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Poggi de Aragão, Marcus Vińıcius. III. Pontif́ıcia Universidade
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Abstract

Herszterg, Ian Hodara; Vidal, Thibaut (Advisor); Poggi de Aragão,
Marcus Vińıcius (Co-Advisor). 2D Phase Unwrapping via
Minimum Spanning Forest with Balance Constraints. Rio
de Janeiro, 2015. 98p. MSc. Dissertation — Departamento de
Informática, Pontif́ıcia Universidade Católica do Rio de Janeiro.

The development and application of techniques in coherent

signal processing have greatly increased over the past several years.

Synthetic aperture radar, acoustic imaging, magnetic resonance, X-Ray

crystallography and seismic processing are just a few examples in which

coherent processing is required, resulting in the need for accurate and

efficient phase unwrapping methods. The phase unwrapping problem

consists in recovering a continuous phase signal from an originally wrapped

phase data between the ]−π,π] interval. This dissertation proposes a

new model for the L0-norm 2D phase unwrapping problem, in which the

singularities of the wrapped phase image are associated to a graph where

the vertices have different polarities (+1 and -1). The objective is to find

a minimum cost balanced spanning forest where the sum of polarities is

equal to zero in each tree. A set of primal and dual heuristics, a branch-

and-cut algorithm and a hybrid metaheuristic method are proposed to

address the problem, leading to an efficient approach for L0-norm 2DPU,

previously viewed as highly desirable but intractable. A set of experimental

results illustrates the effectiveness of the proposed algorithm, and its

competitiveness with state-of-the-art algorithms.

Keywords
phase unwrapping; signal processing; heuristics; combinatorial

optimization; branch-and-cut; mathematical programming; algorithms;

graphs.
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Resumo

Herszterg, Ian Hodara; Vidal, Thibaut; Poggi de Aragão, Mar-
cus Vińıcius. Phase Unwrapping 2D via Floresta Gera-
dora Mı́nima com Restrições de Balanceamento. Rio de Ja-
neiro, 2015. 98p. Dissertação de Mestrado — Departamento de In-
formática, Pontif́ıcia Universidade Católica do Rio de Janeiro.

O desenvolvimento e a aplicação de técnicas em processamento de

sinais coerentes obtiveram um avanço significativo nas últimas décadas. A

decodificação de imagens de radar de abertura sintética, imagens acústicas,

de ressonância magnética, e de processamento śısmico são apenas alguns

exemplos em que o processamento de sinais coerentes é utilizado, levando à

necessidade do uso de métodos precisos e eficientes para a técnica de phase

unwrapping. O problema de phase unwrapping consiste em recuperar um

sinal de fase cont́ınuo a partir de um conjunto de dados de fase originalmente

restritos ao intervalo de ]−π,π]. Este trabalho propõe um novo modelo

para a norma L0 do problema de Phase Unwrapping 2D (2DPU), onde as

inconsistências da imagem de fase wrapped são associadas a um grafo no qual

vértices possuem diferentes polaridades (+1 e -1). Procura-se obter uma

floresta geradora de custo mı́nimo, onde o somatório das polaridades dos

vértices é igual a zero para cada árvore. Um conjunto de heuŕısticas primais e

duais, um método exato de branch-and-cut e uma meta-heurśtica h́ıbrida são

propostos para tratar o problema, resultando em uma abordagem eficiente

para a norma L0 do problema 2DPU anteriormente vista como altamente

desejável, porém intratável.

Palavras–chave
phase unwrapping; processamento de sinais; heuŕısticas; otimização

combinatória; branch-and-cut; programação matemática; algoritmos; gra-

fos.
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1
Introduction

Two-dimensional phase unwrapping (2DPU) is the process of recon-

structing a set of continuous phase signals from a 2D array of phase values

wrapped around a 2π interval. This procedure is a key data-processing step

for many coherent signal processing applications. Synthetic aperture radar,

acoustic imaging, magnetic resonance, X-Ray crystallography and seismic pro-

cessing are just a few examples in which coherent processing is required and

the phase values extracted from the acquired signals are of great interest.

In complex signals, the phase information defines the position of a sample

on a waveform cycle, measured as an angle in degrees or radians. Moreover,

phase values can also be expressed as the relative displacement between waves

having the same frequency. In the context of radar interferometry [1], multiple

coherent radar images of a surface are combined to form interferograms maps.

The reflected radiations from the image area are used to generate maps of

the surface’s topology, where different elevations are described by the relative

displacements between the reflected waves (i.e. the phase values). However,

since the phase values are extracted by trigonometric operators, the acquired

phase signal is wrapped around a 2π domain. The wrapped signal must

be unwrapped into a full range of real numbers, thus reconstructing the

continuous signal and retrieving the original information. Although there is

an extensive number of methods already published in the literature, phase

unwrapping is still considered to be an active research topic [2]. How to deal

with inconsistencies caused by noise, under-sampled signals and other natural

discontinuities still poses a challenge for many state-of-the-art algorithms.

Phase unwrapping for practical real-world applications is considered to be one

of the most challenging tasks in digital signal processing.

This dissertation proposes a new approach for the phase unwrapping

problem via an optimization model, presenting a new set of mathematical

formulations, heuristic methods and an exact branch-and-cut algorithm. We

express the desired goal as an optimization objective and develop efficient

methods known from the field of optimization and operational research to

produce satisfactory solutions. The contributions of this research includes:

– A new approach for the minimization of the L0-norm of the 2DPU

problem, considered as highly desirable but intractable. We seek a
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Chapter 1. Introduction 10

minimum cost spanning forest where every tree spans a balanced number

of inconsistencies in the wrapped phase data.

– Efficient exact and heuristic methods to address the problem. In par-

ticular, we introduce a dual ascent heuristic as well as a branch-and-cut

algorithm which can solve problems to optimality with up to 128 residues

in reasonable computational time.

– A hybrid metaheuristic designed to address larger instances.

– Computational experiments demonstrating that the new formulation

provides a very satisfactory answer to phrase unwrapping problem, for

applications in radar intereferometry and magnetic resonance imaging.

This thesis is structured as follows: Chapter 2 introduces the theoretical

aspects of the phase unwrapping problem. Chapter 3 presents the main

approaches and state-of-the-art methods proposed in the literature. Chapter

4 presents the proposed MSFBC approach, heuristic and exact methods, with

emphasis on its mathematical formulations and a proof of its complexity.

Chapter 5 presents the experimental results and a set of benchmarks against

state-of-the-art algorithms. Finally, Chapter 6 concludes the dissertation and

sets directions for future work.
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2
Introduction to Phase Unwrapping

2.1
The Importance of Phase

The major importance of the phase information in signal processing

can be highlighted by a simple experiment, described by Oppenheim and

Lim in [3]. In this experiment, the 2D discrete Fourier transform (DFT)

is used to decompose two images, into their sine and cosine components,

separating the resulting complex spectrum into a magnitude and a phase value

for each pixel. The output of the transformation represents the image in the

frequency domain, while the original image is the spatial domain equivalent.

The experiment consisted in obtaining the DFT of two different images, A and

B, and recombine their magnitude and phase spectra (magnitudeA with phaseB

and magnitudeB with phaseA) to synthesize new images and better understand

the importance of each signal property extracted by the Fourier transform.

Figures 2.1(a) and 2.1(b) shows two digital grayscale photographs of the

Eiffel Tower and the Statue of Liberty, respectively. It is possible to obtain the

magnitude and phase spectra from the DFT H (x) by applying the following

operations on the real and imaginary parts (<H and =H):

magnitudeH = |<H | (2.1.1)

phaseH = arctan (=H ,<H), (2.1.2)

where arctan is the four-quadrant arc tangent operator that wraps the phase

values to the interval of ]−π, π]. Observing the resulting magnitude spectra in

Figures 2.2(a) and 2.2(b), we can easily identify that each of them shows the

distribution of magnitudes in the spatial frequency of its corresponding image.

Figure 2.1(a) has a much wider bright area in the center of the image than

Figure 2.1(b), which is translated by the larger concentration of higher valued

(brighter) pixels in the center of its magnitude spectrum. On the other hand,

both phase spectra showed in Figures 2.3(a) and 2.3(b) do not have any direct

visual correlation with the information contained in the original images.

Phase values by themselves do not have any sort of visual correlation,

as they only indicate the relative position of each two-dimensional complex
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PUC-Rio - Certificação Digital Nº 1312376/CA



Chapter 2. Introduction to Phase Unwrapping 12

2.1(a): 2.1(b):

Figure 2.1: 300x400 pixel digital gray scale images. (a) The Eiffel Tower (b)
The Statue of Liberty. Both images were courtesy of FreeDigitalPhotos.net

exponential in the 2D Fourrier decomposition. The values stored in each

pixel of the 2D phase spectrum contains essential information about the pixel

topology of its spatial domain image. This concept can be better understood by

the second part of the experiment, which consists in using the DFT inversion

technique to reconstruct and synthesise new images from the two new complex

signals created by swapping the magnitude and phase spectra from figures

2.1(a) and 2.1(b).

Figures 2.4(a) and 2.4(b) display the output of this experiment, showing

that while swapped magnitude spectra simply brightens, darkens or creates

cloudy areas in the recombined image, the information contained in the

phase spectra retains most of the essential characterization of its original

photograph. The overall interpretability of each image is still maintained even

when its magnitude spectrum is disturbed. This simple experiment highlights

the importance of phase in coherent signal processing and the extreme care

that the phase information must be handled in order to develop high quality

methods.
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2.2(a): 2.2(b):

Figure 2.2: Log-scaled 2D DFT magnitude spectra. (a) magnitude spectrum of
the Eiffel Tower image (b) magnitude spectrum of Statue of Liberty image.

2.3(a): 2.3(b):

Figure 2.3: 2D DFT phase spectra. (a) phase spectrum of the Eiffel Tower
image (b) phase spectrum of Statue of Liberty image.
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Chapter 2. Introduction to Phase Unwrapping 14

2.4(a): 2.4(b):

Figure 2.4: New images reconstructed from the inverse DFT transfrom with
swapped spectra. (a) The resulting image of the Statue of Liberty magnitude
with the Eiffel Tower phase spectra. (b) The resulting image of the Eiffel Tower
magnitude with the Statue of Liberty phase spectra.
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Chapter 2. Introduction to Phase Unwrapping 15

2.2
Why Phase Unwrapping?

While the amplitude of phase information can take any real value, it

is wrapped to a 2π interval with a ] − π, π] domain by the four-quadrant

arctangent operator. Since none of the trigonometric operators are injective

functions (one-to-one), their domain must be restricted so they can have

inverse functions. Inverse functions will only evaluate to a single value (i.e.

the principal value).

In mathematical terms, the principal value of phase is also known as

its modulo-2π, which is the result of wrapping the phase around its principal

interval. The wrapping of an unknown phase function φ(t) to the ] − π, π]

interval can be expressed as:

W(φ(t)) = φ(t) + 2πk(t), (2.2.1)

or, more generally as:

ψ(t) = W(φ(t)), (2.2.2)

where k(t) is an integer function that wraps all phase values φ(t) around

] − π, π], W () is the wrapping operator and ψ(t) is the wrapped output.

Figures 2.5 and 2.6 shows the wrapping effect on a continuous 1D signal and

a 2D phase image, respectively.

2.5(a): 2.5(b):

Figure 2.5: Wrapping effect on a 1D continuous phase signal. (a) Continuous
signal (b) Wrapped signal.

The artificial 2π jumps presented in the wrapped phase signal ψ(t) must

be removed in order to reconstruct the original continuous signal, φ(t). This

process is called phase unwrapping, whose goal is to remove the 2π-multiple

ambiguity.
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Chapter 2. Introduction to Phase Unwrapping 16

2.6(a): 2.6(b):

Figure 2.6: Wrapping effect on a 2D phase image. (a) Absolute phase image
(b) Wrapped phase image.

Itoh et al. showed in [4] that for an efficient phase unwrapping, the

absolute phase difference between any two adjacent samples in the continuous

phase signal cannot exceed the value of π (known as the Itoh condition). If we

consider a sequence φn of absolute phase values stored in a discretized array,

then the linear difference ∆ between adjacent samples can be defined as:

∆φn = φn − φn−1, (2.2.3)

leading us to:

m∑
n=1

∆φn = (φm − φm−1) + (φm−1 − φm−2) + · · ·+ (φ2 − φ1)

= (φm − φ1) + (φm−1 − φm−1) + · · ·+ (φ2 − φ2)

= (φm − φ1).

(2.2.4)

Let ∆W(φn) be the linear difference between adjacent wrapped samples. From

(2.2.1) and (2.2.3), we get that:

∆W(φn) = W(φn)−W(φn−1)

= (φn + 2πkn)− (φn−1 + 2πkn−1)

= φn − φn−1 − 2π(kn − kn−1).

(2.2.5)

Now, if we apply wrapping operator W () over ∆W(φn), we obtain the wrapped

difference between wrapped phase samples, described as:

W(∆W(φn)) = ∆φn − 2π(kn − kn−1)− 2πk′

W(∆W(φn)) = ∆φn − 2π(kn − kn−1 − k′),
(2.2.6)
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where k’ is a proper 2π multiple that brings the right-hand size of the equation

to its principal interval and assures that it does not violate the Itoh condition.

Since ∆φn is at most equal to π in its absolute value, we can immediately reach

out to the conclusion that k’ must be equal to (kn − kn−1) in order to keep

both sides of the equation in the appropriate domain. Hence, we have:

W(∆W(φn)) = ∆φn (2.2.7)

Substituting (2.2.7) in (2.2.4) and isolating the term φm, we finally obtain:

φm =
m∑
n=i

W(∆W(φn)) + φi, (2.2.8)

which gives us a mathematical formulation for a procedure to obtain the abso-

lute phase φm from the wrapped phase values alongside any path connecting

sample i to another sample m, where the absolute phase value φi is known. The

term integration path is used to define any valid unwrapping path described

by Equation (2.2.8). This computation is illustrated in the next section.

2.3
The Itoh Algorithm for One Dimensional Phase Unwrapping

A simple one dimensional phase unwrapping procedure based on Itoh’s

analysis is presented in Algorithm 1. The procedure starts by iterating from a

sample in which the absolute phase value is assumed to be known or arbitrarily

fixed (φ(1) = ψ(1)), then verifies if the wrapped phase difference of its lefthand

immediate adjacent sample does violate the ] − π, π] interval. If so, a 2π

increment is added. These steps are iteratively executed until all samples are

evaluated. Figure 2.7 shows the step-by-step algorithm on a wrapped signal

and how it reconstructs the original continuous signal.

2.4
The Effects of Noise and Under Sampling

Although this simple algorithm succeeds in unwrapping an ideal input,

the effects of noise and under sampling can have a severe impact on the

solution’s quality. In order to be processed in a digital environment, the

continuous analog signal must be discretized and converted into a sequence of

samples. The Nyquist-Shannon sampling theorem, as described in [5], states

that a continuous signal can be completely reconstructed from a sampling

made at a frequency greater or equal than the twice of its higher frequency

component w. This means that the minimum sampling frequency needed for

DBD
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a faithful discretization must be equal to 2w, for which the difference between

every adjacent samples has a value of π, at most. This concept can be directly

related with the Itoh condition, which guarantees the correctness of any phase

unwrapping method in this ideal scenario.

Algorithm 1: Itoh’s method for 1D Phase Unwrapping

input : Wrapped phase values, ψ(n)
output: Unwrapped phase values φ(n)

1 Initialisation: φ(1) = ψ(1);
2 for i← 2 to N do
3 ∆ψ ← ψ(i)− ψ(i− 1);
4 if ∆ψ ≤ −π then
5 ∆ψ ← ∆ψ + 2π;
6 else if ∆ψ > π then
7 ∆ψ ← ∆ψ − 2π;
8 φ(i)← φ(i− 1) + ∆ψ;

9 end

Since the difference between adjacent samples of the wrapped phase sig-

nal must be iteratively computed in order to perform the unwrapping process,

any fake wrap caused by a slight perturbation in the data (i.e. introduced by

noise) or by a poor discretization (under sampling) can generate an unneces-

sary 2π increment, which will be propagated through the subsequent values.

It is unrealistic to assume that the Itoh condition will be naturally preserved

between all adjacent samples, which can mislead even the most sophisticated

phase unwrapping methods. Figures 2.8 and 2.9 show the unwrapping process

over noisy and under-sampled data, respectively, demonstrating how the Itoh’s

algorithm fails to reconstruct the original continuous signal.

Phase unwrapping problems often comes from complex applications

dealing with rich geometries and signal acquisition methods that are highly

susceptible to noise. The abrupt changes in the phase values caused by these

events cannot be distinguished from the natural discontinuities, and thus the

unwrapping is most likely to fail, even in the one-dimensional scenario.

As seen in Section 2.3, Itoh’s unwrapping procedure can be executed

for any continuous integration path, as long as no artificial discontinuities are

presented along its way. Assuming that the wrapped phase gradients are known

along with the absolute phase value at some initial point, every integration

path P can constitute a discrete unwrapping path. In this scenario, adjacent

samples are no longer limited to a single dimension. We can express this concept

mathematically by:

DBD
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Figure 2.7: Unwrapping process by Itoh’s method for 1D Phase Unwrapping,
recovering the original continuous signal from the wrapped phase samples.

φn =
∑

i∈∇(P )

W(∆W(φP (i))) + φ0, (2.4.1)

where ∇(P ) represents consecutive samples within path P connecting samples

φ0 to φn.

In two or more dimensions, the effects of noise and under-sampling

introduces an even more complex scenario for the unwrapping procedure.

While there is no way to overcome these singularities in one dimension, the

N-dimensional environment offers the possibility of the appropriate selection

of integration paths. These paths can be tailored to succeed the unwrapping

process by avoiding damaged regions, as shown in the following sections.

Sections 2.5 and 2.6 introduces the path dependency concept and residue

theory, which are indispensable for the 2D path-following phase unwrapping

methods discussed in Section 3.1. Section 2.7 presents a simple 2D unwrapping

procedure and its results on artificial examples, showing the outcome in the

presence of singularities in the data.
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2.8(a): 2.8(b):

2.8(c):

Figure 2.8: Unwrapping process over noisy data. (a) The continuous phase
signal with noise. (b) The wrapped noisy phase signal. (c) The unwrapping
obtained by Itoh’s algorithm.

