

John Edicson Hernández Sánchez

Assembly of a surface plasmon resonance (SPR) spectrometer for the characterization of thin organic films

Dissertação de Mestrado

Thesis presented to the Programa de Pós-Graduação em Física of the Departamento de Física do Centro Técnico Científico da PUC-Rio, as partial fulfillment of the requirements for the degree of Mestre.

Advisor : Prof. Tommaso Del Rosso Co-Advisor : Prof. Omar Pandoli

> Rio de Janeiro December 2013

John Edicson Hernández Sánchez

Assembly of a surface plasmon resonance (SPR) spectrometer for the characterization of thin organic films

Thesis presented to the Programa de Pós-Graduação em Física of the Departamento de Física do Centro Técnico Científico da PUC-Rio, as partial fulfillment of the requirements for the degree of Mestre.

Prof. Tommaso Del Rosso Advisor Departamento de Física – PUC-Rio

Prof. Marco Cremona Departamento de Física – PUC-Rio

> Prof. Dmitriev Victor UFPA

Prof. José Eugenio Leal Coordinator of the Centro Técnico Científico – PUC-Rio

John Edicson Hernández Sánchez

John Hernández Sánchez graduated from the Universidad Nacional de Colombia in Physics, working in High Energy Physics. He then obtained a Master degree at the PUC–Rio, where he specialized in Surface Plasmon Resonce (SPR) under the orientation of Professor Tommaso Del Rosso.

Bibliographic data

Hernández, John

Assembly of a Surface Plasmon Resonance (SPR) Spectrometer for the characterization of thin organic films / John Edicson Hernández Sánchez ; advisor: Tommaso Del Rosso; co-advisor: Omar Pandoli. — Rio de Janeiro 2013.

79 f. : il. ; 30 cm

Dissertação (Mestrado)-Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Física, 2013.

Inclui bibliografia.

1. Física – Dissertação. 2. Sensores óticos. 3. Polaritones Superficiais Plasmônicos (SPP). 4. Interfaces Metal-Orgânico. 5. Filmes Finos. 6. Índice de refração. 7. Controles não destructivos. I. Del Rosso , Tommaso. II. Pandoli, Omar. III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento of Física. IV. Titulo.

A Isa, mi amor más tierno A Lili, a tu linda sonrisa, mi amor bello!! A los pilares de mi vida: El negro, la negra y Lisa por la larga travesía y compañia através de estos años y a TI por enseñarme que en la vida todo suma. Acknowledgments

To the CAPES and the PUC–Rio, for the financial support, without which this work would not have been realized.

To my advisor Professor Tommaso Del Rosso for the support during the implementation and conclusion of the project.

To Harold Camargo, who teached me to work with Univex300, profilometer and fluorimeter.

To João Manoel, for the implementation of the spectrometer.

Abstract

Hernández, John; Del Rosso, Tommaso; Pandoli, Omar. Assembly of a Surface Plasmon Resonance (SPR) Spectrometer for the characterization of thin organic films. Rio de Janeiro, 2013. 79p. Dissertação de Mestrado — Departamento de Física, Pontifícia Universidade Católica do Rio de Janeiro.

Surface Plasmon Resonance Spectroscopy (SPR) is an optical technique widely used to monitor the physical or chemical changes occurring at a metal-dielectric interface. The simultaneous measurement of the thickness and the index of refraction of organic thin films adsorbed or deposited on the metal flat surface require two independent measurements following a methodology commonly named in literature as Two-Colors Method or Two-Medium Method. In the first one, the two measurements are performed using different wavelength of the electromagnetic radiation interacting with the sample. In the second one the index of refraction of the external medium (gas, liquid) is changed between the two measurements. While the first method implies the knowledge of the dispersion function of the organic layer, the second one gives accurate results only when the organic molecules don't interact chemically with the external fluid. Both of these methods present difficulties when applied to the characterization of luminescent organic materials, most of the time highly reactive to humidity and to the contact with organic solvents. In this work an automated SPR spectrometer was assembled and first tested on the characterization of home-made samples in terms of the absolute value and homogeneity of the optical constants of the metal deposition supporting the plasma wave. We demonstrate that accurate measurements of such optical constants allow the determination of the index of refraction of thermally evaporated luminescent organic thin films using a Two-Metal Substrate Method. This method, to our knowledge only theorized up to now in literature, has been applied to an encapsulated sample containing a thin film of commercial Alq3. Further, the degradation of the metal/Alq3 interface exposed to air has been real time monitored indicating a progressive drop in the angle of resonance of the sample.

