find security vulnerabilities has a high rate of false positives. In

this context, the main contributions of our study were:

1. The heuristic strategies capable of finding 11 security vulnerabilities that stem

from input and output not being properly sanitized. Each heuristic has the

knowledge on how to identify a source code as vulnerable according to a

specific vulnerability. The advantage on using this approach is the fact that

heuristics can be added or removed without interfering with the other

heuristics. Additionally, our proposed heuristics can be adapted and

implemented to the context of other programming languages.

2. Proposal and implementation of the algorithm of data flow analysis with

context sensitivity to find security vulnerabilities (section 3.1). The proof-of-

concept is a free Eclipse plugin for the Java programming language that

performs the detection of security vulnerabilities while the developer is

adding/editing the source code. The plugin can be downloaded from the

Eclipse Marketplace [Sampaio and Garcia 2014].

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 123

3. The last contribution is a complete list with known security vulnerabilities

(ground truth) for each of the analyzed open-source projects. We consider this

reference list of all the vulnerabilities found in a benchmark as a contribution

for other researchers and tool developers. They can rely on this reference list

to replicate our studies and produce new experimental evaluations. We used

the same versions of the open-source projects on our benchmark as previous

studies did. Because we wanted to be able to compare our results against

theirs. However, as stated in section 5.1.2, those results were found nowhere.

Because of this project, we had to create our own list of known vulnerabilities

for each project. We made our list available and it can be downloaded from

our study website [Sampaio 2014b]. Thus, future studies and benchmarks can

use our results instead of having to perform manual inspection, as we had to

perform in our research.

6.2.
Future work

The results obtained and contributions presented were only a first step

towards the goal of helping developers create more secure software. Although our

proposed solution presented the lowest rate of false positives (section 5.1.5) when

compared to the other analyzed solutions (section 2.6), there are still several

aspects to be improved on it. Some of these aspects are the following ones:

1. Our technique of data flow analysis supports 11 types of security

vulnerabilities (section 3.6) and in the benchmark experiment presented better

results when compared to other existing solutions. However, there are still

elements, such as: Containers, Reflection and InnerClasses, that our technique

does not explicitly take into consideration. Therefore, generating false

negatives. More research and development is still necessary to further improve

the accuracy of our technique.

2. The memory usage of our prototype was already expected to be higher than

the other existing solution. One of the reasons is the nature of data flow

analysis that follows every method invocation and the ability (context

sensitivity) to distinguish different instances of the same class. However, we

believe that optimizations on the algorithm of our prototype can be made in

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 124

order to consume less memory. On our current version, every time a new

instance from a class is created, a new context containing all the fields and

methods from that class is also created. One possible optimization could be

instead of creating contexts with all fields and methods, create with only the

ones that have actually been used in the code. Thus, the amount of memory

used on contexts would be decreased.

3. The possibility to allow developers to add, edit or remove methods from the

lists of entry-points, exit-points and sanitization-points. Although our

heuristics already contains 268 methods (more than any of the other compared

tools) in these lists. Each developer or company might have other methods

they consider vulnerable or have implemented their own sanitization methods.

As these lists must be often updated in a vulnerability detection tool, we

consider the presence of this extension feature as very important. From all the

analyzed tools (section 2.6), CodePro Analytics was the only one to have this

feature. The implementation of our prototype is already prepared to this

functionality. However, because of lack of time the user interface where

developers would be able to add new methods or remove old ones was not

created.

4. The current version of our prototype does not prioritize one vulnerability over

another. In other words, the vulnerabilities are presented in the same order as

they are found in the source code. However, developers usually have a limited

amount of time and would not able to remove all vulnerabilities on the first

time. Therefore, a ranking system where vulnerabilities could be organized or

prioritized based on some criteria, would greatly help developers decide which

types of vulnerabilities they want to remove first. OWASP already has a

ranking system that we could use [OWASP 2013p].Their ranking system sorts

the types of vulnerabilities from the most critical to the least critical, in terms

of estimates of exploitability, detectability and impact.

5. Currently, our prototype is only able to inform developers that there are

security vulnerabilities in her/his software system. However, we believe the

next step towards helping developers produce more secure software is to help

them remove the vulnerabilities. In order to do that, it would be necessary to

add support for (semi-)automatically fixing the source code whenever

vulnerabilities are found.

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 125

7
References

Albuquerque, D., Garcia, A., Oliveira, R. and Oizumi, W. (2014). Detecção

Interativa de Anomalias de Código: Um Estudo Experimental. WMOD2014,

An Overview Of Vulnerability Scanners (2008). The Government of the Hong

Kong Special Administrative Region, p. 16.