2.9(a): 2.9(b):

2.9(c):

Figure 2.9: Unwrapping process over under-sampled data. (a) The continuous
phase signal under-sampled. (b) The wrapped under-sampled phase signal. (c)
The unwrapping obtained by Itoh’s algorithm.
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2.5
Path Dependency

Itoh’s method can be used to compute the absolute phase values on all

samples in a multidimensional input, as shown by Equation 2.4.1. When no

singularities are found, the choice of a discrete integration path is arbitrary

and therefore, any potential path linking two distinct samples should produce

the same unwrapping output.

Figure 2.10(a) presents a 2D wrapped phase data with no sign of

singularities. The unwrapping procedure is done by fixing an initial sample

and iterating over a clockwise or a counterclockwise path, as shown by Figure

2.11. There is no distinction between the unwrapped solution values computed

by both integration paths, validating Equation 3.0.1 and its assumption that

the selection of integration paths is arbitrary when no singularities are present.

Figure 2.10(b), on the other hand, is an extract of a 2D under-sampled

signal. The unwrapping procedure over different integration paths produces

vastly different solutions, as shown by Figure 2.12. The singularity causes the

unwrapping procedure to be path dependent, as they produce different outputs

while iterating over distinct paths. This event can be easily identified by

evaluating the different results produced by a path and its inverted direction

counterpart. The term parallel paths is often used in the literature to define

two or more paths that share the same start and end samples, but produces

different unwrapping results.

2.10(a): 2.10(b):

Figure 2.10: 2D Wrapped phase data examples. (a) The example A does not
contain singularities. (b) The example B is under-sampled.

Ghiglia et al. first introduced the path dependency phenomenon in [6].

While most of the singularities produced by noise and/or under-sampling can

entirely corrupt the solution, the authors observed that these inconsistencies

were only restricted to certain regions in the 2D phase image. Section 2.6

introduces the residue theorem applied for the phase unwrapping problem and

how to correctly detect any singularity or discontinuity present in the data.
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2.11(a): 2.11(b):

Figure 2.11: Unwrapped solutions from Example A in Figure 2.10(a) showing
no path dependency. (a) Unwrapped solution obtained by the clockwise integra-
tion path. (b) Unwrapped solution obtained by the counterclockwise integration
path.

2.12(a): 2.12(b):

Figure 2.12: Unwrapped values from Example B in Figure 2.10(b), showing the
occurrence of path dependency. (a) Unwrapped values obtained by the clockwise
integration path. (b) Unwrapped values obtained by the counterclockwise inte-
gration path.

2.6
Residue Theory

The term “residue” was first introduced by Goldstein et. al. [1] as an

analogy between residues found in complex signals and the inconsistencies

presented in the phase unwrapping problem.

From the theory of complex signals, a residue is a complex value pro-

portional to the number of singularities encircled by a closed integral path

over the complex function. The residue theorem for complex signals (a.k.a.

Cauchy’s residue theorem, defined in [7]) states that any closed integral can

be written as: ∮
f(z)dz = 2πj ×

∑
ri, (2.6.1)

where
∑

ri represents the sum of all residues ri found in the closed path and

f(z) is the complex function over the complex variable z.

In order to consider the residue theorem in the two-dimensional phase

unwrapping problem, Equation 2.6.1 can be re-written as:
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∑
i∈∇(P ′)

W[∆W(φP ′(i))] = 2π ×
∑

Ri, (2.6.2)

where P’ is a closed path defined over the 2D wrapped phase samples.

Ghiglia et. al. showed in [2] that each singularity can only cause a ±2π

unwrapping error to its subsequent samples around an integration path, which

then evaluates to an error multiple of 2π in the path’s last sample. Hence, in

the phase unwrapping problem, each singularity Ri represents a ±1 charged

residue.

Based on this concept, Ghiglia et al. also proposed the following strategy

to identify the location of all residues in the 2D wrapped phase image. By

applying the procedure from Equation 2.6.2 over the wrapped phase values

around every elementary 2x2 loop, any residue’s location and charge can

be precisely obtained whenever the sum of the wrapped phase gradients is

not equal to zero. This simple strategy succeeds to pinpoint every potential

residue and inspire techniques to solve the path dependency problem. Figure

2.13 shows the elementary loop on the previous path dependency examples,

enlightening the +1 charged residue located in example B from Figure 2.10(b).

Figure 2.13 shows a small extract from the residues found in a noisy wrapped

phase data.

2.13(a): 2.13(b):

Figure 2.13: Closed loop paths and the wrapped phase gradients on examples A
and B from Figures 2.10(a) and 2.10(b). (a) The sum of the wrapped phase
gradients sums to zero, indicating that no residue is present. (b) The sum of
the wrapped phase gradients sums up to 2π, identifying the +1 charged residue.

While the residues of a 2D wrapped phase image indicates the existence

of inconsistencies, not every residue represents a singularity produced by noise

and/or under-sampling. Phase discontinuities may be naturally present in

many phase unwrapping applications, where the absolute phase values can

abruptly increase or decrease over adjacent samples. The different elevations

and deformities presented in a terrain’s surface is one example in which the

natural phase discontinuities will most likely be interpreted as residues. As
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2.14(a):

2.14(b):

Figure 2.14: Residues detected over a wrapped phase image corrupted by noise.
(a) The wrapped phase image with noise. (b) A small extract of the image
showing the +1 (blue) and -1 (red) charged residues.

shown in Figure 2.15, the topology of residues reflects many of the natural

structural delimitations present in the subjects of study. Other sources of

natural discontinuities are discussed in [8].
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2.15(a): 2.15(b):

2.15(c): 2.15(d):

2.15(e): 2.15(f):

Figure 2.15: The residues detected over several wrapped phase examples men-
tioned in [2]. Clearly, the topology of residues are suggesting contours for dif-
ferent well-defined regions in each subject of study, apart from additional noise
and under-sampling. (a) The wrapped phase image of an magnetic resonance
image head experiment (b) The residues detected over Figure 2.15(a). (c) The
wrapped phase image of an bird’s eye surface view of a terrain’s elevation.
(d) The residues detected over Figure 2.15(c). The wrapped phase image of
an magnetic resonance image knee experiment. (f) The residues detected over
Figure 2.15(e).
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2.7
2D Phase Unwrapping

The choice of the appropriate integration paths in a two-dimensional

phase unwrapping problem with no residues can be done via a straightforward

modification of the one-dimensional algorithm. Since we need to explore all

samples in a continuous way, one simple method of integration is to iterate

over all rows and columns of the image, as shown by Algorithm 2.

When residues are present, though, the algorithm fails. The unwrapping

is possible if, and only if, every integration path encircles none or a balanced

number of residue charges. The line integrals around each path must be

evaluated to zero so that no error is propagated through the unwrapping

process. The erroneous horizontal and vertical lines displayed in Figure 2.16

shows the outcome of using Itoh’s 2D algorithm over noisy data, signalizing

the occurrence of residues. Chapter 3 will introduce the main 2D Phase

Unwrapping approaches and algorithms tailored to overcome the presence of

residues and minimize their effect on the solution’s quality.

Algorithm 2: Itoh’s method for 2D Phase Unwrapping

input : Wrapped phase values, ψ(n, n)
output: Unwrapped phase values φ(n, n)

1 φ(1, 1) = ψ(1, 1);
2 \\Unwraps the first row
3 for j ← 2 to N do
4 ∆ψ ← ψ(1, j)− ψ(1, j − 1);
5 if ∆ψ ≤ −π then
6 ∆ψ ← ∆ψ + 2π;
7 else if ∆ψ > π then
8 ∆ψ ← ∆ψ − 2π;
9 φ(1, j)← φ(1, j − 1) + ∆ψ;

10 end
11 \\Unwraps every column
12 for j ← 1 to N do
13 for i← 2 to N do
14 ∆ψ ← ψ(i, j)− ψ(i, j − 1);
15 if ∆ψ ≤ −π then
16 ∆ψ ← ∆ψ + 2π;
17 else if ∆ψ > π then
18 ∆ψ ← ∆ψ − 2π;
19 φ(i, j)← φ(i, j − 1) + ∆ψ;

20 end

21 end
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2.16(a):

2.16(b):

Figure 2.16: 2D Unwrapping process over wrapped phase data of Figure 2.6(b)
corrupted with noise. (a) Itoh’s 2D algorithm iterating over each row. (b) Itoh’s
2D algorithm iterating over each column.
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3
Main 2D Phase Unwrapping approaches

In this chapter, we will present the two main approaches and state-of-the-

art algorithms for the 2DPU problem: path-following methods and minimum

Lp-norm methods.

Path-following algorithms directly applies the line integration schemes

seen in the previous sections, relying on the concept that the Itoh condition

must hold along every integration path. Whenever this condition is not met,

different integration paths may lead to different unwrapped solutions due

to the path dependency problem. The techniques employed to handle these

inconsistencies concentrates on creating efficient artificial barriers to impede

such misguided paths, which leads to a more local optimization problem.

Minimum Lp-norm methods, on the other hand, are based on the idea

that the absolute and wrapped phase gradients among adjacent samples must

be equal. The objective is to find a phase solution for which the Lp norm of

the differences between absolute and wrapped phase gradients is minimized,

leading to a global optimization problem.

The two approaches are based on different concepts. Although none

of them has a clear leverage over the other, each approach has its own

advantages and deficiencies. Sections 3.1 and 3.2 gives a review at these

approaches and how they apply each of these concepts in order to succeed the

phase unwrapping problem. The two state-of-the-art path-following methods

discussed in Section 3.1 will be used as benchmarks in Chapter 5.

3.1
Path-Following Methods

The term branch-cuts was first introduced by Goldstein et. al. to de-

fine elementary barriers connecting pairs of residues. The premise from path-

following methods is based on the assumption that, if the branch-cuts are posi-

tioned in such way that no integration path could ever encircle an unbalanced

number of residues, then the path-dependency problem would be eliminated.

Figure 3.1(a) shows an example with eight residues (4 positives and 4

negatives). Although the branch-cuts represented by the green lines succeeds

to eliminate the path dependency problem, it is clear that they were not

placed in the optimal way. The superposition of branch-cuts manages to create

an isolated region that will never be reached by any integration path, and
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will therefore be excluded from the unwrapping procedure. Samples inside an

isolated region requires a separate unwrapping using an arbitrary initial phase

value on a starting sample. Choosing the best placement for the branch-cuts

is a critical task, as shown by Figure 3.1(b). The second configuration is most

likely to produce visually better solutions, thus suggesting the minimization

of the branch-cut lengths as an optimization objective (as highlighted later in

this section, the optimal branch-cut configuration is also the optimal solution

in terms of the minimization of the L0-norm of the 2DPU problem).

3.1(a): 3.1(b):

Figure 3.1: Example of residues and two possible branch-cut configurations. (a)
First branch-cut configuration, creating an isolated region. (b) Minimum length
branch-cut configuration.

As long as no integration path can ever encircle an unbalanced number

of residues, any branch-cut configuration will eliminate the path-dependency

problem. However, once a branch-cut pixel is found during the unwrapping

process, the unwrapped samples from opposite sides of the branch-cuts may

carry a phase discontinuity of ±2π, as explained by [1]. Finding the optimal

placement of the branch-cuts is not an easy task, and thus some criteria must

be established in order to guide the process. Figures 3.2 shows two different

possible heuristics, both eliminating path-dependencies in the unwrapping

procedure. One is focused on connecting closest dipoles (close pairs of opposite

charged residues, Figure 3.2(a)), where the other focus on creating balanced

components of closest residues (Figure 3.2(b)). Each of them may introduce

critical discontinuities and are indicated to different topologies of residues.

Minimizing the sum of the branch-cuts lengths is, by itself, considered as

a difficult problem, whatever heuristic is used. Sections 3.1.1 and 3.1.2 presents

two state-of-the-art methods and discusses how they behave on different types

of instances.
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3.2(a): 3.2(b):

Figure 3.2: Another example of residues and two possible branch-cut configura-
tions. (a) Minimum length connections between pairs of positive and negative
residues. (b) Minimum length connections forming balanced components.

3.1.1
Goldstein’s Algorithm

Goldstein et al. proposed in [1] a path-following algorithm which is

effective at generating short length branch-cuts in short CPU time. The

method connects nearby residues with branch-cuts until every connected

component becomes balanced. The cuts are generated in an attempt to

minimize the sum of the cut lengths, as follows.

The algorithm starts by scanning the wrapped phase image, sample by

sample, until a first residue is detected. A 3x3-sample box is then centred

around the discovered residue and the algorithm searches for other residues

inside the box. If found, a branch-cut is placed connecting both residues, no

matter their polarities, forming a connected component. If the component has

an equal number of negative and positive residues when the search is over

(i.e. the component is balanced), then the algorithm resumes the search for a

next unvisited residue in the wrapped phase image. If the component is not

balanced, though, the mask is placed around every one of its residues and

the previous steps are repeated, until the component becomes balanced or a

border point is found within the limits of the box. If no balance is reached,

then the size of the box is doubled and the algorithm restarts from the current

active component. The method maintains a list of visited and active residues

as boolean values, indicating whether a given residue was already visited by a

mask box and if it is part of a current unbalanced component. All residues are

initialized as inactive and as not visited when the algorithm starts.

Although the method can be efficient for instances with a low density

of residues, the opposite scenario can be problematic. The branch-cuts are

placed inadvertently whenever a residue is found within the limits of the

search box. Isolated regions are most likely to occur in these circumstances,
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mostly on instances with a high density of residues, as shown by Figure 3.3.

Several improvements over Goldstein’s algorithm have been proposed in the

literature ([9], [10], [2]), often suggesting the use of quality maps (discussed in

Section 4.1.4) to guide the placement of the cuts and the removal of dipoles

in order to diminish the occurrence of isolated regions. For its robustness and

relevance to the phase unwrapping problem, Goldstein’s algorithm is often used

in benchmarks as a comparison parameter. The pseudo-code for the original

method is shown in Algorithm 3.

Figure 3.3: Outcome of the Goldstein’s algorithm on an instance with a high
density of residues. One can observe the large number of isolates regions formed
by the branch-cuts.

3.1.2
Minimum-Cost Matching Algorithm (MCM)

Buckland et al. proposed in [11] a minimum-cost matching algorithm

that solves the path-dependency problem by creating branch-cuts between

close pairs of positive and negative residues, treating the minimization of the

branch-cuts lengths as a global optimization problem. The method aims to

find an optimal matching (i.e. a minimum-distance pairing between residues

of opposite sign) using of the Hungarian algorithm. The problem is reduced to

find the minimum cost matching between vertices in a bipartite graph.

Let G = (V,E) be a bipartite graph where the vertex set V = (V +∪V −)

represents the union between the groups of positive and negative residues (V +

and V −, respectively) with |V | = N and let the edge set E be composed by

edges e = {(i, j), i ∈ V +, j ∈ V −} connecting opposite signed residues in the

2D space. The objective is to find a minimum cost matching between vertices

from V + and V −, as described by the following integer program:
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Algorithm 3: Goldstein’s algorithm for 2D Phase Unwrapping

1 foreach inactive and not visited residue do
2 Mark the current residue as active;
3 Let balance = 1 if the residue is positive, -1 otherwise;
4 for n = 3 to MaxBoxSize do
5 foreach active pixel do
6 Centralize the n × n box at the active pixel;
7 foreach box pixel do
8 if the box pixel is an inactive residue then
9 if it is unvisited then

10 Add its polarity to balance;
11 Mark the residue as visited ;

12 end
13 Mark the residue as active;
14 Place a branch-cut between the active residue and

the box residue;

15 end
16 else if the box pixel is a border point then
17 balance = 0;
18 Place a branch-cut between the active residue and

the border point;

19 end

20 end
21 if balance = 0 then jump to * ;

22 end

23 end
24 if balance != 0 then Place a branch-cut to the nearest border ;
25 *Mark all the active pixels visited and inactive.

26 end

min
∑
i

∑
j

cijxij (3.1.1)

s.t.
∑
j

xij = 1, ∀i ∈ V +

∑
i

xij = 1, ∀j ∈ V −
(3.1.2)

xij ∈ {0, 1},∀(i ∈ V +, j ∈ V −), (3.1.3)

where xij is the binary integer decision variable indicating whether the edge

eij is part of the solution and cij is the edge cost. The constraints shown

by Equation 3.1.2 assures that every vertex from group V + will be matched

with exactly one vertex from group V −, and vice-versa. In order to balance the

number of residues and reduce the method’s overall memory requirement, only
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a small number of nearest neighbours is considered when creating the edge set.

If border points are encountered during the search for nearby residues, a border

source of opposite sign of its nearest residue is created and added to the list of

residues. These border points are called fictitious sources, since they are not

part of the original instance and there is frequently an unbalanced number of

positive and negative residues in the wrapped 2D images. Figure 3.4 illustrates

the minimum cost matching problem for the 2D phase unwrapping domain.

The Hungarian algorithm [12] can be used to solve the matching problem

in polynomial time. The original method had a time complexity of O(N4),

although Ford and Fulkerson were able to reduce it to O(N3) in [13].

3.4(a): 3.4(b):

3.4(c): 3.4(d):

Figure 3.4: The minimum cost matching algorithm for the 2D Phase Unwrap-
ping problem. (a) The original instance (b) The original instance modelled as
a bipartite graph. (c) The minimum cost matching found by the Hungarian
method. (d) The equivalent minimum cost solution.

Minimum cost matching algorithms tend to produce visually good so-

lutions for instances with a high density of residues. However, they are most

likely to fail in preserving the structural delimitations arising from natural

discontinuities in the subject of study, as seen in Figure 3.5. Gdeisat et. al.

later proposed in [14] a three dimensional phase unwrapping algorithm using

the Hungarian method, expanding the ideas introduced in the original paper.
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3.5(a): 3.5(b):

Figure 3.5: Example where the minimum cost matching algorithm fails to
preserve the topology of residues. (a) The topology of residues suggesting a
triangular structural delimitation. (b) The solution obtained by the minimum
cost matching algorithm.