Keywords

Optical Sensors; Surface Plasmon Sensors (SPP); Metal Organic Interfaces; Thin Films; index of refraction; Nondestructive Testing.

Resumo

Hernández, John; Del Rosso, Tommaso; Pandoli, Omar. Montagem de um Espectrômetro SPR para a caracterização de filmes finos orgânicos. Rio de Janeiro, 2013. 79p. Dissertação de Mestrado — Departamento de Física, Pontifícia Universidade Católica do Rio de Janeiro.

Espectroscopia de ressonância plasmônica de superfície (SPR) é uma técnica óptica amplamente utilizada para monitorizar as alterações físicas ou químicas que ocorrem em uma interface metal - dielétrico. A medição simultânea da espessura e do índice de refração de filmes finos orgânicos, adsorvidos ou depositados sobre a superfície plana de um metal, requer duas medições independentes seguindo uma metodologia designada na literatura como método de duas cores ou método de dois meios. Na primeira, as duas medições são realizadas utilizando diferentes comprimentos de onda da radiação eletromagnética interagindo com a amostra. Na segunda, o índice de refração do meio externo (gás, líquido) é alterado entre as duas medições. Enquanto o primeiro método implica no conhecimento da função de dispersão da fase orgânica, o segundo só produz resultados precisos quando as moléculas orgânicas não interagem quimicamente com o fluido externo. Ambos os métodos apresentam dificuldades quando são aplicados à caracterização de materiais luminescentes orgânicos, os quais são na maior parte do tempo altamente reativos à umidade e ao contato com solventes orgânicos. Neste trabalho foi montado um espectrômetro de SPR automatizado. Primeiramente, ele foi testado na caracterização de amostras feitas no laboratório em termos do valor absoluto, e da homogeneidade das constantes ópticas da deposição metálica que suporta a onda de plasma. Nós demonstramos que medições precisas de constantes ópticas permitem a determinação do índice de refração de filmes finos orgânicos luminescentes, evaporados termicamente utilizando o método de substrato com dois metais. Este método, que até onde sabemos é apenas teorizado na literatura, foi aplicado a uma amostra encapsulada com um filme fino de Alq_3 comercial. Além disso, a interface metal/ Alq_3 foi exposta a ar, e a degradação foi monitorada em tempo real, indicando uma diminuição progressiva do ângulo de ressonância da amostra.

Palavras-chave

Sensores óticos; Polaritones Superficiais Plasmônicos (SPP); Interfaces Metal-Orgânico; Filmes Finos; Índice de refração; Controles não destructivos;

Contents

I Introduction	15
II Theory Of Surface Plasmon Resonance (SPR)	18
II.1 Maxwell equations and dielectric constant of metals	18
II.2 Electromagnetic waves at metal-dielectric interfaces	22
TM polarization	22
$TE \ polarization$	25
Excitation of Surface Plasmons Polaritons (SPP)	25
II.3 Reflectivity of multilayer planar systems	28
Two layer system	28
Approximate analytical solution for a three layer system	30
Four layer system: sensing applications	31
11.4 Alq_3	32
III Fabrication of the samples	34
III.1 Glass substrate cleaning	34
III.2 Vacuum deposition	35
E-Beam gun assisted deposition	35
Thermal evaporation	38
III.3 Final samples	41
IV Assembly and Automation of the SPR Spectrometer	43
IV.1 Optical system	43
IV.2 Home-made detector	44
IV.3 Definition of internal reflectivity and angle of incidence	46
IV 4 Measurement procedure and software for data collection	47
IV 5 Data elaboration software	/18
	40
V Experimental Results	50
V.1 Measurement of the optical constants of thin silver films	50
V.2 Measurement of the optical constants of thin gold films	53
V.3 Measurement of the refractive index of Alq_3 thin film by two-Metal substrate method	56
V_{A} Monitoring of the degradation process of the cold/Alg interface	60
V.4 Monitoring of the degradation process of the $gota/Atq_3$ interface	00
VI Conclusions	63
Bibliography	66
Appendices	71