Apple (2013). Introduction to Secure Coding Guide.

https://developer.apple.com/library/mac/documentation/security/conceptual/Secur

eCodingGuide/Introduction.html, [accessed on Nov 10].

Artho, C. and Biere, A. (2005). Combined static and dynamic analysis. In

Electronic Notes in Theoretical Computer

Science.https://staff.aist.go.jp/c.artho/papers/466.pdf.

Baca, D. (2009). Automated Static Code Analysis - A tool for early vulnerability

detection. Blekinge Institute of Technology.

Baca, D., Carlsson, B. and Lundberg, L. (2008). Evaluating the cost reduction of

static code analysis for software security. Proceedings of the third ACM SIGPLAN

workshop on Programming languages and analysis for security - PLAS ’08, p. 79.

Barbosa, E. A., Garcia, A. and Mezini, M. (jun 2012). A recommendation system

for exception handling code. In 2012 5th International Workshop on Exception

Handling (WEH). IEEE.

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6226601,

[accessed on Dec 9].

Bennetts, S. (2012). OWASP Zed Attack Proxy Project.

https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project.

Blyth, A. (jul 2004). Innocent code: a security wake-up call for web programmers.

Infosecurity Today, v. 1, n. 4, p. 249.

Bolour, A. (2003). Notes on the Eclipse Plug-in Architecture.

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 126

https://www.eclipse.org/articles/Article-Plug-in-

architecture/plugin_architecture.html, [accessed on Nov 21].

Brown, S. (2006). Pebble. http://pebble.sourceforge.net/, [accessed on Apr 3].

Burén, R. (2003). BlueBlog. https://sourceforge.net/projects/blueblog/, [accessed

on Apr 3].

Burp Suite ([S.d.]). http://www.portswigger.net/burp/.

Chess, B. and McGraw, G. (2004). Static analysis for security. Security &

Privacy, IEEE, v. 2, n. 6, p. 76–79.

Cowley, S. (2001). Code red costs could top $2 billion.

http://www.pcworld.com/article/57744/article.html, [accessed on Nov 17].

Deacon, J. (2009). Model-view-controller (mvc) architecture. … de 2006.]

http://www. jdl. co. uk/briefings/MVC. pdf, p. 1–6.

Dehlinger, J., Feng, Q. and Hu, L. (2006). SSVChecker.

http://ssvchecker.sourceforge.net/, [accessed on Nov 10].

Dillig, I., Dillig, T. and Aiken, A. (2011). Precise reasoning for programs using

containers. ACM SIGPLAN NoticesEclipse ([S.d.]).

https://eclipse.org/home/index.php.

Eclipsesource, M. K. (2009). The Eclipse Packaging Project and its Usage Data

Collector in RAP and RCP Applications Agenda ... n. April.

Fowler, M., Beck, K., Brant, J., Opdyke, W. and Roberts, D. (1999). Refactoring:

Improving the Design of Existing Code. Xtemp01, p. 1–337.

Geer, D. (2005). Eclipse becomes the dominant Java IDE. Computer, v. 38, n. 7,

p. 16–18.

Google (2001). CodePro Analytix. https://developers.google.com/java-dev-

tools/codepro/doc/, [accessed on Oct 11].

Grossman, J. (2013). Whitehat website security statistics report.

https://www.whitehatsec.com/assets/WPstatsReport_052013.pdf, [accessed on

Nov 26].

Guarnieri, M., El Khoury, P. and Serme, G. (2011). Security Vulnerabilities

Detection and Protection Using Eclipse. In Proceedings of ECLIPSE-IT 2011.

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 127

Halfond, W. G. J., Viegas, J. and Orso, A. (2008). A Classification of SQL

Injection Attacks and Countermeasures. PREVENTING SQL CODE INJECTION

BY COMBINING STATIC AND RUNTIME ANALYSIS, p. 53.

Hammer, C., Krinke, J. and Snelting, G. (2006). Information flow control for java

based on path conditions in dependence graphs. IEEE International Symposium

on …,

Howard, M., Leblanc, D. and Viega, J. (2009). 24 Deadly Sins of Software

Security: Programming Flaws and How to Fix Them. McGraw Hill Professional,

2009. p. 432

HP (2002). Fortify. http://www8.hp.com/us/en/software-solutions/software-

security/index.html, [accessed on Nov 15].

IBM (2001). IBM Rational AppScan Developer Edition. http://www-

03.ibm.com/software/products/en/appscan, [accessed on Nov 10].

Java Decompiler ([S.d.]). http://jd.benow.ca/, [accessed on Dec 1].

