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A
Relations between angles in a isosceles
prism

Figure A.1: Light beam impinges on prism. The characteristic angle of prism is alpha

Considering the triangle ACD, we have

θx + (180− θpt) + β = 180, (1)

θx = θpt − β. (2)

At the interface(Point A), we have

β = θin − θrf , (3)

and from Snell’s law, considering a ray of light moving from air to prism,
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with (n1 = 1, np =refractive index of prism)

sin θin
sin θrf

= np ⇒ θin = arcsin (np sin θrf ) . (4)

By the use of (1), (3) and (4) we obtain

θx = θpt + θrf − arcsin (np sin θrf ) . (5)

The line AB is perpendicular to the line EA, and the line EC is

perpendicular to the line BC, then the angle ABV is α. So, in the triangle

ABC

θrf + θpt + 180− α = 180 ⇒ θpt = α− θrf , (6)

and the angle θx is given by equation

θx = α− arcsin (n2 sin (α− θpt)) . (7)

From the last equation, and using the relation (4), the relation between

θin and θx is given by

θx = α− θin. (8)

The relation between θpt and θx is obtained inverting equation (7),

θpt = α− arcsin

(
1

n2

sin (α− θx)

)
. (9)

A.1 Correction factor for the reflections of the

beams at air/prism interfaces

From the Fresnel equations [Jackson99], for TM polarization the trans-

mission coefficient from air to prism

tA,P =
2 sin θrf cos θin

sin(θin + θrf ) cos(θin − θrf )
, (10)

and from the prism to air is

tP,A =
2 sin θin cos θrf

sin(θrf + θin) cos(θrf − θin)
, (11)

where θin, θrf are the incident and refracted angle respectively. The
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fraction of the incident intensity that is transmitted when light enters a

dieletric of refractive index n is not given directly by the square of the relative

amplitude. The total energy flux in the refracted beam is its intensity times

its area, and the latter differs from that of the incident or reflected beams in

the ratio cos θrf/ cos θin [Jenkins01]. The conservation of energy is given by

r2 + n
cos θr
cos θi

t2 = 1 (12)

In our case is necessary consider two cases: light propagates from air to

prism (case I) and light propagates from prism to air (case II). For the first

case

P p
in = PA

in

cos θrf
cos θin

t2A,P , (13)

for the second case

PA
out =

P P
out

np

cos θin
cos θrf

t2P,A. (14)

In equations (13), (14) PA is the power measured in the air and P p is the

power inside the prism, as sketched in figure A.1. Applying equations (10) and

(12) to the relations (13) (14), the incident power inside the prism is described

by

P p
in =

[
np

4 sin2 θref cos
2 θin

sin2(θref + θin) cos2(θin − θref )

]
cos θref
cos θin

P p
in, (15)

while the power detected by the home-made detector is

PA
out =

[
4 sin2 θin cos

2 θref
np sin

2(θref + θin) cos2(θref − θin)

]
cos θin
cos θref

P p
out. (16)

The actual reflectivity inside the prism isRA, defined as P p
out/P

p
in, whereas

and the reflectivity measured directly in the laboratory is RM , defined as

PA
out/P

A
in. The relation between the reflectivities is

RA =
sin4(θref + θin) cos

4(θin − θref )

sin2(2θref ) sin
2(2θin)

RM (17)
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B
Text of the Program for the Two-
(Substrates, Colors, Media) Method

This program was developed in Mathematica 8.0. It is assumed a system

of four layers (prism, metal, dielectric (Alq3) and solvent (or air)). The first

part is to define the characteristics of the system. The angles are obtained

from Winspall.

The definition of the system
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Parameters of the first measurement

Parameters of the second measurement
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Definition of the functions [Pockrand78]
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Generating graphics

Using the first order term in the approximation. Curves obtained with

the mean values of the dielectrics function of Silver and Gold as a reported in

table V.5.

Using the second order term in the approximation Curves obtained with

the mean values of the dielectrics function of Silver and Gold as a reported in

table V.5. The intersection point is (23.03 nm, 3.214 )
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