А	Relations between angles in a isosceles prism	72
A.1	Correction factor for the reflections of the beams at air/prism interfaces	73
В	Text of the Program for the Two-(Substrates, Colors, Media) Method	75

List of Figures

II.1	Comparison between the theoretical values of $\varepsilon(\omega)$ of gold using the Drude model and the experimental datas obtained by Johnson. The damping term is 1/30 fs, the plasma frequency is $\omega_n = 45 \times 10^{14}$ Hz [Trugler11]	21
II.2	Representation of the interface between two semi-infinite me- dia. Note that the Electromagnetic field is considered TM po- larized.	22
II.3	Representation of the Surface Plasmon Polariton (SPP). The evanescent wave that propagates along the interface metal- dielectric interface.	24
II.4	Dispersion of plasma waves at an air-gold interface. The low energy modes are surface plasmons polaritons, the high energy modes are bulk propagating wave.	25
II.5 II.6	Dispersion Relation for SPP in two different media. Kretschmann configuration. \mathbf{k}_0 is the wavevector of the EM- field in air, \mathbf{k}_{In_x} is the component of the wavevector of the EM-field in the prism parallel to the metal-dielectric interface, n_p is the refractive index of the prism, P_{Im} is the power of the EM-wave impinging on the base of the prism, P_{Out} is the power of the EM-wave reflected at the base prism and R is	26
II.7	by the reflectivity of the structure. Scheme of forwards and backwards propagating plane waves with TM polarization, used to model the reflection and trans- mission properties of a planar interface between two different modia $(1, 2)$	27
II.8	SPR curve obtained using <i>Winspall</i> free software for gold films with different thickness at $\lambda = 632.8$ nm. The external medium	20
II.9	S all and the prism is considered to be made of BK7. Molecular structure of Alq_3 .	$\frac{31}{32}$
III.1 III.2 III.3	Glass substrate cleaning. Scheme of the e-beam gun system. Univex 450. a- crucible with metal pellet, b- tungsten fila- ment, c- sample holder, d- quartz crystal balance,e- pressure	35 36
	detector, f- electron gun controller, g- vacuum chamber. Power Curve for Univer 450	$\frac{36}{28}$
III.4 III.5	a) schematic diagram of the vacuum chamber Univex 300. b) haffle source c) photo of the thermal evaporator Univer 300	90 30
III.6	Height profile obtained using the profilometer for a deposition of $1000\text{\AA}(\text{nominal thickness})$ of Ala_2	40
III.7	Structures of the samples used to measure the refractive index of Alq_3 (a) and to monitor its degradation (b). In blue glass	10
	SHUE.	- 41

PUC-Rio - Certificação Digital Nº 122289/CA

III.8 III.9	Procedure to encapsulate the samples. a-gold film, b- mask on gold film. c- deposition of dielectric material, d- glass slide with tape. e-glass slide with tape put over the sample. f- epoxy adhesive on sample. Photo of a non encapsulated sample (a), and a encapsulated sample (b).	41 42
IV.1 IV 2	Photo of the automated SPR spectrometer: (a) laser source, (b) mirrors, (c,h) power attenuators, d-beam splitter, (e) linear polarizer, (f) pin-hole, (i) rotating stage, (g,j) detector, (k) black box, (m) oscilloscope, (n) PC. Electronic Scheme for of the silicon home-made detector	43 45
IV.2 IV.3 IV.4	Photo of the large area home-made detector. Scheme of the typical isosceles prism used for SPR coupling, θ_{in} is the angle of incidence that we measure directly with the goniometer, and θ_x is the angle of incidence related with θ_{in} ,	45
IV.5 IV.6	Typical curve of reflectivity R_M vs N_s , as shown on the control panel of the data acquisition software at the end of the measurement. Experimental data for a silver film fitted using <i>Winspall</i> .	40 48 49
V 1	Typical SPB curve for a silver deposition. The inserted figure	10
V.2	represents the SPR curves, close to the ressonance angle, relative to three different points (A,B,C) on the same sample. Fit of the experimental SPR curve obtained with <i>Winspall</i> for one point over one of the silver thin films deposited. The black points represent the experimental measurements while the red	51
V.3	curve is the theoretical one. One of the height profile relative to the the sample with the thin deposition of silver. The height profile has been obtained using the profilometer with a stylus force of 2mg and a scan	51
V.4	length of 400 μ m. Typical SPR curve for a gold deposition. The inserted figure represents the SPR curves, close to the ressonance angle,	52
V.5	Fit of the experimental SPR curve obtained with <i>Winspall</i> for one point over one of the gold thin films deposited. The black points represent the experimental measurements while the red	34
V.6	curve is the theoretical best-fit. One of the height profiles relative to the sample with the thin deposition of gold. The height profile has been obtained using the profilometer with a stylus force of 3 mg and a scan length of 400 um	54
V.7	SPR curves of silver/ Aq_3 (black filled circles) and gold/ Alq_3	55
	(open circles) samples.	57