3.1.3
Quality Guided Algorithms

Quality guided algorithms uses the quality information extracted from

phase data to guide the integration paths along the wrapped phase image,

determining the order in which the phase samples are unwrapped [15]. One

of the main goals of this class of methods is to overcome the potential

misplacement of branch-cuts which, as previously referred, is considered a

difficult problem. Quality maps are typically obtained through correlation,

pseudocorrelation and phase derivative variance maps [2].

A further development in quality guided algorithms is the conception of

using quality maps to delineate branch-cuts, as discussed in [10]. Quality maps

constitutes an important tool to guide and support several path-following and

Lp-norm methods [16], [17], [2].

3.2
Minimum Lp-norm Methods

Minimum norm methods take a completely different approach to the

phase unwrapping problem. The problem is written as an integer global

optimization program, whose objective is to find an absolute phase image

solution for which the Lp-norm of the difference between absolute and wrapped

phase gradients is minimized. Let φm,n and ψm,n be the absolute and wrapped

phase values of a sample located in the (m,n) position of an M x N-pixel image.

The minimization of the Lp-norm for the 2DPU problem can be written as the

following integer program:

arg minΦ E(Φ) (3.2.1)

s.t. φm,n = ψm,n + 2km,nπ ∀(m,n) (3.2.2)
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k ∈ Z ∀(m,n) (3.2.3)

where km,n is the integer decision variable representing the 2π difference

between the unwrapped and wrapped phase values for every sample m,n. The

objective function E (Φ) represents the Lp-norm given by:

E(Φ) =
M∑
m=1

N−1∑
n=1

∣∣∣∆hφm,n −∆hψm,n

∣∣∣p +
M∑
m=1

N−1∑
n=1

∣∣∣∆vφm,n −∆vψm,n

∣∣∣p , (3.2.4)

where ∆hφm,n, ∆vφm,n, ∆hψm,n and ∆vψm,n represents the horizontal and

vertical absolute and wrapped phase gradients, given by:

∆hφm,n = φm,n − φm,n−1

∆vφm,n = φm,n − φm−1,n

∆hψm,n = W (ψm,n − ψm,n−1)

∆vψm,n = W (ψm,n − ψm−1,n),

(3.2.5)

where W is the wrapping operator defined in Equation 2.2.1. When a quality

map is available, the energy function can be re-written as a weighted Lp-norm.

The quality measure value qm,n computed over corrupted phase values (i.e.

noise) plays an important role of reducing the impact of bad quality pixels over

the global unwrapped solution, as described by [2]. The weighted Lp-norm is

written as

E(Φ) =
M∑
m=1

N−1∑
n=1

qhm,n

∣∣∣∆hφm,n −∆hψm,n

∣∣∣p +
M∑
m=1

N−1∑
n=1

qvm,n

∣∣∣∆vφm,n −∆vψm,n

∣∣∣p ,
(3.2.6)

where the solution’s quality is directly related to the Lp-norm chosen as the

objective function. Higher values of p (p > 2) tend to produce unreliable

solutions, while p = 0,1,2 are the most representative norms in the state-

of-the-art methods [2]. Since the minimization of an Lp-norm is a discrete

minimization problem, many of the proposed algorithms in the literature only

find approximate solutions [2].
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3.2.1
L2-norm

The L2-norm methods consists in obtaining an absolute phase image

solution where the least squares difference between the absolute and wrapped

phase gradients is minimized. Fried and Hudgin proposed the first least

squares approximate algorithms in [18] and [19], enlightening the fact that

this approach tends to smooth areas of discontinuities in the unwrapped image

unless the energy function is provided with binary weights.

In order to overcome the complexity introduced by the discrete optimiza-

tion problem, many of the proposed algorithms relax the discrete domain ZMN

to the real domain RMN . Given this relaxation, Ghiglia et. al. showed in [20]

that the minimization of the L2-norm is equivalent to solving a Poisson partial

different equation using the Fast Fourier transform (FFT). Despite the reason-

able mathematical efficiency, Chen et. al. stated in [21] that most least squares

algorithms give disappointing results in practice because they underestimate

the true unwrapped phase gradients and produce biased results.

3.2.2
L1-norm

When compared to the L2-norm, L1-norm algorithms performs better in

preserving good quality samples near areas of discontinuities. Although this

approach is far less cited in the literature than L2-norm and L0-norm methods,

Flynn and Constantini proposed in [22] and [23] two algorithms that solved

the L1-norm problem to optimality.

3.2.3
L0-norm

When p = 0, the objective is to minimize the total number of samples

where the absolute and wrapped phase gradients are not equivalent. More

generally, the solution obtained tends to preserve the wrapped phase gradients

in as many places as possible [2].

As seen in Equation 2.2.7, the integration paths unwraps the data by

adding the related wrapped phase gradient ∆W(φn) with a 2π increment to

each sample along its way. Thus, when the Itoh condition holds along an

integration path, then the absolute and wrapped phase gradients are identical.

Path-following methods directly addresses the minimization of the L0-norm,

although solving it to optimality was proven to be a NP-hard problem [21].

Minimizing the L0-norm is generally accepted as the most desirable phase

unwrapping approach.
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4
The Minimum Spanning Forest with Balance Constraints
(MSFBC) approach

As seen in the previous sections, current branch-cut methods do not pro-

vide the optimal solution for the L0-norm, but rather concentrate on restric-

tions of this optimization problem that have the benefit of being polynomial.

Although Goldstein’s algorithm finds an approximate minimal set of branch-

cuts, the occurrence of isolated regions and unnecessary connections can create

critical discontinuities to the unwrapped solution. The minimum cost matching

algorithm, for instance, finds a minimal set of branch-cuts connecting closest

dipoles, but restricts no more than two residues in a same branch.

The true minimization of the L0-norm is a variant of the Euclidean

Steiner-tree problem, known to be NP-hard [? ]. We propose an alternative

formulation, where we use minimum spanning trees rather than Steiner trees

to cluster close groups of residues. The motivation behind this approach is to

find a branch-cut configuration that is able to better respect the structural

topology of residues, while still addressing the minimization of the L0-norm.

The problem is reduced to the search of a minimum spanning forest with

balance constraints (MSFBC), where each tree spans a balanced number of

positive and negative weighted vertices.

The 2DPU is a real-world application of the MSFBC problem (MSF-

BCP), where residues and border points can be directly modelled through

a set of weighted vertices on a graph. Residues are mapped to ±1 weighted

vertices in the 2D Euclidean space, where the cost of each edge connecting a

pair of vertices is determined by the Euclidean distance between residues in

the wrapped phase image. The concept of border points can be interpreted

as a single special vertex in the graph whose weight balances the difference

between the total number of positive and negative residues (i.e, the positive

or negative excess) of the instance, as shown by Figure 4.1. The cost of the

edge connecting a vertex to the special vertex is equal to the distance between

the related residue and its nearest border point. Section 4.1 presents a for-

mal definition for the more generalized MSFBC problem on graphs through

a set of mathematical formulations and a proof of its complexity. Section

4.2 devises a solving procedure for the relaxed problem, while Section 4.3

proposes a series of dual heuristic methods. Finally, an exact branch-and-cut

method and a metaheuristic approach are proposed in Sections 4.4, 4.5 and 4.6.
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4.1(a): 4.1(b):

Figure 4.1: The 2DPU-MSFBCP particularities. (a) The 2DPU-MSFBC in-
stance with border points. (b) The equivalent MSFBC instance with a special
vertex replacing the concept of border points. The weight of the special vertex
balances the positive excess of the instance.

4.1
Problem Formulation and Complexity

Let G = (V,E ) be a graph with positive edge costs, where every vertex

v ∈ V has a weight wv ∈ {−1, 1}. Let de be the cost (distance) of edge e ∈ E

and xe be the decision variable indicating whether edge e should be part of the

solution. The undirected formulation for the generalized minimum spanning

forest with balance constraints problem can be written as the following integer

program:

min
∑
e∈E

dexe (4.1.1)

s.t.
∑
e∈δ(S)

xe ≥ 1, ∀S ⊂ V, s.t.
∑
v∈S

wv 6= 0 (4.1.2)

xe ∈ {0, 1},∀e ∈ E, (4.1.3)

where the set of constraints indicated by Equation 4.1.2 implies that for any

unbalanced cut S = (S,V -S ) ∈ V, at least one edge e ∈ δ(S) is included in

the solution set, where e = {(i,j ), i ∈ S and j ∈ (V-S )}. More generally, it

assures that every unbalanced cut S must be connected to a least one vertex

from (V -S ) in order to balance the number of positive and negative weighted

vertices of that particular cut.

Since each constraint is satisfied when the optimal solution is reached,

then every connected component described by the solution set x must be

balanced. If we consider an unbalanced cut U ⊂ V , then at least one minimum

cost edge e = {(i,j ), i ∈ U and j ∈ (V-U )} must be added to the solution

set, leading to the following scenarios: in the case where the selected edge e
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connects U to a set of vertices balancing the cut, then the constraint related

to U is enough to produce a balanced tree. If the edge e does not balances the

cut U, then the unbalanced cut U’ will be formed. Since the set of constraints

considers all unbalanced cuts, U’ will be naturally present as a constraint and

the same scenarios will be applied for it.

We also introduce a directed formulation, where unbalanced cuts with a

positive or negative excess are considered in different sets of constraints. The

program is re-written as:

min
∑
e∈E

dexe (4.1.4)

s.t.
∑

a∈δ+(S)

xa ≥ 1, ∀S ⊂ V, s.t.
∑
v∈S

wv > 0 (4.1.5)∑
a∈δ−(S)

xa ≥ 1, ∀S ⊂ V, s.t.
∑
v∈S

wv < 0 (4.1.6)

xe + xe′ ≤ 1, ∀e = (i, j), e′ = (j, i) ∈ E (4.1.7)

xe ∈ {0, 1},∀e ∈ E (4.1.8)

The first set of constraints (Equation 4.1.5) indicates that for every unbalanced

cut with a positive excess, one or more edges a = {(i,j ), i ∈ S and j ∈ (V-

S )} leaving S must be included in the solution. The second set of constraints

(Equation 4.1.6) implies that for every unbalanced cut with a negative excess,

one or more edges a = {(i,j ), i ∈ (V-S) and j ∈ S} entering S must be included

in the solution. Finally, the third set of constraints (Equation 4.1.7) prohibits

the selection of a pair of edges with opposite direction. Collectively, the set

of constraints (Equations 4.1.5, 4.1.6 and 4.1.7) enforces that no unbalanced

spanning tree would be ever present in the optimal solution.

A feasible solution for the MSFBCP can be characterized as a partition

P = (P1,...,Pk) of the set of vertices, where each set Pi for i ∈ {1, . . . , k} is

described by a group of vertices such that
∑

v∈Pi
wv = 0. In order to prove that

the MSFBC optimization problem is NP-hard, consider the following reduction

from the Steiner-tree problem on graphs [24].
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Theorem 1 The MSFBC problem is NP-hard.

Proof: Let G = (V,E ) be a graph with positive edge costs and a set of terminal

vertices T ⊆ V. The Steiner-tree optimization problem seeks to find a minimum

cost connected subgraph G’ = (V’,E’ ) with T ⊆ V’. Given an instance for

the Steiner problem, the reduction is achieved by assigning a positive weight

of w = 1 to all terminal vertices, except for one, which is replaced by |T |-1
vertices with a negative weight of w = -1, connected to each other with cost

zero. In addition, a pair of connected vertices with opposite signed weights is

located for each (V -T ) remaining vertices (called Steiner-points). The cost of

connecting such pair of vertices is also set to zero. Figure 4.2 demonstrates the

reduction for a classical Steiner-tree problem instance with four terminal nodes

and two Steiner-points, while Figure 4.3(a) illustrates the optimal solution for

the Steiner-tree problem. After computing a solution for the MSFBCP on

the reduced instance, one of the following cases can arise: (1) There is a single

balanced tree which spans all terminal vertices (Figure 4.3(b)); (2) There are at

least two disjoint balanced trees containing terminal vertices (Figure 4.3(c)).

In the first case, the related minimum spanning tree already constitutes an

4.2(a): 4.2(b):

Figure 4.2: The instance reduction from the Steiner-tree problem to the
MSFBC. (a) The Steiner-tree instance, with four terminal vertices (black) and
two Steiner-points (gray). (b) The equivalent reduced instance for the MSFBC
problem with three positive weighted vertices (blue) with a w = 1 weight replac-
ing the |T − 1| terminal vertices, |T − 1| negative weighted vertices (red) with a
w = -1 weight replacing the remaining terminal vertex and the pairs of positive
and negative weighted vertices replacing the Steiner-points with w = 1 and w
= -1, respectively.

optimal Steiner-tree. All remaining trees of the MSFBC solution are related

to unused Steiner-points (2-node balanced trees with cost zero), which do not

impact on the solution cost (c(P) = w(G’ ) + 0 = w(G’ )). The MSFBC solution

constitutes a feasible and optimal solution for the Steiner-tree problem.

In the second case, since there are disjoint trees containing terminal

vertices, we can assume that there is at least one unused edge with zero cost

connecting a pair of vertices which replaces a Steiner point. This scenario can
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be proven by contradiction: if all zero cost edges are used in the solution,

then there must be at least one unbalanced tree in the disjoint set of trees.

The connection of such pair of vertices would sum an excess of plus or minus

one to that tree, turning it to be unbalanced as illustrated in Figure 4.3(d).

Given that the trees must be balanced, this solution would be infeasible for

the MSFBCP. We can now show that there is another solution, with the same

cost, where disjoint trees can be merged together and at least one unused zero

cost edges is included.

4.3(a): 4.3(b):

4.3(c): 4.3(d):

Figure 4.3: The optimal solution for the Steiner-tree problem and two feasible
solutions for the MSFBC. (a) The optimal solution for the Steiner-tree prob-
lem. (b) An optimal solution for the MSFBC, also feasible and optimal for the
Steiner-tree problem. (c) Another solution for the MSFBC with the same cost,
but infeasible for the Steiner-tree problem. (d) An infeasible solution for the
MSFBC.

Let T1 = (V1, E1) and T2 = (V2, E2) be two disjoint balanced trees

containing terminal vertices and let E1,2 be the set of edges connecting vertices

from T1 to T2. If we compute the minimum spanning tree over the merged

component Tm = (Vm, Em), where Vm = {V1∪V2} and Em = {E1∪E2∪E1,2},
naturally every edge in T1 and T2 will figure in Tm. But since a minimum

spanning tree algorithm lists the edge set in increasing order, every zero cost

edge including those in E1,2 will be treated first. The addition of such edges

will connect the disjoint components and the cost of the new component will

be given by:

c(Tm) = c(T1) + c(T2) + 0 = c(T1) + c(T2). (4.1.9)
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This procedure can be executed iteratively until a single tree spans all terminal

vertices, leading to the first case where c(P) = w(G’ ). Since we are able to

build a valid and optimal Steiner-tree by solving the MSFBCP on the reduced

instance, we prove by extension that the MSFBC is also NP-hard.

4.2
Linear Program (LP)

The linear relaxation for the directed MSFBC formulation can be written

as:

min
∑
e∈E

dexe (4.2.1)

s.t.
∑

a∈δ+(S)

xa ≥ 1, ∀S ⊂ V, s.t.
∑
v∈S

wv > 0 (4.2.2)∑
a∈δ−(S)

xa ≥ 1, ∀S ⊂ V, s.t.
∑
v∈S

wv < 0 (4.2.3)

xe + xe′ ≤ 1, ∀e = (i, j), e′ = (j, i) ∈ E (4.2.4)

0 ≤ xe ≤ 1, ∀e ∈ E, (4.2.5)

xe ∈ <, ∀e ∈ E, (4.2.6)

where the decision variables xe can now assume any real value from the [0,1] in-

terval. This relaxation technique transforms the NP-hard integer optimization

problem into a related problem which can be solvable in polynomial time and

can provide information for devising an exact branch-and-cut method. Linear

programming has an important property which states that if a problem has a

separation routine which runs in polynomial time, then the linear program can

also be solved in polynomial time even with an exponential number of con-

straints [25]. Hence, solving the integer MSFBCP is NP-hard, but the relaxed

linear program can be polynomially solved.

4.2.1
Solving the Linear Program (LP)

Because of the exponential number of constraints, it is unrealistic to

assume that even the relaxed MSFBC problem could be solvable in a reasonable

time without a good set of decomposition techniques.

Since the constraints are all related to unbalanced cuts, we can start by

solving an initial LP which considers as constraints only the unbalanced cuts

containing a single vertex. The optimal solution for this initial subproblem
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describes a minimum spanning forest where all the vertices are connected to

at least one other vertex, for which the balance constraint may or may not be

respected for each tree. The LP is modified by adding a new constraint for every

unbalanced connected component, and the resulting program is re-optimized.

This process is repeated, iteratively, until the optimal linear solution describes

a set of balanced trees. At each iteration, the new constraints assures that all

unbalanced cuts formed by the previous solutions will be connected to at least

one additional vertex. In the worst case scenario, all the possible unbalanced

cuts S ⊂ R will be individually added as constraints to the formulation before

the optimal solution is reached.

Let x be the current linear optimal solution and G1 = (V ,E1) and

G2 = (V ,E2) be auxiliary directed and undirected graphs, respectively, where

E = {e | xe > 0}. The separation of cuts is done by solving the maximum

flow/minimum cut problem, computed efficiently in O(nm log(n2/m)) by

Goldberg and Tarjan’s algorithm [26], for: (1) all pairs of vertices in a same

connected component; (2) pairs between vertices from a given connected

component and an external vertex. Each edge capacity is defined by xe as

shown by Algorithm 4. The set of cuts with an unbalanced group of vertices

must be individually added as a constraint. Algorithm 5 shows the pseudo-code

for the solving procedure.

Although the linear relaxation is able to produce feasible solutions with

integer decision variables, its solution set is typically non integral and infeasible

for the original problem. The integer optimal solution constitutes a feasible

but not necessarily optimal solution for the relaxed program. The relaxation

of a constraint can only lower the optimal solution value for a given problem,

implying that the optimal solution set for the LP works as a lower bound for

the integer program.

