

 Yenier Torres Izquierdo

Keyword Search over Federated

RDF Graphs by Exploring their

Schemas

Dissertação de Mestrado

Dissertation presented to the Programa de Pós-
graduação em Informática of PUC-Rio in partial
fulfillment of the requirements for the degree of
Mestre em Informática.

Advisor: Prof. Marco Antonio Casanova

Rio de Janeiro

March 2017

DBD
PUC-Rio - Certificação Digital Nº 1513152/CA

 Yenier Torres Izquierdo

Keyword Search over Federated RDF Graphs

by Exploring their Schemas

Dissertation presented to the Programa de Pós-graduação em

Informática of PUC-Rio in partial fulfillment of the requirements

for the degree of Mestre em Informática. Approved by the

undersigned Examination Committee.

Prof. Marco Antonio Casanova
Advisor

Departamento de Informática – PUC-Rio

Profa. Simone Diniz Junqueira Barbosa
Departamento de Informática – PUC-Rio

Prof. Bernardo Pereira Nunes
Coordenação Central de Educação a Distância – PUC-Rio

Prof. Marcio da Silveira Carvalho
Vice Dean of Graduate Studies

Centro Técnico Científico – PUC-Rio

 Rio de Janeiro, March 31th, 2017

DBD
PUC-Rio - Certificação Digital Nº 1513152/CA

All rights reserved.

Yenier Torres Izquierdo

The author graduated in Computer Science from University of Havana (UH),

Havana - Cuba in 2012. He joined the Master in Informatics at Pontifical

Catholic University of Rio de Janeiro (PUC-Rio) in 2015.

Bibliographic data

Izquierdo, Yenier Torres

 Keyword Search over Federated RDF Graphs by Exploring their

Schemas / Yenier Torres Izquierdo; advisor: Marco Antonio Casanova.

– Rio de Janeiro: PUC-Rio, Departamento de Informática, 2017.

 v., 66 f. : il. ; 29,7 cm

 1. Dissertação (mestrado) – Pontifícia Universidade Católica do

Rio de Janeiro, Departamento de Informática.

 Inclui bibliografia

 1. Informática – Teses. 2. Busca por palavras-chave. 3. Dados

conectados. 4. SPARQL. 5. RDF. 6. Consultas federadas. 7. Esquema

mediado. I. Casanova, Marco Antonio. II. Pontifícia Universidade

Católica do Rio de Janeiro. Departamento de Informática. III. Título.

CDD: 004

DBD
PUC-Rio - Certificação Digital Nº 1513152/CA

Acknowledgments

I would like to give a special thanks to my parents, Katiuska and Alberto, for their

support and encouragement during all these years of study, to my family and true

friends which contributed to the accomplishment of this challenge.

Thank you so much to Professor Marco Antonio Casanova, the best advisor I could

ever have. I am admired for his professionalism and dedication to his students.

To PUC-Rio, CNPq and FAPERJ for funding my research.

To all my classmates, professors and staff from the Department of Informatics.

Thanks to all for your help and for always being so accommodating.

Thank you so much to all of you!

DBD
PUC-Rio - Certificação Digital Nº 1513152/CA

Abstract

Izquierdo, Yenier Torres; Casanova, Marco Antonio (Advisor). Keyword

Search over Federated RDF Graphs by Exploring their Schemas. Rio de

Janeiro, 2017. 66p. Dissertação de Mestrado – Departamento de Informática,

Pontifícia Universidade Católica do Rio de Janeiro.

The Resource Description Framework (RDF) was adopted as a W3C

recommendation in 1999 and today is a standard for exchanging data in the Web.

Indeed, a large amount of data has been converted to RDF, often as multiple datasets

physically distributed over different locations. The SPARQL Protocol and RDF

Query Language (SPARQL) was officially introduced in 2008 to retrieve RDF

datasets and provide endpoints to query distributed sources. An alternative way to

access RDF datasets is to use keyword-based queries, an area that has been

extensively researched, with a recent focus on Web content. This dissertation

describes a strategy to compile keyword-based queries into federated SPARQL

queries over distributed RDF datasets, under the assumption that each RDF dataset

has a schema and that the federation has a mediated schema. The compilation

process of the federated SPARQL query is explained in detail, including how to

compute a set of external joins between the local subqueries, how to combine, with

the help of the UNION clauses, the results of local queries which have no external

joins between them, and how to construct the TARGET clause, according to the

structure of the WHERE clause. Finally, the dissertation covers experiments with

real-world data to validate the implementation.

Keywords

Keyword search; Linked Data; SPARQL; RDF; federated query; mediated

schema.