Johnson, D. (2002). Apache Roller. http://rollerweblogger.org/project/, [accessed

on Apr 3].

Kessler, G. C. and Levine, D. E. (2009). Denial-of-Service attack. Computer

Security Handbook. p. 1–28.

Kohli, N. and Joshi, R. (2013). Implementation of Rabin Karp String Matching

Algorithm Using MPI.

http://www.sjsu.edu/people/robert.chun/courses/CS259Fall2013/s3/I.pdf,

[accessed on Dec 27].

Kuhn, T. and Olivier, T. (2006). Abstract Syntax Tree.

https://www.eclipse.org/articles/article.php?file=Article-

JavaCodeManipulation_AST/index.html, [accessed on Sep 17].

Kupsch, J. A. and Miller, B. P. (2009). Manual vs. Automated vulnerability

assessment: A case study. In CEUR Workshop Proceedings.

Lester, C. Y. and Jamerson, F. (2009). Incorporating Software Security into an

Undergraduate Software Engineering Course. 2009 Third International

Conference on Emerging Security Information, Systems and Technologies,

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 128

Lhoták, O. and Hendren, L. (2006). Context-sensitive points-to analysis: is it

worth it? Compiler Construction,

Linden, M. A. Van der (2009). Vulnerability Case Study: Cookie Tampering.

http://www.infosectoday.com/Articles/Cookie_Tampering.htm, [accessed on Aug

16].

Livshits, V. B. (2005). Stanford SecuriBench.

http://suif.stanford.edu/~livshits/securibench/intro.html, [accessed on Apr 3].

Livshits, V. B. (2006). Lapse+. http://evalues.es/?q=node/14, [accessed on Oct

10].

Livshits, V. B. and Lam, M. S. (2005). Finding Security Vulnerabilities in Java

Applications with Static Analysis. Architecture, p. 18.

Meier, J. D., Mackman, A., Wastell, B., et al. (2005). How To: Perform a Security

Code Review. http://msdn.microsoft.com/en-us/library/ff649315.aspx, [accessed

on Jul 21].

Nadeem, M., Williams, B. J. and Allen, E. B. (2012). High false positive detection

of security vulnerabilities. In Proceedings of the 50th Annual Southeast Regional

Conference on - ACM-SE ’12. ACM Press.

http://dl.acm.org/citation.cfm?doid=2184512.2184604, [accessed on Jan 28].

NetBeans ([S.d.]). https://netbeans.org/.

Oracle ([S.d.]). Uses of Reflection. http://docs.oracle.com/javase/tutorial/reflect/,

[accessed on Mar 14].

Organization for Internet Safety (2004). Guidelines for Security Vulnerability

Reporting and Response Organization for Internet Safety.

http://www.symantec.com/security/OIS_Guidelines for responsible

disclosure.pdf, [accessed on Apr 1].

OWASP (2003a). OWASP Projects.

https://www.owasp.org/index.php/Category:OWASP_Project, [accessed on Apr

17].

OWASP (2003b). OWASP.org. https://www.owasp.org/index.php/Main_Page,

[accessed on Jul 10].

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 129

OWASP (2006). WebGoat Project.

https://www.owasp.org/index.php/Category:OWASP_WebGoat_Project,

[accessed on Apr 3].

OWASP (2013a). Cross-site Scripting (XSS).

https://www.owasp.org/index.php/Cross-site_Scripting_(XSS), [accessed on Oct

12].

OWASP (2013b). SQL Injection.

https://www.owasp.org/index.php/SQL_Injection, [accessed on Oct 12].

OWASP (2013c). Broken Access Control.

https://www.owasp.org/index.php/Broken_Access_Control, [accessed on Oct 12].

OWASP (2013d). OWASP Top 10 - 2013.

http://owasptop10.googlecode.com/files/OWASP Top 10 - 2013.pdf, [accessed on

Nov 25].

OWASP (2013e). Security Misconfiguration.

https://www.owasp.org/index.php/Top_10_2013-A5-Security_Misconfiguration,

[accessed on Oct 12].

OWASP (2013f). HTTP Response Splitting.

https://www.owasp.org/index.php/HTTP_Response_Splitting, [accessed on Oct

12].

OWASP (2013g). HttpOnly. https://www.owasp.org/index.php/HttpOnly,

[accessed on Oct 12].

OWASP (2013h). Secure Flag. https://www.owasp.org/index.php/SecureFlag,

[accessed on Oct 12].

OWASP (2013i). Information Leakage.

https://www.owasp.org/index.php/Information_Leakage, [accessed on Oct 12].

OWASP (2013j). Command Injection.

https://www.owasp.org/index.php/Command_Injection, [accessed on Oct 12].