While rounding the relaxed decision variables does not necessarily pro-

duce the optimal solution for the original problem, it can constitute a rather

good approximation if the solution maintain its feasibility. The gap between

the optimal solutions for the LP and for the integer program is referred as the

integrality gap of the linear program.

Several techniques have been proposed in the literature to derive an inte-

ger solution from the linear optimum. These techniques, called primal heuris-

tics, involves successive variable fixing and rounding (according to the prob-

lem’s particularities), followed by the re-optimizations of the modified LP [27].

While the heuristic approach does not guarantee that the optimal integer so-

lution will be ever achieved, they constitute a powerful tool to generate rea-

sonably good solutions. Heuristic solutions establishes upper bounds for the
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Algorithm 4: LP cuts separation routine

input : The undirected graph G1 = (V ,E1) and the directed graph
G2 = (V ,E2), both described by the solution set x

output: The set of cuts S

1 Initialization: For each node v in V , assign visited[v] ← false. Let C
be the list of connected components and S the list of cuts.

2 foreach node v in V do
3 if vertex v was not visited then
4 Run a depth-first-search on graph G1, starting from node v.

Add the discovered connected component to C.
5 end

6 end
7 foreach connected component ck ∈ C do
8 foreach pair of nodes (i,j) ∈ ck do
9 {s ’, MaxFlow} ← minCutMaxFlow(i,j,G2);

10 if s’ is unbalanced, MaxFlow < 1 and s’ 6∈ S then
11 S ← S + s ’
12 end

13 end
14 foreach node i ∈ ck and a single node j /∈ ck do
15 {s ’, MaxFlow} ← minCutMaxFlow(i,j,G2);
16 if s’ is unbalanced, MaxFlow < 1 and s’ 6∈ S then
17 S ← S + s ’
18 end

19 end
20 if s(ck) is unbalanced and s(ck) /∈ S then S ← S + s(ck);

21 end
22 return S ;

original integer program. Several primal heuristics have been proposed in the

literature, for a wide variety of problems and applications. An detailed survey

on primal heuristics for mixed-integer and linear programming can be seen in

[28].

4.2.2
Reverse Delete Step

Applied as a primal heuristic, the reverse delete step method takes

a straightforward approach to construct a feasible solution for the integer

program. The method uses a strict greedy approach, where elements are

considered for removal by their related costs.

Since the relaxed decision variables indicates whether a given edge should

be part of the solution in the MSFBC relaxed program, then a fractional

solution set is most likely to lead to a group of edges that produces cycles or
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Algorithm 5: LP solving procedure

input : The instance of the problem
output: The optimal solution set

1 Initialization: Solve the initial LP considering only the cuts with
single vertices as constraints. Let x be the solution set, lp the current
linear program and balanced a boolean variable that indicates if all
trees are balanced.

2 x← solve(lp)
3 balanced← false;
4 while not balanced do
5 Build the directed graph G1 = (V ,E1) and the undirected graph

G2 = (V ,E2) from the solution set x;
6 balanced← true;
7 S ← SeparationRoutine( G1, G2);
8 foreach cut s ∈ S do
9 if s 6∈ lp then

10 lp ← lp+ {s};
11 balanced← false;

12 end

13 end
14 if not balanced then
15 x← solve(lp);
16 end

17 end
18 return x;

unnecessary connections in the modelled graph. In order to produce a feasible

solution, the following method of removing unnecessary edges and cycles is

proposed.

First, the set of edges is sorted in decreasing order by their related costs.

The algorithm then proceeds by removing one edge at time and checking if

the solution maintains its feasibility. If the removal of an edge unbalances the

trees, then the edge is re-inserted and marked as essential. If not, its related

decision variable is set to zero. At the end of the algorithm, all remaining

fractional decision variables are rounded to one and a feasible integer solution

is obtained. The procedure is illustrated in Algorithm 6.

The reverse delete step method is executed over every edge e ∈ x, where

x e > 0 and |x| = m. The detection of unbalanced cuts is done through a depth-

first-search algorithm, in O(n), where n is the number of vertices in the graph.

Hence, the running time is O(mn).
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Algorithm 6: Reverse Delete Step - Primal heuristic

input : The linear optimal solution from the LP
output: A feasible integer solution

1 Initialization: Sort the solution set x by their related edge cost in
decreasing order.

2 Build the graph G from the solution set x ;
3 x∗ ← x;
4 foreach xe in x∗ do xe = 1 ;
5 foreach xe in x do
6 Remove edge e from G;
7 if G describes a set of balanced trees then
8 Fix xe = 0 in x∗
9 end

10 else
11 Re-insert e in G and mark as essential
12 end

13 end
14 return x∗;

4.3
Dual Approach and Heuristics

In linear programming, every program can be formulated from two

different perspectives: the primal and its corresponding dual problems. The

concept of duality [29] is extensively used in combinatorial optimization to

devise techniques and methods to bound the optimal solution of a problem

and build exact methods. Although the solution values for the primal and dual

problems may not be equivalent, the dual approach is able to provide a good

lower bound on the optimal solution for the primal minimization problem. The

gap between the primal and dual solutions is referred to as the duality gap.

In the primal form of a minimization problem, the objective function

describes a linear combination of n variables bounded by m constraints. The

dual form of the same program is written as a maximization problem, where a

dual variable πi is assigned for each primal constraint. The objective function

is re-written as a linear combination of the m dual variables, subjected to n

constraints, one for each primal variable.

In both the undirected and directed primal formulations for the MSF-

BCP, we consider a set of constraints related to every unbalanced cut S ⊂ R.

Assigning a dual variable πS to each of these unbalanced cuts, the undirected

dual program can be written as:
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max
∑

S⊂V :
∑
v∈S

pv 6=0

πS (4.3.1)

s.t.
∑

S⊂V,
∑
v∈S

wv 6=0:e∈δ(S)

πS ≤ de, ∀e ∈ E
(4.3.2)

πS ≥ 0,∀S ⊂ V (4.3.3)

The problem now consists in maximizing the sum of the dual variables related

to violated cuts. The set of constraints described by Equation 4.3.2 states that

the sum of the dual variables associated to the unbalanced cuts containing a

given edge e ∈ E is, at most, equal to the cost of that edge. These constraints

can be described in a more compact form by considering the concept of reduced

costs.

The reduced cost of a variable indicates the amount by which the primal

objective function would have to increase (in a minimization problem) before

the associated primal decision variable could assume a strictly positive value.

More generally, the reduced cost of a variable gives a measure of its impact on

the cost of the objective function. For each edge e ∈ E, the related reduced

cost cπ(e) is defined by:

cπ(e) = de −
∑

S⊂V :e∈δ(S)

πS. (4.3.4)

An edge is said to be saturated when its related reduced cost is equal to zero,

indicating that the associated primal variable has a strictly positive value. For

the directed formulation, we consider the additional set of dual variables ve

related to the set of constraints represented by Equation 4.2.4, for every e

∈ E. The directed dual formulation is written as:

max
∑

S⊂R:
∑
v∈S

wv>0

πS +
∑

S′⊂R:
∑

v∈S′
wv<0

π′S′ −
∑
e∈E

ve (4.3.5)

s.t. (
∑

S⊂V,
∑
v∈S

wv>0:e∈δ+(S)

πS) + (
∑

S′⊂V,
∑

v∈S′
wv<0:e∈δ−(S′)

π′S′)− ve ≤ de, ∀e ∈ E

(4.3.6)

πS, π
′
S′ ≥ 0,∀S ⊂ V, ve ≥ 0, ∀e ∈ E, (4.3.7)

where the reduced costs are expressed by:
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cπ(e) = de−{(
∑

S⊂V,
∑
v∈S

wv>0:e∈δ+(S)

πS)+(
∑

S′⊂V,
∑

v∈S′
wv<0:e∈δ−(S′)

π′S′)−ve)}. (4.3.8)

The duality theorem implies a relationship between the primal and dual

problems known as complementary slackness [30], which describes a link

between variables in one problem and the associated constraints in the other.

Specifically, it states that if a primal variable assumes a positive value when

the optimal solution is reached, then its associated dual inequality constraint

holds with equality at the dual optimal solution. In other words, the reduced

cost of the primal variable is set to zero (i.e, the primal variable becomes

saturated). If a dual inequality constraint holds as a strict inequality when

the dual optimum is reached, then the associated primal variable holds a

value of zero in the primal optimal solution. The complementary slackness

theorem asserts that no slack can be present in both a constraint and its

associated dual variable. In the MSFBC directed problem, the theorem can

be interpreted as the following set of properties.

Property 1: for every edge e ∈ E, one of the following two conditions

is met when the optimal solution is reached.

(
∑

S⊂V,
∑
v∈S

wv>0:e∈δ+(S)

πS) + (
∑

S′⊂V,
∑

v∈S′
wv<0:e∈δ−(S′)

π′S′)− ve = de; or (4.3.9)

xe = 0; (4.3.10)

Property 2: for every dual variable πS, one of the following three conditions

is met when the optimal solution is reached.∑
a∈δ+(S)

xa = 1, s.t.
∑
v∈S

wv > 0; or (4.3.11)∑
a∈δ−(S)

xa = 1, s.t.
∑
v∈S

wv < 0; or (4.3.12)

πS = 0; (4.3.13)

The concepts of duality and complementary slackness will play an essential role

for the pre-processing stage of the branch-and-cut method in Section 4.4. The

lower and upper bounds of a problem can be used to reduce its instance through

the reduced costs obtained by the dual solution. This technique is called reduced

cost fixing [31], and goes as follows. Consider the following theorem:
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Teorema 4.1 Let I be an instance of the problem, π a dual feasible solution

with value v(π) and P* the best primal solution known for I. A primal decision

variable xe can be fixed to zero (i.e, removed from I) if the following condition

is met:
v(π) + cπ(e) > P*. (4.3.14)

Proof: If we suppose that the edge e is in the optimal primal solution set,

then xe > 0. By extension, the related dual constraint can be augmented up

to cπ(e) units without affecting the feasibility of the dual solution, since a

higher value will produce negative reduced costs. If this is possible, then the

dual solution cost becomes v’(π) = v(π) +cπ(e), which by definition denotes

a lower bound to the problem. If v’(π) > P*, the lower bound becomes worse

than the best known solution for the primal problem, which is absurd. More

generally, if the cost of the dual solution plus the reduced cost of a given

variable xe exceeds the value of the best known primal solution, then we know

for sure that xe will never figure in the solution set.

After computing a primal and a dual solutions, the instance can be eas-

ily reduced by eliminating all variables whose reduced cost exceeds the gap

between the lower and the upper bounds for the problem. Section 4.3.1 and

4.3.2 proposes a set dual heuristic procedures to obtain and improve dual

solutions, while Section 4.4 shows how the instance reduction can be used as

a pre-processing stage for the exact method. The results produced by the dual

heuristics will be discussed in Chapter 5.

4.3.1
Dual Ascent

Wong proposed in [32] a constructive dual heuristic approach to obtain

good feasible solutions for the dual program of the Steiner-tree problem on

graphs, based on the rooted multi-flow formulation with directed cuts [33]. The

algorithm considers the original graph G and Gπ, a subgraph of G described

by the saturated arcs produced by the dual solution π. At each iteration, the

method chooses a violated cut W (described by the primal formulation as a

constraint) and augment the associated dual variable πW until at least one

arc e ∈ W becomes saturated. The saturated arcs are then included in Gπ,

until π describes a feasible solution. A violated cut in the given formulation of

the Steiner-tree problem denotes a cut R which contains at least one terminal

vertex and does not contain either the root vertex or a path connecting a
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terminal vertex t 6∈ R to R. Algorithm 7 shows the pseudo-code for Wong’s

method.

Algorithm 7: Wong’s Dual Ascent method

input : A dual initial solution π
output: A feasible dual solution π’

1 Initialization: Build Gπ from the saturated arcs in π
2 π′ ← π;
3 while exists a violated cut R ∈ Gπ do
4 W ← selectViolatedCut(Gπ);
5 Augment π′W until at least one arc in δ−(W) becomes saturated;
6 Add the newly saturated arcs in Gπ;

7 end
8 return π′;

The selectViolatedCut routine can be based on any selection criterion, as

will be discussed later on. Given the similarity between the Steiner directed cut

formulation and our formulation for the MSFBCP, we propose the following

dual heuristic based on Wong’s method.

The notion of violated cuts can be interpreted as cuts with an unbalanced

number of positive or negative vertices. We start with a zero cost dual solution

(π = 0), where we first consider the set of unbalanced cuts containing one

vertex. The selection of the violated cuts is done by two different criteria:

(1) by the violated cut which contains the minimum reduced cost edge in its

edge set. (2) By random choice. Although both criteria are able to produce

feasible and maximal dual solutions, the quality of the lower bounds obtained

for a given instance can be directly related to which criterion was chosen. A

more greedy approach is most likely to produce worse lower bounds, as will

be showed in Chapter 5. An integer primal solution can be easily obtained by

applying the reverse delete step routine over the set of saturated arcs. The

dual solution is said to be maximal, since no dual variable can be further

augmented without producing negative reduced costs and infeasible solutions.

The pseudo-code for the dual ascent procedure for the MSFBCP is shown

in Algorithm 8. The algorithm runs in O(|E|) iterations in the worst case,

when all arcs becomes saturated. The detection of violated cuts is done by a

depth-first-search procedure over the graph Gπ, which runs in O(|V |) since |V |
always dominates over |E| in Gπ. The running time for the selection of violated

cuts depends directly on the criterion chosen. If the selection is made on an

edge based criterion, the running time is O(|E|), which then determines that

the dual ascent procedure runs in O(|E|2|V |). If, on the other hand it is a
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Algorithm 8: Dual Ascent method - Dual heuristic

input : A dual initial solution π
output: A feasible dual solution π’

1 Initialization: Build Gπ = (V, E) from the saturated arcs in π
2 π′ ← π;
3 while exists a violated cut R ∈ Gπ do
4 W ← selectViolatedCut();
5 if

∑
v∈W

pv > 0 then

6 Augment π′W until at least one arc in δ−(W) becomes
saturated;

7 end
8 else if

∑
v∈W

pv < 0 then

9 Augment π′W until at least one arc in δ+(W) becomes
saturated;

10 end
11 Add the newly saturated arcs in Gπ;

12 end
13 return π′;

cut based criterion, the running time is pseudo-polynomial, O(|E|2|W |), where

|W | represents the total number of violated cuts considered.

4.3.2
Dual Scaling

It is possible to improve the feasible and maximal dual solution π

obtained in the Dual Ascent procedure through a simple routine called Dual

Scaling. The method consists in multiplying the dual solution by a constant

factor 0 < α < 1 (thus, obtaining a feasible but not maximal dual solution

π’) and recomputing the Dual Ascent method over π’, which can produce a

potentially better lower bound. New sets of dual variables are likely to assume a

positive value, describing additional cuts not previously considered in the dual

solution and thus augmenting the lower bound for the problem. This routine

can be executed iteratively in a pre-fixed number of iterations, as shown by

Algorithm 9.
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Algorithm 9: Dual Scaling method - Dual heuristic

input : A feasible and maximal dual initial solution π
output: A feasible and maximal potentially improved dual solution

π∗

1 π∗ ← π;
2 for it = 0 to MaxIterations do
3 π∗ ← π∗ × α;
4 π∗ ← DualAscent(π∗);
5 if v(π∗) > v(π∗) then break;

6 end
7 return π∗;

4.4
Branch-and-cut Exact Method

Based on the set of primal and dual formulations and their proposed

heuristics methods, we can now devise an exact algorithm capable of solving

every instance to optimality in a finite number of steps. The following proposed

algorithm is based on the concept of branch-and-bound methods [31].

Branch-and-bound represents a class of algorithms commonly used in

combinatorial optimization which implicitly enumerates every possible solution

for a given instance of the problem. By relying on subroutines to compute a

lower and an upper bound on the optimal solution, the algorithm builds a

solution tree where each node represents a particular subproblem of the original

program. Initially, the set of bounds is computed over the instance. If there is

no gap between the upper and lower bounds, then the optimal solution was

already found and the search is over. On the other hand, if a gap exists, the

problem is partitioned into one or more subproblems. This routine is referred

to as branching.

In the case of an integer optimization problem, the branching is done

by fixing the value of one of the problem’s decision variables, which are called

the branching variables. Two new subproblems arises from every node in the

tree, fixing the value of the current branching variable to 0 or 1, accordingly,

as shown in Figure 4.4. Each of these subproblems is solved recursively, until

the bounds coincide. If the lower bound for a particular branch becomes worse

than the best upper bound found so far, the related branch is cut from the

tree. At the end of the algorithm, the best integer solution found will also

denote the optimal integer solution for the problem. The number of solutions

considered (i.e. nodes visited in the tree) directly depends on the quality of the

upper and lower bounds obtained; better routines yields less ramifications and

more pruning operations. The lower bounds can be obtained heuristically by
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a dual ascent procedure or by an exact method, solving the linear relaxation

of the problem at each node. The proposed branch-and-cut method involves

Figure 4.4: The branch-and-bound solution tree.

running the branch-and-bound algorithm by solving a set of linear relaxed

problems. The method is composed by three sub-routines: pre-processing,

initialization and branching.

Pre-processing: We start by using the set of dual heuristics from Sec-

tion 4.3 to reduce the instance of the problem. We obtain an initial lower

bound by constructing a dual feasible solution π through the Dual Ascent algo-

rithm and later possibly improving it with the Dual Scaling procedure. Given

an upper bound provided by the best known primal solution, the instance I

can be reduced by removing the set of arcs whose reduced costs exceeds the

gap between the lower and the upper bounds, as shown by Algorithm 10.

Initialization: The tree is initialized by solving the linear relaxed pro-

gram formulated over the reduced instance I∗, using the method discussed

in Section 4.2 which gradually inserts new constraints to the problem. The

set of unbalanced cuts W described by the dual solution π (πw > 0, w ∈ W )

constructed by the Dual Ascent procedure can be inserted as constraints to

the LP formulation as a starting point, thus saving some computational effort.

The linear optimal solution found denotes a lower bound for the problem,

while the upper bound can be obtained through a set of primal heuristics. If
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the bounds coincide at this point, then the algorithm ends and the optimal

solution has been found. If not, the branching routine is executed.