DBD
PUC-Rio - Certificação Digital Nº 1513152/CA

Resumo

Izquierdo, Yenier Torres; Casanova, Marco Antonio. Busca por Palavras-

chave sobre Grafos RDF Federados Explorando seus Esquemas. Rio de

Janeiro, 2017. 66p. Dissertação de Mestrado – Departamento de Informática,

Pontifícia Universidade Católica do Rio de Janeiro.

O Resource Description Framework (RDF) foi adotado como uma

recomendação do W3C em 1999 e hoje é um padrão para troca de dados na Web.

De fato, uma grande quantidade de dados foi convertida em RDF, muitas vezes em

vários conjuntos de dados fisicamente distribuídos ao longo de diferentes

localizações. A linguagem de consulta SPARQL (sigla do inglês de SPARQL

Protocol and RDF Query Language) foi oficialmente introduzido em 2008 para

recuperar dados RDF e fornecer endpoints para consultar fontes distribuídas. Uma

maneira alternativa de acessar conjuntos de dados RDF é usar consultas baseadas

em palavras-chave, uma área que tem sido extensivamente pesquisada, com foco

recente no conteúdo da Web. Esta dissertação descreve uma estratégia para

compilar consultas baseadas em palavras-chave em consultas SPARQL federadas

sobre conjuntos de dados RDF distribuídos, assumindo que cada conjunto de dados

RDF tem um esquema e que a federação tem um esquema mediado. O processo de

compilação da consulta SPARQL federada é explicado em detalhe, incluindo como

computar o conjunto de joins externos entre as subconsultas locais geradas, como

combinar, com a ajuda de cláusulas UNION, os resultados de consultas locais que

não têm joins entre elas, e como construir a cláusula TARGET, de acordo com a

composição da cláusula WHERE. Finalmente, a dissertação cobre experimentos

com dados do mundo real para validar a implementação.

Palavras-chave

Busca por palavras-chave; dados conectados; SPARQL; RDF; consultas

federadas; esquema mediado.