OWASP (2013k). LDAP injection.

https://www.owasp.org/index.php/LDAP_injection, [accessed on Oct 12].

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 130

OWASP (2013l). Log Forging. https://www.owasp.org/index.php/Log_Forging,

[accessed on Oct 12].

OWASP (2013m). Path Traversal.

https://www.owasp.org/index.php/Path_Traversal, [accessed on Oct 12].

OWASP (2013n). Reflection injection.

https://www.owasp.org/index.php/Reflection_injection, [accessed on Oct 12].

OWASP (2013o). XPATH Injection. http://www.soapui.org/Security/xpath-

injection.html, [accessed on Oct 12].

OWASP (2013p). OWASP Ranking Risk Factors.

https://www.owasp.org/index.php/Top_10_2013-Details_About_Risk_Factors,

[accessed on Apr 27].

Payne, M. (2003). PersonalBlog. https://sourceforge.net/projects/personalblog/,

[accessed on Apr 3].

Pugh, B. and Loskutov, A. (2006). Findbug. http://findbugs.sourceforge.net/,

[accessed on Nov 10].

Sampaio, L. (2013). NCO. http://www.inf.puc-rio.br/~lsampaio/nco/nco.zip,

[accessed on Jul 17].

Sampaio, L. (2014a). Which methods should be considered “Sources”, “Sinks” or

“Sanitization”  ? http://thecodemaster.net/methods-considered-sources-sinks-

sanitization/, [accessed on Sep 30].

Sampaio, L. (2014b). Benchmark Results. http://www.inf.puc-

rio.br/~lsampaio/plugin/benchmark/Results.zip, [accessed on Jul 17].

Sampaio, L. (2014c). Controlled Experiment. http://www.inf.puc-

rio.br/~lsampaio/plugin/controlled_experiment/controlled_experiment.zip,

[accessed on Jul 17].

Sampaio, L. (2014d). How to use the ESVD plug-in on Eclipse.

https://www.youtube.com/watch?v=pNr38gMWvHQ.

Sampaio, L. and Garcia, A. (2014). ESVD - Early Security Vulnerability Detector.

https://marketplace.eclipse.org/content/early-security-vulnerability-detector-esvd/.

Sasaki, Y. (2007). The truth of the F-measure. Teach Tutor mater, p. 1–5.

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 131

Searching for Code in J2EE/Java (2010).

https://www.owasp.org/index.php/Searching_for_Code_in_J2EE/Java, [accessed

on Mar 9].

Secure Coding Guidelines for Java SE (2014).

http://www.oracle.com/technetwork/java/seccodeguide-139067.html, [accessed on

Mar 9].

Telang, R. and Wattal, S. (2005). Impact of Software Vulnerability

Announcements on the Market Value of Software Vendors – an Empirical

Investigation. Available at SSRN 677427, n. February, p. 1–34.

Tripp, O., Pistoia, M., Fink, S. J., Sridharan, M. and Weisman, O. (2009). TAJ:

Effective Taint Analysis of Web Applications. In Proceedings of the 2009 ACM

SIGPLAN conference on Programming language design and implementation -

PLDI ’09. , PLDI ’09. ACM Press. http://doi.acm.org/10.1145/1542476.1542486,

[accessed on Aug 5].

Tsipenyuk, K., Chess, B. and McGraw, G. (nov 2005). Seven Pernicious

Kingdoms: A Taxonomy of Software Security Errors. IEEE Security and Privacy

Magazine, v. 3, n. 6, p. 81–84.

Williams, J. (2010). OWASP Enterprise Security API.

https://www.owasp.org/index.php/ESAPI, [accessed on Sep 10].

Willis, G. W., White, G. B., Marti, W. and Huson, M. L. (2006). Incorporating

Security Issues Throughout the Computer Science Curriculum.

Xie, J., Lipford, H. R. and Chu, B. (sep 2011). Why do programmers make

security errors? In 2011 IEEE Symposium on Visual Languages and Human-

Centric Computing (VL/HCC). IEEE.

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6070393,

[accessed on Nov 25].

Zeichick, A. (2012). Zeichick’s Take: Java, Java everywhere.

http://sdtimes.com/zeichicks-take-java-java-everywhere/, [accessed on Feb 9].

Zhu, J. (2012). ASIDE.

https://www.owasp.org/index.php/OWASP_ASIDE_Project, [accessed on Nov

10].

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 132

Appendix 1 - Participant Profile Questionnaire

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

 133

Appendix 2 - System Requirements

DBD
PUC-Rio - Certificação Digital Nº 1221715/CB