Branching: For every candidate solution S, three scenarios may occur.

First, if the lower and the upper bounds coincide, then the search for an

integer candidate solution in the related branch is over. Secondly, if the lower

bound for the current branch is worse than the current best upper bound, the

related branch is cut from the tree and the search resumes from the nearest

ramification point using a backtracking procedure. Finally, if the bounds

obtained are unable to prune the tree, then the branching procedure creates

two new subproblems, s1 and s2. Let xs be the current branching variable. In

s1, we constraint that xs should be included in the solution set (xs = 1), while

in s2 we constraint that it should not be included (xs = 0). Generally, the

chosen branching variable is the most fractional variable (i.e. the one closest

to 0.5), although Achterberg, Koch and Martin stated in [34] that this decision

is the same as a complete random choice. The subproblems are then solved

recursively, always updating the best lower and upper bounds found so far.

In the case where all decision variables have been fixed in the current branch,

the integer solution found is compared with the current best solution.

Algorithm 10: Branch-and-cut method - Pre-process

input : The instance of the problem I
The best known primal solution P∗.

output: The reduced instance I∗

The lower bound lb
The upper bound ub

1 π ← 0;
2 π ← Dual Ascent(π);
3 π ← DualScaling(π);
4 ub ← v(P∗);
5 I∗ ← I ;
6 foreach edge e ∈ I do
7 if v(π) + cπ(e) > ub then
8 Remove e from I∗;
9 end

10 end
11 lb ← v(π);
12 return {I∗, lb, ub};

Algorithms 11 and 12 shows the pseudo-code for the branch-and-cut proce-

dure. The set of variables x∗ (current best solution), lb∗ (current best lower

DBD
PUC-Rio - Certificação Digital Nº 1312376/CA



Chapter 4. The Minimum Spanning Forest with Balance Constraints (MSFBC) approach 55

bound) and ub∗ (current best upper bound) can be stored as global variables

and are initialized in the pre-processing stage. The solution tree is explored

in a depth-first manner in order to reduce the number of active nodes and

ease the method’s overall memory requirement. Once a pruning operation is

executed, the search resumes from the nearest parent node in the depth search

tree.

Most of the method’s computational time is spent on solving the linear

relaxation problems at each node. Although the lower bounds are computed

more efficiently, the use of such methods can introduce a considerable overhead

of time. An alternative to overcome this issue is to use the set of dual

heuristics to produce lower bounds in a faster manner through the Dual Ascent

procedure. More generally, the time factor is sacrificed in order to get better

bounds in branch-and-cut methods, while the quality factor of such bounds

can be sacrificed in the so called branch-and-ascent methods.

Algorithm 11: Branch-and-cut method

input : The instance of the problem I.
The best known primal solution P∗

output: The optimal integer solution x∗

1 x∗ ← P∗;
2 {I∗, lb∗, ub∗} ← Pre-process(I, x ∗);
3 lp ← CreateLP(I∗);
4 Solve(lp);
5 return x∗;

The proposed branch-and-cut method closes the set of algorithms which

relies on the mathematical formulations of the MSFBC problem and its

heuristics. Sections 4.5 and 4.6 presents a metaheuristic algorithm which takes

a completely different approach for the problem and is capable to produce

feasible solutions in a much faster and straightforward manner.

4.5
Iterated Local Search Heuristic

Metaheuristic algorithms [35] represents a class of high-level heuristic

methods designed to generate good quality solutions for an optimization

problem. Although the metaheuristic approach does not guarantee global

optimality, it can often find good or even near optimal solutions with much

less computational effort than exact methods. Many metaheuristics algorithms

uses a stochastic optimization routine, generating sets of random variables
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and behaviours to search for the global optima. Different strategies are used

to explore the search space, in such a way that there is a balance between

the exploitation of the accumulated search experience and the exploration of

the search space. According to Blum et. al. in [36], this balance is necessary in

order to quickly identify potential regions with high quality candidate solutions

and leave those which are far from the global optima. A common strategy

used to achieve such goals is to iteratively apply a local search procedure in

combination with a diversification mechanism in order to explore a wide variety

of solutions.

Algorithm 12: Branch-and-cut method - Solve procedure

input : The current lp formulation lp

1 x ← Solve lp(lp);
2 lb ← v( x );
3 ub ← Primal heuristic(x );
4 gap = ub - lb;
5 Update lb∗ and ub∗, accordingly.
6 if gap = 0 then
7 if x is better than x∗ then
8 x∗ ← x ;
9 end

10 end
11 if lb < ub∗ then
12 xs ← SelectUnfixedVariable(lp, x );
13 s1 ← lp + { xs = 1 };
14 s2 ← lp + { xs = 0 };
15 Solve(s1 );
16 Solve(s2 );

17 end

Local search algorithms move from candidate to candidate solutions in

the search space by applying local changes until a better solution is found

in a pre-fixed number of moves or an elapsed time bound. The concept of

neighbourhood is essential for any local search procedure: a neighbourhood

defines, for every candidate solution s', a set of additional candidate solutions

that shares much of the characteristics found in s'. Typically, neighbour

solutions are obtained by applying small modifications in s', where the nature

of such modifications depends on the specific neighbourhood. If no improved

solution is found during a local search routine, then the current best solution

found is said to be a neighbourhood’s local optimum. To escape such local

minimum, each metaheuristic method implements different sets of techniques.

One common strategy is to apply a series of perturbation steps to the
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current solution, thus resuming the search from a new starting point. This

behaviour is illustrated in Figure 4.5. Sections 4.5.1 and 4.5.2 proposes a set

of neighbourhoods and an iterated local search method, respectively, to obtain

good quality solutions for the MSFBCP in a fast and efficient manner.

Figure 4.5: The metaheuristic procedure and solution space

4.5.1
Local Search and Neighbourhoods

A feasible solution s' for the 2DPU-MSFBC problem describes a set of

minimum spanning trees computed over the set of partitions P i = (V i, E i)

with a balanced group of vertices or a border point in its vertex set. The

exploration of the search space S is done by randomly selecting a pair of

partitions {Pi, Pj} and applying a series of neighbourhood moves to modify

the trees, aiming at improving the current solution. The overall procedure is

described in Algorithm 20. Each one of the following proposed neighbourhoods

tries different moves in the vertex and/or edge sets of the partitions, limited

by a maximum distance radius between vertices from Pi and Pj computed in a

pre-processing stage. The following subsections proposes seven neighbourhoods

for the local search procedure, detailing the types of moves applied and the

computational complexity of each routine. For each neighbourhood, consider

the following notation: Let Pi = (Vi, Ei) and Pj = (Vj, Ej) be the pair of

partitions randomly selected in Gs', the graph describing the set of minimum
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spanning trees in the solution set s', where Vi = (Ri ∪ Bi) represent the union

between the residues set Ri and border points Bi in Pi. The cost w(s') of the

solution s' is defined by:
w(s') =

∑
i

c(Pi), (4.5.1)

where c(Pi) is the cost of the minimum spanning tree computed over the

partition Pi in O(|Ei| log|Ei|). When a local search move is applied, the cost

w(s') is updated by only recomputing the minimum spanning trees for Pi and

Pj. Each tree is connected to its closest border point if, and only if, there is

an unbalanced number of positive and negative residues in its vertex set.

4.5.1.1
Relocate

The Relocate neighbourhood consists in relocating vertices from Pi to Pj,

independently of its weight, as shown by Algorithm 13. The neighbourhood

tries, in the worst case, every possible move between vertices from Pi to

Pj, which leads to O(|Vi|) iterations. Our implementation for the Relocate

neighbourhood runs in O(|Vi| (|Ei| log|Ei|+
∣∣Ej∣∣ log

∣∣Ej∣∣))
Algorithm 13: Relocate - Local Search

input : A feasible solution s'
The pair of randomly selected partitions Pi and Pj

output: The modified solution s''
1 s'' ← s';
2 initialCost = c(Pi) + c(Pj)
3 foreach vertex vk in Pi do
4 if the minimum distance between vk and the vertices of Pj

exceeds the maximum distance radius for vk then continue;
5 newCost = c(Pi − {vk}) + c(Pj + {vk});
6 if newCost < initialCost then
7 Assign vk to Pj in s'';
8 initialCost = newCost;

9 end

10 end
11 return s”;

4.5.1.2
C-Relocate

The C-Relocate neighbourhood tries to relocate pairs of positive and

negative vertices from Pi to Pj, as shown by Algorithm 14. The neighbourhood

tries, in the worst case, every possible move between close pairs of vertices from
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Pi to Pj, leading to O(|Vi|2) iterations. Our implementation for the C-Relocate

neighbourhood runs in O(|Vi|2 (|Ei| log|Ei|+
∣∣Ej∣∣ log

∣∣Ej∣∣))
Algorithm 14: C-Relocate - Local Search

input : A feasible solution s'
The pair of randomly selected partitions Pi and Pj

output: The modified solution s''
1 s'' ← s';
2 initialCost = c(Pi) + c(Pj)
3 foreach pair of positive-negative vertices v+

k and v−l in Pi do
4 if the minimum distance between v+

k , v−l and the vertices from Pj

exceed their maximum distance radius then continue;
5 newCost = c(Pi − {v+

k , v
−
l }) + c(Pj + {v+

k , v
−
l });

6 if newCost < initialCost then
7 Assign v+

k and v−k to Pj in s'';
8 initialCost = newCost;

9 end

10 end
11 return s”;

4.5.1.3
Swap

The Swap neighbourhood consists in swapping vertices with same weight

between Pi and Pj, as shown by Algorithm 13. The neighbourhood tries, in

the worst case, every possible swap between vertices from Pi and Pj, leading to

O(|Vi|
∣∣Vj∣∣) iterations. Our implementation for the Swap neighbourhood runs

in O(|Vi|
∣∣Vj∣∣ (|Ei| log|Ei|+

∣∣Ej∣∣ log
∣∣Ej∣∣))

4.5.1.4
C-Swap

Just like the C-Relocate, the C-Swap neighbourhood consists in swapping

pairs of positive and negative vertices between Pi and Pj, as shown by Algo-

rithm 16. In order to ease the computational effort required for such neighbour-

hood, the move is only applied for a pre-fixed number of closest pairs of vertices

in Pi and Pj, determined in a pre-processing stage. Our implementation for

the C-Swap neighbourhood runs in O(|Vi|
∣∣Vj∣∣ (|Ei| log|Ei|+

∣∣Ej∣∣ log
∣∣Ej∣∣))

DBD
PUC-Rio - Certificação Digital Nº 1312376/CA



Chapter 4. The Minimum Spanning Forest with Balance Constraints (MSFBC) approach 60

Algorithm 15: Swap - Local Search

input : A feasible solution s'
The pair of randomly selected partitions Pi and Pj

output: The modified solution s''
1 s'' ← s';
2 initialCost = c(Pi) + c(Pj)
3 foreach vertex vk in Pi do
4 foreach vertex vl in Pj with the same weigth of vk do
5 if the distance between vk and vl exceed their maximum

distance radius then continue;
6 newCost = c(Pi − {vk}+ {vl}) + c(Pj − {vl}+ {vk});
7 if newCost < initialCost then
8 Swap vk and vl in s'';
9 initialCost = newCost;

10 end

11 end

12 end
13 return s”;

Algorithm 16: C-Swap - Local Search

input : A feasible solution s'
The pair of randomly selected partitions Pi and Pj

output: The modified solution s''
1 s'' ← s';
2 initialCost = c(Pi) + c(Pj);
3 foreach close pairs of positive-negative vertices v+

k and v−l in Pi do
4 foreach close pairs of positive-negative vertices v’+k and v’−l in

Pj do
5 if the minimum distance between {v+

k , v−l } and {v’+k ,v’−l }
exceeds their maximum distance radius then continue;

6 newCost =
c(Pi − {v+

k , v
−
l }+ {v′k+, v′l

−}) + c(Pj − {v′k+, v′l
−}+ {v+

k , v
−
l });

7 if newCost < initialCost then
8 Swap {v+

k , v
−
l } and {v′k+, v′l

−} in s'';
9 initialCost = newCost;

10 end

11 end

12 end
13 return s”;

4.5.1.5
Merge

The Merge neighbourhood consists in merging two partitions Pi = (Vi,

Ei) and Pj = (Vj, Ej) into a single partition Pm = (Vm, Em), where Vm = {Vi
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∪ Vj} and Em = {Ei ∪ Ej ∪ Eij}, where Eij is the set of edges connecting Vi

to Vj. The cost of the new partition Pm is obtained by computing the related

minimum spanning tree, as shown by Algorithm 17. Our implementation for

the Merge neighbourhood runs in O(
∣∣Ei + Ej

∣∣ log
∣∣Ei + Ej

∣∣).
Algorithm 17: Merge - Local Search

input : A feasible solution s'
The pair of randomly selected partitions Pi and Pj

output: The modified solution s''
1 s'' ← s';
2 initialCost = c(Pi) + c(Pj);
3 if at least one distance between vertices from Pi and Pj doesn’t

exceed their maximum distance radius then
4 Pm ← Pi + Pj;
5 newCost = c(Pm);
6 if newCost < initialCost then Replace {Pi, Pj} by Pm in s'';
7 return s”;

8 end

4.5.1.6
Break

The Break neighbourhood tries to break edges in the minimum spanning

tree of a given partition Pi to generate two optmized disjoint sets, Pi' and Pi'',

as shown by Algorithm 18. Our implementation for the Break neighbourhood

runs in O(|Vi||Ei| log|Ei|).

4.5.1.7
Insert 1, Break 1

The Insert 1, Break 1 neighbourhood is described by two steps: First,

the two randomly selected partitions Pi and Pj are merged together and the

minimum spanning tree of the merged component is computed. The second

step is to break the longest edge in the obtained tree, in such a way that

two new partitions are formed, Pi’ and Pj’, as shown by Algorithm 19. The

neighbourhood tries to recombine close trees in such a way that vertices are

better clustered in close regions of the instance. Our implementation runs in

O(
∣∣Ei + Ej

∣∣ log
∣∣Ei + Ej

∣∣).
4.5.2
Iterated Local Search

Iterated local search (ILS, [37]) is a simple local search metaheuristic

procedure that iteratively applies perturbation steps in order to escape the
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Algorithm 18: Break - Local Search

input : A feasible solution s'
A randomly selected partition Pi

output: The modified solution s''
1 s'' ← s';
2 initialCost = c(Pi);
3 foreach edge e in the minimum spanning tree T of Pi do
4 Obtain {Pi', Pi''} by breaking the edge e in T ;
5 newCost = c(P 'i) + c(P ''i);
6 if newCost < initialCost then
7 Replace Pi by {P 'i, P ''i} in s'';
8 break;

9 end

10 end
11 return s”;

Algorithm 19: Insert 1, Break 1 - Local Search

input : A feasible solution s'
The pair of randomly selected partitions Pi and Pj

output: The modified solution s''
1 s'' ← s';
2 initialCost = c(Pi) + c(Pj);
3 if at least one distance between vertices from Pi and Pj does not

exceed their maximum distance radius then
4 Pm ← Pi + Pj;
5 T ← MinimumSpanningTree(Pm);
6 Obtain {Pi’, Pj’} by breaking the longest edge in T ;
7 newCost = c(P 'i) + c(P ''i);
8 if newCost < initialCost then
9 Replace {Pi, Pj} by {P 'i, P 'j} in s'';

10 end

11 end
12 return s”;

local minimum of a current search point. The ILS algorithm is described

by a set of four component procedures: GenerateInitialSolution: generates

a starting point for the walk in the space of solutions; Shake: generates

new starting points for the local search by perturbing the current solution;

AcceptanceCriterion: decides from which solution the walk will be continued;

and LocalSearch: implements a set of neighbourhoods, as discussed in the pre-

vious section. The pseudo-code for the ILS algorithm is shown by Algorithm 21.

GenerateInitialSolution: The initial solution for a partition based ILS

algorithm is often generated by creating a fixed set of partitions and ran-
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Algorithm 20: Local Search

input : An initial solution s
output: The modified solution s'

1 s' ← s ;
2 foreach pair of partitions Pi and Pj ∈ s selected in random order do
3 s'1 ← Relocate(s', Pi, Pj);
4 s'2 ← C-Relocate(s', Pi, Pj);
5 s'3 ← Swap(s', Pi, Pj);
6 s'4 ← C-Swap(s', Pi, Pj);
7 s'5 ← Merge(s', Pi, Pj);
8 s'6 ← Break(s', Pi);
9 s'7 ← Break(s', Pj);

10 s'8 ← Insert1-Break1 (s', Pi, Pj);
11 s’m ← arg mins′i(ws

′
i
);

12 if ws′m < ws' then s' ← sm;

13 end
14 return s’ ;

domly assigning each object to one partition at a time. In the 2DPU-MSFBC

problem, the initial solution can be constructed by distributing the residues

through a fixed set of trees. However, since we are dealing with the two

dimensional Euclidean space in the phase unwrapping problem, such random

assignment of residues is most likely to produce very bad solutions, even

for an initial step. As we are searching for a minimum spanning forest, it

is reasonable to initiate the algorithm by computing a minimum spanning

tree for all residues and disconnecting edges which exceeds a pre-fixed or a

dynamic distance parameter, creating a set of balanced and unbalanced trees.

The vertex set for each tree is then described by the union between the set of

residues and its closest border points; if a particular tree is unbalanced, one of

its residues must be connected to the nearest border point in the image, thus

balancing the tree. Most of the balanced trees with no border point are likely

to be preserved in the best solution computed by the ILS algorithm, since

close sets of balanced residues will be clustered efficiently by the minimum

spanning tree. The procedure is shown in Figure 4.6.

Local Search: The previously proposed neighbourhoods are applied for

every pair of partitions of an initial given solution, selected in random order.