DBD
PUC-Rio - Certificação Digital Nº 1513152/CA

Table of contents

1. Introduction __ 11

1.1. Motivation ___ 11

1.2. Goal and Contributions _________________________________ 12

1.3. Dissertation Structure __________________________________ 12

2. Background __ 13

2.1. Resource Description Framework (RDF) ___________________ 13

2.2. SPARQL 1.1 Query Language ___________________________ 14

2.3. SPARQL 1.1 Federated Query Extension ___________________ 15

2.4. Keyword-based Queries over Centralized RDF Graphs ________ 17

2.5. Keyword-based Queries over Federated RDF Graphs _________ 18

3. Related Work __ 20

3.1. Keyword Search over RDF Graphs in Centralized

Environments ___ 20

3.2. Federated Queries over SPARQL Endpoints ________________ 22

4. Compiling Keyword-based Queries into Federated SPARQL

Queries __ 25

4.1. Architecture ___ 25

4.2. Components Description _______________________________ 27

4.2.1. Storage Component __________________________________ 27

4.2.2. Mediated Schema Component __________________________ 27

4.2.3. Mediator Component __________________________________ 29

4.3. Constructing the Federated SPARQL Query ________________ 30

4.3.1. Overview of the Federated Translation Algorithm ____________ 30

4.3.2. Computing the Set of Local Queries ______________________ 31

4.3.3. Computing the External Joins of the Federated Query ________ 32

4.3.4. Computing the UNIONs ________________________________ 35

4.3.5. Defining the WHERE clause of the Federated SPARQL

Query 37

DBD
PUC-Rio - Certificação Digital Nº 1513152/CA

4.3.6. Defining the TARGET clause of the Federated SPARQL

Query 37

5. Experiments ___ 40

5.1. Data Configuration ____________________________________ 40

5.1.1. DBpedia RDF Dataset Setup ____________________________ 40

5.1.2. DrugBank RDF Data Setup _____________________________ 43

5.1.3. Kegg Drug RDF Data Setup ____________________________ 44

5.1.4. Common Settings ____________________________________ 45

5.1.5. Mediated Schema Composition and Setting ________________ 46

5.2. Experiments with Selected Data _________________________ 47

5.2.1. Translated Queries over a Single SPARQL Endpoint _________ 47

5.2.2. Translated Queries with only external joins in the WHERE

clause 48

5.2.3. Translated Queries with only UNIONs in the WHERE clause ___ 50

5.2.4. Translated Queries with All Elements in the WHERE clause ____ 51

5.3. Discussion of the Results ______________________________ 54

6. Conclusions ___ 56

7. Bibliography ___ 58

Appendix __ 60

DBD
PUC-Rio - Certificação Digital Nº 1513152/CA

List of figures

Figure 1. Schema and relationship between DBpedia, DrugBank

and Kegg Dataset ___ 19

Figure 2. Building a SPARQL CONSTRUCT query in Konduit ________ 20

Figure 3. QUICK User Interface ______________________________ 21

Figure 4. Federation over SPARQL Endpoints ____________________ 23

Figure 5. Architecture of Federated Keyword Search System ________ 25

Figure 6. Sequence Diagram of Federated Keyword Search

Process 26

Figure 7. Outline of the Federated Translation Algorithm __________ 30

Figure 8. Outline of the Centralized Translation Algorithm ________ 31

Figure 9. RDF Schema of DrugBank ___________________________ 43

Figure 10. Main categories for Kegg databases __________________ 44

Figure 11. RDF Schema of Kegg Drug _________________________ 45

Figure 12. Mediated Schema of DBpedia, DrugBank and Kegg

Drug 46

DBD
PUC-Rio - Certificação Digital Nº 1513152/CA

List of tables

Table 1. The Existing Frameworks Support SPARQL 1.1 Federation

Extension __ 22

Table 2. Definition and sample fragment of SameAsTable __________ 28

Table 3. Definition and sample fragment of ExternalObjectProperty

Table 28

Table 4. Definition and sample fragment of MapElementTable _______ 29

Table 5. Schema of classes in DBpedia data source ______________ 41

Table 6. Statistics of DrugBank Classes ________________________ 44

Table 7. Statistics of DrugBank RDF Data ______________________ 44

Table 8. Statistics of Kegg Classes ____________________________ 45

Table 9. Statistics of Kegg RDF Data __________________________ 45

Table 10. SameAsTable populated with the sameAs definition in the

selected data sources ______________________________________ 46

Table 11. ExternalObjectPropertyTable populated with the external

joins in the selected data sources _____________________________ 46

Table 12. MapElementTable populated with the elements maps of

the Mediated Schema ______________________________________ 47

Table 13. Runtime to process sample keyword-based queries _______ 55

DBD
PUC-Rio - Certificação Digital Nº 1513152/CA

11

1
Introduction

1.1 Motivation

The Resource Description Framework (RDF) was adopted as a W3C

recommendation in 1999 and today is a standard for exchanging data in the Web.

At present, a huge amount of data has been converted to RDF (RAKHMAWATI,

et al., 2013b) and is rapidly increasing due to numerous organizations that are

opening up their databases on the Web, following the Linked Data principles

(BIZER, HEATH and BERNERS-LEE, 2008), often as multiple datasets physically

distributed over different locations. The SPARQL Protocol and RDF Query

Language (SPARQL) was officially introduced in 2008 to retrieve RDF and provide

endpoints to query distributed sources.

Approaches to querying distributed RDF data with SPARQL-like queries

typically exploit optimizations based on structural information (i.e. graph

partitioning) (HUANG, ABADI and REN, 2011; QUILITZ, BASTIAN and

LESER, 2008; ZENG, KAI, et al., 2013). Furthermore, according to

(RAKHMAWATI, et al., 2013b), the existing tools and systems designed to address

federated queries focus mostly on source selection and join optimization during

federated SPARQL query execution.

An alternative way to access RDF sources is to use keyword-based queries,

an area that has been extensively researched, with a recent focus on Web content.

Indeed, keyword search is attracting the attention of Semantic Web practitioners,

who want to support users in accessing Linked (Open) Data. In general, these users:

(i) are unaware of the way in which data is organized;

(ii) do not know how to interpret a Web ontology (if present); and

(iii) do not know the syntax of a specific query language (e.g., SPARQL).

 Most approaches to address keyword-based queries assume that the RDF

triples are stored in a centralized repository (ZHOU, et al., 2007; MÖLLER,

DRAGAN and AMBRUS, 2008; HUANG, ABADI and REN, 2011;

DBD
PUC-Rio - Certificação Digital Nº 1513152/CA

12

ELBASSUONI and BLANCO, 2011; ZENZ, et al., 2009; GARCÍA, et al., 2017).

By contrast, the main motivation of this work is to address the problem of

processing keyword-based queries over distributed RDF datasets.

1.2 Goal and Contributions

In more details, the goal of this dissertation is to develop a strategy to compile

keyword-based queries into federated SPARQL queries over RDF triples stored in

distributed databases, without user intervention, under the assumption that each

dataset has an RDF schema and that the federation has a mediated schema.

The main contribution of this dissertation is to extend to federated

environments the centralized algorithm to compile keyword-based queries to

SPARQL queries implemented in (GARCÍA, et al., 2017). In particular, this

dissertation introduces:

 A model for keyword-based search over RDF graphs stored in distributed

databases.

 A strategy to generate partial SPARQL queries against individual, centralized RDF

graphs, which takes into account only the elements in their schema, without user

intervention.

 A strategy to generate a federated SPARQL query from the partial queries.