Curves representing the possible couple of values for the dielectric constants and thickness of the Alq_3 film over silver (black filled circles) and gold (red filled squares) depositions. The mean values of table V.5 are considered as the dielectric constants of the different metals depositions, namely $\varepsilon_{silver} =$	
$(-17, 24 + i0, 70)$ and $\varepsilon_{Gold} = (-11, 76 + i1, 57).$	58
Possible couples of values for the dielectric function and thickness of the Alq_3 thin film.	59
Behavior of the SPR curve with time for the encapsulated Au/Alq_3 sample. The window at the left-bottom side of the figure is an enlarged view of the SPR curves near the angle of	
resonance.	60
Behavior of the SPR curve with time for the non encapsulated Au/Alq_3 sample. The window at the left-bottom side of the figure is an enlarged view of the SPR curves near the angle of	
resonance.	61
Time dependence of the minimum value of the reflectivity (right side) and the resonance angle θ_{SPR} (left side) for the	
non encapsulated Au/Alq_3 sample.	62
Light beam impinges on prism. The characteristic angle of prism is $alpha$	72
	Curves representing the possible couple of values for the dielectric constants and thickness of the Alq_3 film over silver (black filled circles) and gold (red filled squares) depositions. The mean values of table V.5 are considered as the dielectric constants of the different metals depositions, namely $\varepsilon_{Silver} = (-17, 24 + i0, 70)$ and $\varepsilon_{Gold} = (-11, 76 + i1, 57)$. Possible couples of values for the dielectric function and thickness of the Alq_3 thin film. Behavior of the SPR curve with time for the encapsulated Au/Alq_3 sample. The window at the left-bottom side of the figure is an enlarged view of the SPR curves near the angle of resonance. Behavior of the SPR curve with time for the non encapsulated Au/Alq_3 sample. The window at the left-bottom side of the figure is an enlarged view of the SPR curves near the angle of resonance. Time dependence of the minimum value of the reflectivity (right side) and the resonance angle θ_{SPR} (left side) for the non encapsulated Au/Alq_3 sample. Light beam impinges on prism. The characteristic angle of prism is $alpha$

List of Tables

II.1 II.2	Plasma frequency (ω_o) and damping term (γ) for the most common metals used to support the plasma wave [Ordal95] Skin depth and propagation length of SPP in silver/air and gold/air at a wavelength of 630 nm	20 24
III.1	Experimental parameters that characterize the gold and silver depositions.	38
III.2	Experimental parameters that characterize the Alq_3 thermal evaporation.	39
V.1	Values obtained for thickness and dielectric function of one of the silver thin films fabricated. The uncertainty of the values	
Vo	reflects the non homogeneity of the metal deposition.	52
V.2	different silver thin films fabricated during the same deposition	50
V.3	Values obtained for thickness and dielectric function of one of the gold thin films fabricated. The uncertainty of the values	53
T <i>T</i> 4	reflects the non homogeneity of the metal deposition.	55
V.4	Values obtained for the dielectric function and thickness of different gold thin films fabricated during the same deposition	
V.5	by e-Beam gun apparatus. Results obtained for the characterization of the gold and silver	56
	films deposited on the sample under analysis.	56

hominum mens numquam fingere sibi valuisset: Aeternum ingreditur tempus, Quod est Omne absconditur in parte, Deus hominis suscipit vultum. –... definitiva que la mente humana, partiendo de sí misma, ni tan siquiera hubiera podido imaginar: el Eterno entra en el tiempo, el Todo se esconde en la parte y Dios asume el rostro del hombre.

Juan Pablo II, Fides et Ratio.