In order to reduce the method’s computational effort required, a series of

auxiliary tables and structures keep track of the modified trees and moves

applied. Moves already evaluated on a pair of unmodified trees are avoided in

a next local search iteration.
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Algorithm 21: Iterated Local Search

input : The graph G = (V ,E1)
output: A set of balanced trees S

1 Itshake ← 0;

2 S ← GenerateInitialSolution(G);
3 S* ← S ;
4 while Itshake < ItMAX do
5 S ← LocalSearch(S );
6 if w( S) < w( S*) then
7 S* ← S ;
8 Itshake ← 0;

9 end
10 if w( S) == w( S*) then Shake(S*);
11 else
12 S ← Shake(S ) or S ← Shake(S*) with 50% chance each;
13 end
14 Itshake++;

15 end
16 return S*;

4.6(a): 4.6(b): 4.6(c):

Figure 4.6: Generating the initial solution for the ILS algorithm. (a) The
instance with 11 negative residues and 14 positive residues. (b) The minimum
spanning tree considering all residues in the image. (c) The resulting spanning
forest after disconnecting long edges.

Shake: The shake procedure randomly modifies the current local mini-

mum solution in order to generate new starting points for the local search

routine. The procedure starts by fixing a random number k of edges to be

disconnected, thus creating 2k new disjoint trees. The trees are then randomly

recombined and merged together, with no distance limitation. The value of

k is fixed in such a way that the new initial solution shares most of the

characteristics found in the previous local minimum.

Acceptance Criterion: After a local search routine, the method verifies

if the new local minimum found is better than the best solution found so far.
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If so, it updates the value of the best solution and the method continues.

If no improvement is made on a previously known best solution, the shake

procedure is called. If the current local minimum is equal to the best solution

found so far, S ∗, then the shake procedure is called for S ∗. On the other hand,

in the case where the current local minimum S ’ is worse than S ∗, the shake

procedure is called for either S ’ or S ∗, with 50% of chance each. This allows a

good balance between aggressive solution improvement and exploration of the

search space.

The described ILS algorithm is executed in a pre-fixed number of itera-

tions without improving the best solution found. Section 4.6 presents a set

covering formulation which will lead to an ILS hybrid metaheuristic approach.

4.6
Set Covering Formulation and Hybrid Metaheuristic

The mathematical formulation proposed in Section 4.1, whose goal is to

find an optimal set of edges which satisfies the cut based constraints, is just one

possible edge based formulation for the MSFBCP. It can also be interpreted,

for instance, as a minimum cost multi-flow problem on graphs, where the

difference between the flow that enters and leaves a given vertex is equal to

its weight. Based on the metaheuristic’s approach of finding an optimal set of

balanced partitions of vertices and edges, we can also formulate the MSFBC

as a set covering problem.

The set covering problem [38] is a well-known optimization problem

whose study has led to the development of fundamental techniques for the

field of approximation algorithms, as stated by Vazirani in [39]. Given a set

of elements U = {1,2,3,...,n} and a set S of subsets of U, the set covering

problem seeks to find the smallest subset of S whose union is equal to U. The

problem is written as an integer linear optimization program, as follows:

min
∑
s∈S

xs (4.6.1)

s.t.
∑
s:e∈s

xs ≥ 1, ∀e ∈ U (4.6.2)

xs ∈ {0, 1},∀s ∈ S, (4.6.3)

where set of constraints represented by Equation 4.6.2 assures that every

element e ∈ U is covered by at least one set s ⊂ S. If we interpret the set U

as a set of weighted vertices v i ∈ V and S as a set of balanced partitions P of

V, the MSFBCP can be written in the following set covering formulation:
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min
∑
p∈P

cpxp (4.6.4)

s.t.
∑
p∈P

avpxp = 1, ∀v ∈ R (4.6.5)

xp ∈ {0, 1},∀p ∈ P, (4.6.6)

avp =

1 if v ∈ p

0 if v /∈ p
(4.6.7)

where cp denotes the cost of the minimum spanning tree computed over

the partition p. The objective is to find the minimum cost set of balanced

partitions whose union is equal to the universe U. This formulation can be used

to design a hybrid metaheuristic algorithm which regularly solves restricted

set covering problems in an attempt to improve its solutions.

Hybrid metaheuristics methods [40] often combines different algorithmic

components from a variety of research areas in optimization, such as mathe-

matical programming and machine learning. The strategy aims to achieve a

greater performance in solving hard optimization problems. Components of a

hybrid metaheuristic may run concurrently and exchange information to guide

the search for the global optima.

The hybridization of the proposed ILS algorithm can be achieved by

solving the set covering formulation of the MSFBCP at every pre-fixed number

of iterations, using a subset of possible partitions Pi extracted from every local

minimum found by the metaheuristic. However, since the set covering problem

is NP-hard [41], the computational effort required for finding its optimal

solution grows exponentially with the size of the instance. It is impractical to

introduce such overhead of computational time to the metaheuristic method,

and therefore, a time bound is established in order to limit the MIP solving

procedure.

Algorithm 22 shows the pseudo-code of the hybrid metaheuristic algo-

rithm. The set covering procedure is executed at every ItSC iterations (gener-

ally, at each third of the shake iterations). The partition set P is populated

by including every balanced subset p ∈ S at each local minimum. Chapter 5

discusses the improvements and results obtained by the hybrid metaheuristic

method over the non hybrid ILS algorithm proposed in Section 5.5.
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Algorithm 22: Hybrid Iterated Local Search

input : The graph G = (V ,E1)
output: A set of balanced trees S

1 S ← GenerateInitialSolution(G);
2 Itshake ← 0;
3 S ← I ;
4 S* ← S ;
5 P ← {};
6 while Itshake < ItMAX do
7 S ← LocalSearch(S );
8 if c( S) < c( S*) then
9 S* ← S ;

10 Itshake ← 0;

11 end
12 foreach ItSC iterations do
13 S ← SetCovering(P)
14 if c( S) < c( S*) then
15 S* ← S ;
16 Itshake ← 0;

17 end

18 end
19 foreach p ∈ S do
20 if p /∈ P then P ← P + {p};
21 end
22 S ← Shake(S ) or S ← Shake(S*) with 50% chance each;
23 Itshake++;

24 end
25 return S*;
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5
Computational Experiments

The computational experiments described in this chapter were conceived

to: (1) validate and investigate the performance of the proposed methods

in a set of designed benchmark instances for the MSFBC problem; (2)

evaluate the performance of the MSFBC approach in the two-dimensional

phase unwrapping problem, when compared to other path-following methods.

To test and identify the limitations of the proposed methods, we devised

a set of instances designed to cover a wide variety of topologies of vertices,

simulating the occurrence of noise and natural discontinuities in the 2DPU-

MSFBC problem. In addition, these instances were also designed to represent

a challenging set for the MSFBC problem and analyse the scalability factor

for each method.

The experiments were conducted on an Intel i7 2.3 Ghz processor (6 MB

shared level 3 cache) machine with 8 GB of RAM. The codes were written

in the C++ language, using the UNIX g++ v4.2.1 compiler on a MAC OSX

10.10.1 64bit operating system. The linear and integer programs were solved

using the GUROBI 6.0.4 optimization suite [42]. The execution times for each

method were obtained using the getrusage function from the <sys/time.h>

and <sys/resource.h> standard C++ libraries, measuring the total CPU time

used by the process, in seconds.

5.1
Randomized Instances

The instances PUC r p n x were generated by randomly spreading p

positive (+1) and n negative (-1) vertices on an 4p × 4n Euclidean space. The

cost c(i,j) for each edge (i,j) is defined by the 2D Euclidean distance between

vertices i and j. Additionally, every vertex v is connected to a single border

point b, where the cost c(v,b) represents the 2D Euclidean distance between

v and its closest border point. There are 21 sets of 5 instances each, starting

from 8 to 1024 nodes. Since there is no reference solutions in the literature,

we have collected the best solutions ever found during the heuristics and exact

methods in order to evaluate the quality of each proposed algorithm. These

solution values are represented in each table by the column BKS. A solution

is marked with a * when it refers to the optimal solution for that instance, as
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proven by the branch-and-cut method. Solution values in bold letters indicates

the best known primal solution.

5.1.1
Hybrid Metaheuristic

The hybrid ILS algorithm was executed 10 times with two termination

criteria per run, whichever came first: (1) 100 iterations (ItMAX = 100) without

improving the best solution found; (2) A time bound of 3600 seconds. The set

covering routine is executed at every (1/3)ItMAX iterations, with a time bound

of 300 seconds. The maximum distance radius for every vertex v is limited to

25% of the shortest distances between v and the set of vertices V -{v}. The

choice of such parameters was made based on a preliminary calibration of the

method through a series of tests.

Tables 5.1, 5.2 and 5.3 present a summary of the experimental results.

The best solution reported Sbest refers to the global best solution found, while

the average solution S∗avg 10 represents the average solution found on 10 runs.

Columns GAPbest (%) and GAPavg (%) represents, respectively: (1) gap, in

percentage from the best solution found during the 10 runs to the BKS; (2) gap

in percentage from the average solution from the 10 runs to the BKS. Finally,

the column T(s) reports the average time per run, measured in seconds.

Table 5.1: Results for the hybrid ILS algorithm

Instance |V | |E| Sbest GAPbest(%) Savg10 GAPavg(%) BKS T(s)
PUC r 4 4 1 8 72 24.705 0 24.705 0 24.705* 0.4
PUC r 4 4 2 8 72 16.456 0 16.456 0 16.456* 0.25
PUC r 4 4 3 8 72 14.261 0 14.261 0 14.261* 0.3
PUC r 4 4 4 8 72 24.991 0 24.991 0 24.991* 0.23
PUC r 4 4 5 8 72 23.895 0 27.29 12.437 23.895* 0.15
PUC r 6 6 1 12 156 54.542 0 54.542 0 54.542* 0.86
PUC r 6 6 2 12 156 49.049 0 49.049 0 49.049* 0.67
PUC r 6 6 3 12 156 53.592 0 53.592 0 53.592* 0.72
PUC r 6 6 4 12 156 49.488 0 49.488 0 49.488* 0.94
PUC r 6 6 5 12 156 46.935 0 46.935 0 46.935* 0.66
PUC r 8 8 1 16 272 79.382 0 79.382 0 79.382* 1.46
PUC r 8 8 2 16 272 69.676 0 69.676 0 69.676* 1.46
PUC r 8 8 3 16 272 82.496 0 82.86 0.439 82.496* 1.57
PUC r 8 8 4 16 272 79.012 0 79.012 0 79.012* 1.46
PUC r 8 8 5 16 272 79.603 0 81.381 2.185 79.603* 2.05

PUC r 10 10 1 20 420 128.158 0 128.209 0.04 128.158* 2.15
PUC r 10 10 2 20 420 132.932 0 132.932 0 132.932* 3.73
PUC r 10 10 3 20 420 112.172 0 112.172 0 112.172* 3.59
PUC r 10 10 4 20 420 119.738 0 120.97 1.019 119.738* 3.88
PUC r 10 10 5 20 420 121.932 0 121.932 0 121.932* 4.64
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Table 5.2: Results for the hybrid ILS algorithm (continued)

Instance |V | |E| Sbest GAPbest(%) Savg10 GAPavg(%) BKS T(s)

PUC r 12 12 1 24 600 183.245 0 183.972 0.395 183.245* 4.15

PUC r 12 12 2 24 600 124.074 0 125.962 1.499 124.074* 6.3

PUC r 12 12 3 24 600 157.608 0 157.649 0.026 157.608* 4.81

PUC r 12 12 4 24 600 163.066 0 163.507 0.269 163.066* 5.67

PUC r 12 12 5 24 600 168.411 0 170.164 1.03 168.411* 6.36

PUC r 14 14 1 28 812 203.863 0 208.371 2.164 203.863* 8.87

PUC r 14 14 2 28 812 209.821 0 215.034 2.424 209.821* 12.87

PUC r 14 14 3 28 812 215.686 0 215.686 0 215.686* 7.89

PUC r 14 14 4 28 812 207.88 0 208.135 0.123 207.88* 10.82

PUC r 14 14 5 28 812 209.477 0 210.693 0.577 209.477* 12.04

PUC r 16 16 1 32 1056 259.67 0 259.67 0 259.67* 12.33

PUC r 16 16 2 32 1056 237.027 0 237.268 0.101 237.027* 16.99

PUC r 16 16 3 32 1056 222.041 0 222.561 0.234 222.041* 16.07

PUC r 16 16 4 32 1056 234.291 0 237.363 1.294 234.291* 13.36

PUC r 16 16 5 32 1056 284.184 0 290.457 2.159 284.184* 15.66

PUC r 18 18 1 36 1332 297.529 0 297.703 0.058 297.529* 18.39

PUC r 18 18 2 36 1332 302.638 0 303.973 0.439 302.638* 21.36

PUC r 18 18 3 36 1332 291.269 0 292.308 0.356 291.269* 21.21

PUC r 18 18 4 36 1332 286.077 0 296.15 3.401 286.077* 16.51

PUC r 18 18 5 36 1332 263.764 0 264.963 0.453 263.764* 22.1

PUC r 20 20 1 40 1640 347.491 0 351.7 1.197 347.491* 48.26

PUC r 20 20 2 40 1640 381.249 0 381.249 0 381.249* 31.67

PUC r 20 20 3 40 1640 391.299 0 394.761 0.877 391.299* 24.12

PUC r 20 20 4 40 1640 399.453 0 402.28 0.703 399.453* 24.86

PUC r 20 20 5 40 1640 366.812 0 368.188 0.374 366.812* 33.52

PUC r 22 22 1 44 1980 462.137 0.677 473.896 3.141 459.009* 53.56

PUC r 22 22 2 44 1980 413.547 0 417.59 0.968 413.547* 36.88

PUC r 22 22 3 44 1980 433.645 0 439.33 1.294 433.645* 54.8

PUC r 22 22 4 44 1980 461.945 0 464.014 0.446 461.945* 33.06

PUC r 22 22 5 44 1980 448.584 0 454.663 1.337 448.584* 44.2

PUC r 24 24 1 48 2352 460.297 0 464.82 0.973 460.297* 57.49

PUC r 24 24 2 48 2352 477.413 0 480.902 0.726 477.413* 40.9

PUC r 24 24 3 48 2352 418.466 0 421.274 0.667 418.466* 53.59

PUC r 24 24 4 48 2352 459.073 0 463.974 1.056 459.073* 48.02

PUC r 24 24 5 48 2352 480.623 0 481.823 0.249 480.623* 44.56

PUC r 26 26 1 52 2756 573.996 0 584.115 1.732 573.996* 81.22

PUC r 26 26 2 52 2756 515.262 0 526.523 2.139 515.262* 84.54

PUC r 26 26 3 52 2756 594.353 0 595.504 0.193 594.353* 56.76

PUC r 26 26 4 52 2756 472.589 0 475.033 0.515 472.589* 58.93

PUC r 26 26 5 52 2756 585.796 0 598.289 2.088 585.796* 68.72

PUC r 28 28 1 56 3192 640.927 0 657.444 2.512 640.927* 91.59

PUC r 28 28 2 56 3192 631.737 0 636.723 0.783 631.737* 82.25

PUC r 28 28 3 56 3192 594.231 0 594.43 0.034 594.231* 73.91

PUC r 28 28 4 56 3192 570.737 0 576.155 0.94 570.737* 91.29

PUC r 28 28 5 56 3192 544.909 0 558.627 2.456 544.909* 74.74

PUC r 30 30 1 60 3660 639.401 0 648.903 1.464 639.401* 93.92

PUC r 30 30 2 60 3660 722.468 0 736.346 1.885 722.468* 98.7

PUC r 30 30 3 60 3660 732.902 0 746.475 1.818 732.902* 119.74

PUC r 30 30 4 60 3660 668.177 0 669.945 0.264 668.177* 92.07

PUC r 30 30 5 60 3660 706.65 0 709.074 0.342 706.65* 81.2
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Table 5.3: Results for the hybrid ILS algorithm (continued)

Instance |V | |E| Sbest GAPbest(%) Savg10 GAPavg(%) BKS T(s)

PUC r 32 32 1 64 4160 802.768 1.736 834.173 5.435 788.832* 145.21

PUC r 32 32 2 64 4160 748.656 0 797.036 6.07 748.656* 126.61

PUC r 32 32 3 64 4160 754.849 0 757.459 0.345 754.849* 131.41

PUC r 32 32 4 64 4160 805.771 0 825.498 2.39 805.771* 141.08

PUC r 32 32 5 64 4160 789.849 0 796.734 0.864 789.849* 127.95

PUC r 40 40 1 80 6480 1089.771 1.187 1102.816 2.356 1076.832* 280.25

PUC r 40 40 2 80 6480 1084.382 0.791 1124.809 4.357 1075.805* 295.59

PUC r 40 40 3 80 6480 1048.912 0 1079.111 2.799 1048.912* 266.89

PUC r 40 40 4 80 6480 1114.463 0 1135.72 1.872 1114.463* 329.72

PUC r 40 40 5 80 6480 1122.355 0 1180.169 4.899 1122.355* 350.77

PUC r 48 48 1 96 9312 1348.944 0 1421.624 5.112 1348.944* 643.02

PUC r 48 48 2 96 9312 1613.758 0 1698.21 4.973 1613.758 892.48

PUC r 48 48 3 96 9312 1511.631 0 1569.205 3.669 1511.631 514.21

PUC r 48 48 4 96 9312 1495.145 0.51 1583.952 6.088 1487.522 706.41

PUC r 48 48 5 96 9312 1422.952 0 1485.311 4.198 1422.952* 494.14

PUC r 64 64 1 128 16512 2450.873 1.023 2579.993 5.977 2425.795 2482.93

PUC r 64 64 2 128 16512 2166.769 0 2322.014 6.686 2166.769* 1099.27

PUC r 64 64 3 128 16512 2576.421 4.219 2624.889 5.988 2467.719 3348.55

PUC r 64 64 4 128 16512 2293.612 0 2293.612 0 2293.612 1735.7

PUC r 64 64 5 128 16512 2269.257 0 2482.121 8.576 2269.257* 1791.81

PUC r 128 128 1 256 65792 7061.173 0 7643.75 7.622 7061.173 3600

PUC r 128 128 2 256 65792 7748.266 0 8008.762 3.253 7748.266 3600

PUC r 128 128 3 256 65792 7518.65 0 7824.093 3.904 7518.65 3600

PUC r 128 128 4 256 65792 7530.24 0.001 7539.174 0.119 7530.174 3600

PUC r 128 128 5 256 65792 6913.376 0 8038.889 14.001 6913.376 3600

PUC r 256 256 1 512 262656 23517.256 0 26140.367 10.035 23517.256 3600

PUC r 256 256 2 512 262656 23286.799 0 23978.253 2.884 23286.799 3600

PUC r 256 256 3 512 262656 22874.346 0 25420.154 10.015 22874.346 3600

PUC r 256 256 4 512 262656 23442.233 0 24726.646 5.194 23442.233 3600

PUC r 256 256 5 512 262656 22863.504 0 23672.328 3.417 22863.504 3600

PUC r 512 512 1 1024 1048576 71011.166 2.091 71011.166 2.091 69526.195 3600

PUC r 512 512 2 1024 1048576 69510.146 5.886 69890.542 6.399 65418.516 3600

PUC r 512 512 3 1024 1048576 69401.363 5.401 69523.126 5.567 65652.68 3600

PUC r 512 512 4 1024 1048576 68040.88 2.595 69141.385 4.145 66275.43 3600

PUC r 512 512 5 1024 1048576 69884.32 4.016 71384.11 6.033 67077.516 3600

The method was able to find the optimal solution from 83 out of 105

instances, meaning a success rate of almost 80%. In addition, the solutions

obtained for 12 other instances were considered to be the best known primal

solution, with no guarantee on optimality.

The CPU times range from a fraction of a second on the smaller instances

up to 30 minutes for problems with 128 nodes. Since the execution time is

limited to 3600 seconds, the graphs presented in Figures 5.1(a) and 5.1(b)

only reports the results for a range of 8 to 80 nodes. The growth of CPU time

is represented as a function of the number of nodes in the linear and the log-log

scales. The fitted curve presented in Figure 5.1(b) suggests that the CPU time

is rising in O(n3).
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5.1(a):

5.1(b):

Figure 5.1: The growth of CPU time for the hybrid ILS algorithm. (a) Linear
scale. (b) Log-log scale.
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5.1.2
Dual Heuristics

Table 5.4 shows the results for running the Dual Ascent and Dual Scaling

algorithms on the PUC set of instances. The selection of violated cuts was

tested with two different criteria: (minrc) by the minimum reduced cost arc

in the graph; (random) by randomly selecting a non maximal dual variable

and saturating at least one of its arcs.

Each execution is composed by two steps: First, the Dual Ascent and

Dual Scaling algorithms are executed to obtain a lower bound. Later, a primal

feasible solution is obtained over the dual solution with the Reverse Delete

Step (RDS) routine. Columns GAPmrc LB(%) and GAPrand LB(%) reports

the average gap between the dual bounds and the best known primal solutions,

per group of instance. The average gap between the primal bounds using

the RDS algorithm and the best known primal solutions are reported in

columns GAPmrc BKS(%) and GAPrand BKS(%). Finally, columns Tmrc(s)

and Trand(s) reports the average CPU time, in seconds.

Table 5.4: Results for the dual heuristics

Instance GAPmrc LB(%) GAPrand LB(%) GAPmrc BKS(%) GAPrand BKS(%) Tmrc(s) Trand(s)
PUC r 4 4 x 2.098 0.000 6.897 0.000 0.001 0.0003
PUC r 6 6 x 7.337 0.000 7.399 2.974 0.001 0.0005
PUC r 8 8 x 2.751 3.559 19.119 14.384 0.003 0.0009

PUC r 10 10 x 6.464 1.458 13.038 4.506 0.004 0.0015
PUC r 12 12 x 3.783 3.780 28.575 23.644 0.009 0.0028
PUC r 14 14 x 8.922 3.345 19.637 11.343 0.010 0.0038
PUC r 16 16 x 9.198 3.717 25.659 9.898 0.017 0.0051
PUC r 18 18 x 14.634 7.610 28.747 20.525 0.011 0.0086
PUC r 20 20 x 13.050 2.960 17.635 11.631 0.024 0.0104
PUC r 22 22 x 13.821 3.743 25.055 14.032 0.028 0.0132
PUC r 24 24 x 4.787 3.223 19.594 13.632 0.020 0.0156
PUC r 26 26 x 11.933 4.216 22.791 8.495 0.031 0.0206
PUC r 28 28 x 10.804 3.297 21.314 12.326 0.030 0.0271
PUC r 30 30 x 10.328 3.995 18.934 18.063 0.078 0.0312
PUC r 32 32 x 11.143 4.152 27.785 17.380 0.082 0.0395
PUC r 40 40 x 15.946 6.871 24.861 16.862 0.133 0.0735
PUC r 48 48 x 18.695 9.194 20.873 15.779 0.113 0.1298
PUC r 64 64 x 16.373 10.288 17.099 16.878 0.360 0.3007

PUC r 128 128 x 34.818 16.481 17.653 11.204 10.485 2.6413
PUC r 256 256 x 33.877 18.185 17.938 13.875 53.379 20.0289
PUC r 512 512 x 40.441 26.155 22.168 13.252 1312.558 169.2926

Although similar methods performed considerably well for the Steiner-

tree problem [43], the results showed that they were unable to produce good

quality bounds for the PUC instance set of the MSFBCP. Strictly greedy

methods showed to be inefficient at producing quality lower and upper bounds.

The random criterion was able to produce better dual bounds for larger

instances in a considerable less amount of time, suggesting that a cut based

criterion can be a better approach for the PUC set of instances.
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5.1.3
Branch-and-cut

Tables 5.5, 5.6, 5.7 and 5.8 summarizes the computational results ob-

tained by running the branch-and-cut algorithm for every instance. A time

limit of 3600 seconds has been set for the resolution. The following informa-

tion is reported:

– |ER|: The number of edges after using the best primal and dual bounds

to fix arcs by reduced cost in the pre-processing stage.

– PILS: The best primal solution found by the hybrid ILS algorithm, used

as an initial upper bound for the exact method.

– Root LP: the LP value obtained after solving the root node in the tree.

– LB and UB: The best lower and upper bounds obtained.

– GAP(%): The gap, in percentage, between the best lower and upper

bounds.

– N: Number of nodes explored in the branch-and-bound tree.

– D: The maximum depth reached in the solution tree.

– T(s): The CPU time measured in seconds.

– FS(%): The total percentage of time spent to find the unbalanced

connected components while solving the linear program.

– PtPS(%): The total percentage of time spent to solve the min-cut/max-

flow algorithm for every pair of vertices inside a same connected compo-

nent while solving the linear program.

Many primal solutions obtained by the ILS method proved to be optimal.

20 out of 105 instances were not solved to optimality, with an average

gap of 17% between the best lower and upper bounds. As expected, the

separation of cuts by the min-cut/max-flow procedure took more than 50%

of the running time in many instances, with an average overhead of 28%. In

contrast, the simple detection of unbalanced components using a depth-first-

search algorithm showed to introduce an insignificant overhead of time to the

solving procedure, with an average overhead of 0.42%. The results also showed

that the running times are not totally correlated with the size of the instances,

but rather with their topologies. This behaviour is illustrated in Figure 5.2.
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Figure 5.2: The CPU running times for the branch-and-cut algorithm in the
log-log scale.
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Table 5.5: Results for the branch-and-cut algorithm

Instance |V| |E| |E|R PILS LP LB UB GAP N D T(s) FS(%) PtPS(%)
PUC r 4 4 1 8 72 10 24.705 24.705 24.705 24.705* 0 1 0 0.001 0.350 0.088
PUC r 4 4 2 8 72 10 16.456 16.456 16.456 16.456* 0 1 0 0.001 0.267 0.000
PUC r 4 4 3 8 72 9 14.261 14.261 14.261 14.261* 0 1 0 0.001 0.560 2.478
PUC r 4 4 4 8 72 10 24.991 24.991 24.991 24.991* 0 1 0 0.001 0.356 0.089
PUC r 4 4 5 8 72 14 23.895 23.895 23.895 23.895* 0 1 0 0.002 0.863 19.700
PUC r 6 6 1 12 156 12 54.542 54.542 54.542 54.542* 0 1 0 0.002 0.299 0.000
PUC r 6 6 2 12 156 11 49.049 49.049 49.049 49.049* 0 1 0 0.002 0.300 0.060
PUC r 6 6 3 12 156 12 53.592 53.592 53.592 53.592* 0 1 0 0.002 0.295 0.000
PUC r 6 6 4 12 156 13 49.488 49.488 49.488 49.488* 0 1 0 0.002 0.283 0.057
PUC r 6 6 5 12 156 14 46.935 46.935 46.935 46.935* 0 1 0 0.002 0.448 3.833
PUC r 8 8 1 16 272 21 79.382 79.382 79.382 79.382* 0 1 0 0.003 0.528 9.851
PUC r 8 8 2 16 272 15 69.676 69.676 69.676 69.676* 0 1 0 0.003 0.372 5.437
PUC r 8 8 3 16 272 35 82.496 82.199 82.496 82.496* 0 3 1 0.007 0.755 18.957
PUC r 8 8 4 16 272 20 79.012 79.012 79.012 79.012* 0 1 0 0.004 0.420 6.807
PUC r 8 8 5 16 272 25 79.603 79.603 79.603 79.603* 0 1 0 0.003 0.466 7.138

PUC r 10 10 1 20 420 23 128.158 128.158 128.158 128.158* 0 1 0 0.005 0.307 9.380
PUC r 10 10 2 20 420 18 132.932 132.932 132.932 132.932* 0 1 0 0.004 0.200 0.000
PUC r 10 10 3 20 420 19 112.172 112.172 112.172 112.172* 0 1 0 0.004 0.317 4.629
PUC r 10 10 4 20 420 41 119.738 117.229 119.738 119.738* 0 13 6 0.036 1.038 26.473
PUC r 10 10 5 20 420 26 121.932 121.932 121.932 121.932* 0 1 0 0.004 0.301 4.443
PUC r 12 12 1 24 600 36 183.245 183.245 183.245 183.245* 0 1 0 0.006 0.286 11.395
PUC r 12 12 2 24 600 27 124.074 124.074 124.074 124.074* 0 1 0 0.006 0.230 3.466
PUC r 12 12 3 24 600 31 157.608 157.608 157.608 157.608* 0 1 0 0.009 0.299 3.083
PUC r 12 12 4 24 600 31 163.066 163.066 163.066 163.066* 0 1 0 0.007 0.263 6.906
PUC r 12 12 5 24 600 306 168.411 168.090 168.411 168.411* 0 5 2 0.027 0.643 20.382
PUC r 14 14 1 28 812 188 203.863 196.663 203.863 203.863* 0 23 5 0.095 0.584 21.861
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Table 5.6: Results for the branch-and-cut algorithm (continued)
Instance |V| |E| |E|R PILS LP LB UB GAP N D T(s) FS(%) PtPS(%)

PUC r 14 14 2 28 812 243 209.821 202.976 209.821 209.821* 0 3 1 0.022 0.576 15.786
PUC r 14 14 3 28 812 35 215.686 215.686 215.686 215.686* 0 1 0 0.009 0.245 15.244
PUC r 14 14 4 28 812 31 207.880 207.880 207.880 207.88* 0 1 0 0.007 0.238 3.444
PUC r 14 14 5 28 812 33 209.477 209.477 209.477 209.477* 0 1 0 0.010 0.176 3.585
PUC r 16 16 1 32 1056 32 259.670 259.670 259.670 259.67* 0 1 0 0.012 0.163 2.406
PUC r 16 16 2 32 1056 38 237.027 237.027 237.027 237.027* 0 1 0 0.013 0.398 7.570
PUC r 16 16 3 32 1056 35 222.041 222.041 222.041 222.041* 0 1 0 0.010 0.269 6.792
PUC r 16 16 4 32 1056 141 234.291 230.052 234.291 234.291* 0 17 4 0.097 1.014 39.927
PUC r 16 16 5 32 1056 497 284.184 267.385 284.184 284.184* 0 471 17 5.515 0.333 15.894
PUC r 18 18 1 36 1332 615 297.529 285.399 297.529 297.529* 0 579 16 10.475 0.464 51.575
PUC r 18 18 2 36 1332 49 302.638 301.859 302.638 302.638* 0 3 1 0.014 1.104 54.570
PUC r 18 18 3 36 1332 42 291.269 291.269 291.269 291.269* 0 1 0 0.015 0.296 7.269
PUC r 18 18 4 36 1332 744 286.077 271.128 286.077 286.077* 0 25 6 0.428 0.263 14.330
PUC r 18 18 5 36 1332 751 263.764 258.370 263.764 263.764* 0 29 6 0.396 0.586 34.084
PUC r 20 20 1 40 1640 62 347.491 347.491 347.491 347.491* 0 1 0 0.041 0.329 34.362
PUC r 20 20 2 40 1640 203 381.249 375.428 381.249 381.249* 0 11 3 0.059 1.393 50.038
PUC r 20 20 3 40 1640 74 391.299 388.299 391.299 391.299* 0 21 5 0.149 1.564 117.337
PUC r 20 20 4 40 1640 518 399.453 386.459 399.453 399.453* 0 415 19 5.420 0.521 36.286
PUC r 20 20 5 40 1640 857 366.812 362.779 366.812 366.812* 0 7 2 0.099 0.560 22.120
PUC r 22 22 1 44 1980 397 462.137 442.542 459.009 459.009* 0 1971 22 41.849 0.349 39.520
PUC r 22 22 2 44 1980 242 413.547 413.333 413.547 413.547* 0 7 3 0.051 1.415 45.124
PUC r 22 22 3 44 1980 567 433.645 417.588 433.645 433.645* 0 309 15 5.019 0.339 21.941
PUC r 22 22 4 44 1980 254 461.945 456.464 461.945 461.945* 0 21 7 0.192 0.941 45.804
PUC r 22 22 5 44 1980 69 448.584 447.535 448.584 448.584* 0 3 1 0.023 0.964 64.094
PUC r 24 24 1 48 2352 743 460.297 449.519 460.297 460.297* 0 133 12 1.782 0.366 30.602
PUC r 24 24 2 48 2352 163 477.413 471.406 477.413 477.413* 0 9 4 0.068 0.757 37.332
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Table 5.7: Results for the branch-and-cut algorithm (continued)
Instance |V| |E| |E|R PILS LP LB UB GAP N D T(s) FS(%) PtPS(%)

PUC r 24 24 3 48 2352 308 418.466 417.656 418.466 418.466* 0 7 2 0.057 1.034 38.383
PUC r 24 24 4 48 2352 55 459.073 459.073 459.073 459.073* 0 1 0 0.032 0.236 12.952
PUC r 24 24 5 48 2352 96 480.623 479.040 480.623 480.623* 0 5 2 0.028 1.121 56.297
PUC r 26 26 1 52 2756 225 573.996 555.044 573.996 573.996* 0 509 19 8.082 0.693 31.375
PUC r 26 26 2 52 2756 59 515.262 515.262 515.262 515.262* 0 1 0 0.034 0.232 13.949
PUC r 26 26 3 52 2756 473 594.353 591.540 594.353 594.353* 0 11 3 0.109 0.825 35.254
PUC r 26 26 4 52 2756 868 472.589 460.842 472.589 472.589* 0 23 4 0.487 0.581 26.455
PUC r 26 26 5 52 2756 314 585.796 583.152 585.796 585.796* 0 7 3 0.109 0.708 54.720
PUC r 28 28 1 56 3192 637 640.927 625.607 640.927 640.927* 0 9 3 0.204 0.358 42.700
PUC r 28 28 2 56 3192 2156 631.737 618.707 631.737 631.737* 0 3351 33 152.307 0.339 48.586
PUC r 28 28 3 56 3192 446 594.231 592.016 594.231 594.231* 0 13 5 0.239 0.778 60.185
PUC r 28 28 4 56 3192 726 570.737 565.029 570.737 570.737* 0 19 5 0.288 0.700 26.197
PUC r 28 28 5 56 3192 62 544.909 544.909 544.909 544.909* 0 1 0 0.036 0.162 7.996
PUC r 30 30 1 60 3660 298 639.401 630.131 639.401 639.401* 0 219 16 4.971 0.709 45.587
PUC r 30 30 2 60 3660 915 722.468 705.385 722.468 722.468* 0 345 14 10.810 0.396 62.843
PUC r 30 30 3 60 3660 588 732.902 729.395 732.902 732.902* 0 7 2 0.154 0.669 47.423
PUC r 30 30 4 60 3660 2004 668.177 660.781 668.177 668.177* 0 111 9 3.865 0.333 22.469
PUC r 30 30 5 60 3660 1213 706.650 693.540 706.650 706.65* 0 83 11 2.054 0.396 20.798
PUC r 32 32 1 64 4160 1743 802.768 769.781 788.832 788.832* 0 2403 23 153.347 0.219 28.960
PUC r 32 32 2 64 4160 333 748.656 746.038 748.656 748.656* 0 7 3 0.192 0.511 72.189
PUC r 32 32 3 64 4160 407 754.849 754.848 754.849 754.849* 0 3 1 0.059 0.703 63.288
PUC r 32 32 4 64 4160 1807 805.771 786.561 805.771 805.771* 0 8689 27 476.687 0.379 53.608
PUC r 32 32 5 64 4160 990 789.849 773.009 789.849 789.849* 0 519 22 14.419 0.605 58.368
PUC r 40 40 1 80 6480 2561 1089.771 1055.601 1076.832 1076.832* 0 159 17 9.719 0.371 35.372
PUC r 40 40 2 80 6480 3785 1084.382 1044.578 1075.806 1075.805* 0 38033 37 3841.795 0.442 49.026
PUC r 40 40 3 80 6480 5089 1048.912 1024.105 1048.912 1048.912* 0 11647 33 1129.916 0.134 9.345
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Table 5.8: Results for the branch-and-cut algorithm
Instance |V| |E| |E|R PILS LP LB UB GAP N D T(s) FS(%) PtPS(%)

PUC r 40 40 4 80 6480 4436 1114.463 1100.404 1114.463 1114.463* 0 4075 28 291.181 0.190 28.201
PUC r 40 40 5 80 6480 972 1122.355 1102.941 1122.355 1122.355* 0 255 13 15.207 0.533 71.083
PUC r 48 48 1 96 9312 913 1348.944 1338.588 1348.944 1348.944* 0 2139 28 110.450 0.517 64.550
PUC r 48 48 2 96 9312 8460 1613.758 1558.175 1577.914 1613.758 2.221 26356 63 3600.000 0.191 60.489
PUC r 48 48 3 96 9312 6988 1511.631 1467.523 1499.526 1511.631 0.801 35299 47 3600.000 0.231 45.315
PUC r 48 48 4 96 9312 7043 1495.145 1450.212 1487.522 1487.522 0 32970 53 3600.000 0.169 35.546
PUC r 48 48 5 96 9312 801 1422.952 1420.794 1422.952 1422.952* 0 5 2 0.180 0.494 64.952
PUC r 64 64 1 128 16512 13608 2450.873 2356.620 2248.345 2425.795 7.315 12641 70 3600.000 0.130 25.815
PUC r 64 64 2 128 16512 1634 2166.769 2134.436 2166.769 2166.769* 0 4311 26 657.490 0.367 65.692
PUC r 64 64 3 128 16512 6756 2576.421 2340.008 2460.774 2467.719 0.281 26396 50 3600.000 0.312 43.087
PUC r 64 64 4 128 16512 13690 2293.612 2183.651 2167.674 2293.612 5.491 12463 66 3600.000 0.116 29.226
PUC r 64 64 5 128 16512 1197 2269.257 2258.864 2269.257 2269.257* 0 283 17 52.685 0.255 62.094

PUC r 128 128 1 256 65792 65474 7061.173 6483.476 7017.541 7061.173 0.618 896 136 3600.000 0.035 53.197
PUC r 128 128 2 256 65792 65327 7748.266 6867.976 7257.440 7748.266 6.335 1036 164 3600.000 0.050 43.097
PUC r 128 128 3 256 65792 65792 7518.650 6437.926 7442.549 7518.65 1.012 958 159 3600.000 0.046 30.388
PUC r 128 128 4 256 65792 61682 7530.240 6643.135 7411.020 7530.174 1.582 1310 139 3600.000 0.042 13.903
PUC r 128 128 5 256 65792 61820 6913.376 6660.020 6835.855 6913.376 1.121 1085 130 3600.000 0.045 29.568
PUC r 256 256 1 512 262656 262656 23517.256 19304.997 19760.603 23517.256 15.974 59 58 3600.000 0.010 12.998
PUC r 256 256 2 512 262656 262656 23286.799 19383.696 19742.804 23286.799 15.219 58 57 3600.000 0.008 31.360
PUC r 256 256 3 512 262656 262656 22874.346 18741.290 19231.867 22874.346 15.924 59 58 3600.000 0.015 29.410
PUC r 256 256 4 512 262656 262656 23442.233 19100.228 19649.885 23442.233 16.177 65 64 3600.000 0.011 8.211
PUC r 256 256 5 512 262656 262656 22863.504 19179.963 19793.053 22863.504 13.429 65 64 3600.000 0.008 13.216
PUC r 512 512 1 1024 1049600 1049600 71011.166 55306.063 55340.467 69526.195 20.403 4 3 3600.000 0.002 12.655
PUC r 512 512 2 1024 1049600 1049600 69510.146 54360.603 54543.150 65418.516 16.624 3 2 3600.000 0.002 6.630
PUC r 512 512 3 1024 1049600 1049600 69401.363 54354.107 54387.779 65652.68 17.158 3 2 3600.000 0.002 28.730
PUC r 512 512 4 1024 1049600 1049600 68040.880 53175.929 53177.495 66275.43 19.763 4 3 3600.000 0.003 12.707
PUC r 512 512 5 1024 1049600 1049600 69884.320 54478.709 54513.879 67077.516 18.73 4 3 3600.000 0.002 17.063
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5.2
2D Phase Unwrapping Instances

We will now illustrate the performance of the MSFBC approach in the

2DPU domain. We have established three metrics in order to evaluate and

compare the quality of each solution with other path-following methods: (N)

the total number of absolute phase gradients that differ from their wrapped

counterparts; (L) The total length of the branch-cuts (not applicable for

Goldstein’s algorithm) and; (C) The number of connected components of the

branch-cuts.

The instances available in [2] are widely used as benchmarks for phase

unwrapping algorithms. We will perform our tests on three of these instances:

Long’s Peak, Isola’s Peak and Head Magnetic Resonance Image (MRI). Each

one of them has special particularities and simulate real world phase unwrap-

ping applications.

The following sections will first give a brief introduction for each instance,

discuss its challenges, present the results obtained by the path-following meth-

ods described in Sections 4.1.1 and 4.1.2 and finally present the results for

the MSFBC approach. The set of the MSFBC solutions used for comparative

results refers to the best primal solutions obtained considering all proposed

methods, with a time bound of 3600 seconds. One important note is that

although the first two instances were provided with additional information

to mask out regions with bad quality pixels, our tests will only use this

information in the unwrapping process and not for redefining the position of

border points. When masks are available, border points can be considered

as the limits of the masked regions and not the boundaries of the image, as

shown in Figure 5.3.

5.3(a): 5.3(b):

Figure 5.3: The use of masks to redefine border points and remove regions
with bad quality pixels from the unwrapping procedure. (a) The branch-cut
solution obtained without masked regions. (b) The same instance with the new
boundaries established by the mask information (in gray).
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5.2.1
Long’s Peak

Figure 5.4(a) shows the wrapped phase image of a real steep-relief

mountainous region of Long’s Peak, Colorado (USA), obtained through a high-

fidelity InSAR [2] simulator. The topology of residues clearly suggests natural

phase discontinuities caused by the terrain’s elevation and the additional

occurrence of noise. There are 846 residues (422 positives and 426 negatives)

distributed over a 152x458-pixel image. The greatest challenge imposed by

this instance is to efficiently cluster the sparse group of residues. There is a

large number of regions with a high density of residues that could mislead a

less careful heuristic approach, specially concerning the occurrence of isolated

regions.

Figures 5.4(c) and 5.4(d) show that even though Goldstein’s algorithm

was able to cluster close groups of residues, the number of unnecessary long

connections and isolated regions had a direct impact in the unwrapping result.

The minimum cost matching algorithm (Figures 5.4(e) and 5.4(f)) failed to

preserve the structural delimitations suggested by the topology of residues,

thus introducing critical discontinuities to the unwrapped solution. On the

other hand, the MSFBC approach was able to efficiently cluster groups of close

residues and respect their topology. The efficiency of the method is supported

by the quality of the unwrapped result, where the number of discontinuities

introduced by the branch-cuts are greatly diminished. Table 5.9 shows the

comparative results between the three approaches. The MSFBC approach

Table 5.9: Comparative results for Long’s Peak

Method N L C
Goldstein 1437 - 49

Minimum Cost Matching (MCM) 1075 1545.38187 429
MSFBC 975 1264.31324 68

had an improvement of 32.15% over Goldstein’s algorithm and 9.30% over

the minimum cost matching algorithm in the number of discontinuity points.

Also, the total length of the branch-cuts was improved by 18% when compared

to the MCM algorithm. Figure 5.5 highlight some of the visual unwrapping

improvements obtained with the MSFBC approach when compared to the

other methods, while Figure 5.6 shows the 2π discontinuity maps produced by

each method.
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5.2.2
Isola’s Peak

Figure 5.7(a) shows the wrapped phase image of another real steep-relief

mountainous region in Colorado (USA) called Isola’s Peak, obtained through

a high-fidelity InSAR simulator. The challenge on this problem is to correctly

unwrap phase data around and between the numerous regions with natural

phase discontinuities, without propagating errors in the unwrapped surface.

There are 1234 residues (616 positives and 618 negatives) distributed over a

157x458-pixel image. Again, the objective is to efficiently cluster the sparse

group of residues and handle regions with a high density of residues.

The results showed in Figure 5.7 enlightens that although the unwrapping

results are visually quite similar, the branch-cuts configuration obtained by

the MSFBC approach is clearly more efficient (Figure 5.7(g)). The groups of

residues were clustered in a much more efficient way and the branch-cuts were

able to respect many of the structural delimitations. Table 5.10 compares the

results of the three approaches.

Table 5.10: Comparative results for Isola’s Peak

Method N L C
Goldstein 2127 - 39

Minimum Cost Matching (MCM) 1825 2545.06421 625
MSFBC 1609 1850.23338 57

The MSFBC approach had an improvement of 24.35% over Goldstein’s

algorithm and 11.83% over the minimum cost matching algorithm in the num-

ber of discontinuity points. The total length of the branch-cuts was improved

by 27.3% when compared to the MCM algorithm. Figure 5.8 highlight some

of the visual unwrapping improvements obtained with the MSFBC approach

when compared to the other methods, while Figure 5.12 shows the 2π discon-

tinuity maps produced by each method.
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5.2.3
Head Magnetic Resonance Image (MRI)

The water/fat separation problem arising from magnetic resonance imag-

ing is another application where the need for phase unwrapping arises. The

signal obtained from conventional MRI procedures captures the water and fat

intensity values from tissues, shifted by a phase value in each sample. In order

to separate the water and fat information, the continuous phase signal must be

reconstructed. Figure 5.10(a) shows a wrapped phase image of an head MRI

experiment with 1926 residues (963 positives and 963 negatives) defined on a

256x256-pixel grid. This instance is considered to pose a difficult problem to

the unwrapping procedure since various regions are delimited by residues and

appear to be completely isolated from one another.

Figure 5.10(c) shows that Goldstein’s algorithm failed to cluster groups

of close residues, creating many long connections and isolated regions. The

outcome of such poor placement of branch-cuts is illustrated in the unwrapping

result (Figure 5.10(d)). The MCM and MSFBC approaches, on the other hand,

produced very similar solutions, both in the placement of branch-cuts as in the

unwrapping result. Since there is a high density of residues mainly composed

by close dipoles, it was expected that the MCM algorithm would perform much

better than Goldstein’s. Table 5.11 summarizes the solution quality obtained

by each method.

Table 5.11: Comparative results for Head’s MRI

Method N L C
Goldstein 2570 - 153

Minimum Cost Matching (MCM) 1789 1588.7282 963
MSFBC 1810 1722.564819 57

The MSFBC approach had an improvement of 29.87% over Goldstein’s

algorithm in the number of discontinuity points and a 1.16% gap over the

minimum cost matching algorithm, which was able to produce an improvement

of 7.76% in the total length of the branch-cuts. The results showed that the

matching algorithm found a near optimal solution for the L0-norm, mainly

because of the topology of residues. There are many pairs of close dipoles spread

along the whole instance, which gives the MCM a clear advantage. However,

since the MSFBC solutions were obtained by heuristic methods, there is no

guarantee on optimality. Figure 5.11 highlight some of the local unwrapping

differences between the MSFBC approach and the minimum cost matching

algorithm, while Figure 5.12 shows the 2π discontinuity maps produced by

each method.
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5.4(a): 5.4(b):

5.4(c): 5.4(d):

5.4(e): 5.4(f):

5.4(g): 5.4(h):

Figure 5.4: Long’s Peak instance with 846 residues distributed over a 152x458-
pixel image. Comparative results between Goldstein’s, the minimum cost match-
ing algorithm and the MSFBC approach. (a) The wrapped phase image. (b) The
topology of residues. (c) Goldstein’s branch-cuts configuration. (d) Goldstein’s
unwrapped solution. (e) The minimum cost matching algorithm branch-cut con-
figuration. (f) The minimum cost matching algorithm unwrapped solution. (g)
The MSFBC branch-cut configuraion. (h) The MSFBC unwrapped solution.
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5.5(a): 5.5(b):

5.5(c): 5.5(d):

5.5(e): 5.5(f):

5.5(g): 5.5(h):

Figure 5.5: Some of the improvements obtained by the MSFBC approach over
Goldstein’s and MCM for Long’s Peak. (a) and (c) Different regions using
Goldstein’s algorithm. (b) and (d) The equivalent regions with the MSFBC
approach. (e) and (g) Different regions with the MCM algorithm. (f) and (h)
The equivalent regions with the MSFBC approach.
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5.6(a):

5.6(b):

5.6(c):

Figure 5.6: The discontinuity maps produced by each method for Long’s Peak.
(a) Goldstein’s discontinuity map. (b) The minimum cost matching algorithm’s
discontinuity map. (c) The MSFBC approach discontinuity map.
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5.7(a): 5.7(b):

5.7(c): 5.7(d):

5.7(e): 5.7(f):

5.7(g): 5.7(h):

Figure 5.7: Isola’s Peak instance with 1234 residues distributed over a 157x458-
pixel image. Comparative results between Goldstein’s, the minimum cost match-
ing algorithm and the MSFBC approach. (a) The wrapped phase image. (b) The
topology of residues. (c) Goldstein’s branch-cuts configuration. (d) Goldstein’s
unwrapped solution. (e) The minimum cost matching algorithm branch-cut con-
figuration. (f) The minimum cost matching algorithm unwrapped solution. (g)
The MSFBC branch-cut configuraion. (h) The MSFBC unwrapped solution.
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5.8(a): 5.8(b):

5.8(c): 5.8(d):

5.8(e): 5.8(f):

5.8(g): 5.8(h):

Figure 5.8: Some of the improvements obtained by the MSFBC unwrapped
solution over Goldstein’s and MCM for Isola’s Peak. (a) and (c) Different
regions using Goldstein’s algorithm. (b) and (d) The equivalent regions with
the MSFBC approach. (e) and (g) Different regions with the MCM algorithm.
(f) and (h) The equivalent regions with the MSFBC approach.
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5.9(a):

5.9(b):

5.9(c):

Figure 5.9: The discontinuity maps produced by each method for Isola’s Peak.
(a) Goldstein’s discontinuity map. (b) The minimum cost matching algorithm’s
discontinuity map. (c) The MSFBC approach discontinuity map.

DBD
PUC-Rio - Certificação Digital Nº 1312376/CA



Chapter 5. Computational Experiments 90

5.10(a): 5.10(b):

5.10(c): 5.10(d):

5.10(e): 5.10(f):

5.10(g): 5.10(h):

Figure 5.10: Head MRI instance with 1926 residues distributed over a 256x256-
pixel image. Comparative results between Goldstein’s, the minimum cost match-
ing algorithm and the MSFBC approach. (a) The wrapped phase image. (b) The
topology of residues. (c) Goldstein’s branch-cuts configuration. (d) Goldstein’s
unwrapped solution. (e) The minimum cost matching algorithm branch-cut con-
figuration. (f) The minimum cost matching algorithm unwrapped solution. (g)
The MSFBC branch-cut configuraion. (h) The MSFBC unwrapped solution.
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5.11(a): 5.11(b):

5.11(c): 5.11(d):

Figure 5.11: Some of the improvements obtained by the MSFBC unwrapped
solution over Goldstein’s and MCM for Isola’s Peak. (a) and (c) Different
regions using Goldstein’s algorithm. (b) and (d) The equivalent regions with
the MSFBC approach. (e) and (g) Different regions with the MCM algorithm.
(f) and (h) The equivalent regions with the MSFBC approach.
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5.12(a):

5.12(b):

5.12(c):

Figure 5.12: The discontinuity maps produced by each method for Head’s MRI.
(a) Goldstein’s discontinuity map. (b) The minimum cost matching algorithm’s
discontinuity map. (c) The MSFBC approach discontinuity map.
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6
Concluding Remarks

In this dissertation, we have proposed a new approach for the 2D phase

unwrapping problem, along with a new set of mathematical formulations and

methods to address the L0-norm of the problem, considered to be highly

desirable but intractable. We developed efficient methods known from the field

of optimization and operational research which were able to solve instances to

optimality with up to 128 residues in a reasonable computational time. We

also designed a hybrid metaheuristic approach which produces approximate

solutions in a reasonable computational time for larger instances.

The proposed methods constituted a better approximation for the L0-

norm of the 2DPU problem in two of the three benchmark instances tested,

when compared to other path-following state-of-the-art methods. However,

since the solutions obtained were produced by heuristic methods, there is

no guarantee on optimality. In fact, the optimal solution for the MSFBC

approach would be theoretically better than any solution found by path-

following methods whose goal is to minimize the total length of the branch-cuts.

As discussed in Chapter 3, the true minimization of the L0-norm reduces

to the problem of finding an optimal Euclidean Steiner forest, where every

Steiner tree respects the balance constraints of positives and negatives residues.

Now, remark that the same transformation as Section 4.1 can be used to model

any Steiner point as a pair of (negative/positive) residues. This would allow, in

future research, to evaluate our spanning tree approach on the exact L0-norm

objective.

6.1(a): 6.1(b):

Figure 6.1: The difference between connecting residues with a minimum span-
ning tree and a Steiner tree for a group of residues. (a) The Minimum Spanning
tree soltuion. (b) The Steiner-tree solution.
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In the previous chapters we discussed the fact that finding a branch-cut

configuration that respects the topology of residues would lead to visually

better unwrapped solutions. Figure 6.1 shows an example of the different

branch-cut configurations produced by the MSFBC approach and Steiner’s.

Clearly, the discontinuities introduced by the branch-cuts would produce

different visual unwrapped solutions. It is not clear that, in certain cases, the

insertion of Steiner points could decharacterize these structural delimitations.

This scenario raises questions about using the true minimization of the L0-

norm as an optimal unwrapped solution criterion.

For the MSFBC problem itself, future works include: (1) designing

new sets of instances tailored to test more thoroughly the limitations of

the proposed methods; (2) devise a column generation approach for the

MSFBC problem; (3) devise general improvements over the heuristic methods,

new neighbourhoods for the hybrid ILS algorithm and new dual heuristics

with different criteria for the selection of violated cuts; (4) investigate the

performance of heuristic methods for the Steiner-tree problem over MSFBC

instances; (4) devise the reduction from the Steiner forest with balance

constraints problem to the MSFBC

In the 2DPU domain, many paths of future work are possible. We

highlight: (1) investigate the performance of using Steiner heuristics to find

the optimal branch-cut configuration; (2) test the proposed heuristic methods

on new sets of phase unwrapping instances; (3) Include the information of

quality maps and masks to the MSFBC methods; (4) Devise new metrics to

better compare the solutions obtained by different methods; (5) Compare the

results with general 2DPU approaches, including Lp-norm methods.
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