1.3 Dissertation Structure

This dissertation is structured as follows. Chapter 2 provides an overview of the

main concepts related to this dissertation. Chapter 3 summarizes related work.

Chapter 4 presents an algorithm and its implementation to compile keyword-based

queries into federated SPARQL queries. Chapter 5 covers experiments with the

implementation. Finally, Chapter 6 presents the conclusions and proposes future

work.

DBD
PUC-Rio - Certificação Digital Nº 1513152/CA

13

2
Background

This chapter provides an overview of the main concepts related to this dissertation.

Section 2.1 introduces key definitions about RDF. Section 2.2 covers the latest

version of the SPARQL Query Language. Section 2.3 summarizes SPARQL 1.1

Federated Query, the extension of SPARQL 1.1 to support queries that merge data

distributed across the Web. Section 2.4 summarizes the concepts related to

keyword-based queries for centralized RDF graphs. Finally, Section 2.5 defines the

basic concepts of federated keyword-based queries and answers.

2.1 Resource Description Framework (RDF)

RDF is a framework for representing information about resources in the Web

(CYGANIAK, WOOD and LATHANER, 2014). A global identifier that denotes a

resource is named Internationalized Resource Identifier (IRI). A literal is a basic

value, such a string, a number, or a date. Any IRI or literal denotes something in

the world (the "universe of discourse"). The resource denoted by an IRI is called its

referent, and the resource denoted by a literal is called its literal value. A blank

node acts as a local identifier; a blank node can always be replaced by a new,

globally unique IRI (a Skolem IRI). An RDF term is either an IRI, a blank node or

a literal. The sets of IRIs, blank nodes and literals are disjoint and, unlike IRIs and

literals, blank nodes do not identify specific resources.

RDF models data as triples of the form (s, p, o), where s is the subject, p is

the predicate and o is the object of the triple. An RDF triple (s, p, o) says that some

relationship, indicated by p, holds between the subject s and object o. The subject

of a triple is an IRI or a blank node, the predicate is an IRI, and the object is an IRI,

a literal or a blank node. A triple is also seen as an edge in a directed, labeled graph

where a directed edge (labeled predicate) connects the subject node to the object

node.

DBD
PUC-Rio - Certificação Digital Nº 1513152/CA

14

A set T of RDF triples, or an RDF dataset, is equivalent to a labeled graph

GT, such that the set of nodes of G is the set of RDF terms that occur as subject or

object of the triples in T and there is an edge (s, o) in G labeled with p iff the triple

(s,p,o) occurs in T. Therefore, we will use the concepts of set of RDF triples and

RDF graph interchangeably. Note that a predicate IRI can also occur as a node in

the same graph.

RDF offers enormous flexibility but, apart from the rdf:type property,

which has a predefined semantics, it provides no means for defining application-

specific classes and properties. Instead, such classes and properties, and hierarchies

thereof, are described using extensions to RDF provided by the RDF Schema 1.1

(RDF Schema or RDF-S) (BRICKLEY and GUHA, 2014). In RDF-S, a class is any

resource having an rdf:type property whose value is the qualified name

rdfs:Class of the RDF Schema vocabulary. A property is any instance of the

class rdfs:Property. The rdfs:domain property is used to indicate that a

particular property applies to a designated class, and the rdfs:range property is

used to indicate that the values of a particular property are instances of a designated

class or, alternatively, are instances (i.e., literals) of an XML Schema datatype.

Finally, RDF-S offers a property, rdfs:comment, used to associate a comment

with an IRI, and a property, rdfs:label, used to assign a different name to a

resource.

For example, the following set of triples describes the class Drug in DBpedia

and specifies one of its instances.

(http://dbpedia.org/ontology/Drug,

 http://www.w3.org/1999/02/22-rdf-syntax-ns#type,

 http://www.w3.org/2002/07/owl#Class)

(http://dbpedia.org/ontology/Drug,

 http://www.w3.org/2000/01/rdf-schema#label,

 "drug")

(http://dbpedia.org/Drug/Amoxicillin,

 http://www.w3.org/1999/02/22-rdf-syntax-ns#type,

 http://dbpedia.org/ontology/Drug)

2.2 SPARQL 1.1 Query Language

SPARQL 1.1 is designed to tackle limitations of SPARQL 1.0, including update

operations, aggregations, and federated query support. SPARQL is a query

DBD
PUC-Rio - Certificação Digital Nº 1513152/CA

15

language specifically designed to access sets of RDF triples (HARRIS and

SEABORNE, 2013). SPARQL offers two types of queries. A SELECT query

returns tabular data, whereas a CONSTRUCT query returns an RDF graph. The

body of a SPARQL query is a graph pattern composed of triple patterns, defined

like RDF triples, except that the subject, predicate or object can be a variable. The

evaluation of a SPARQL query binds values to the variables using a solution

mapping. The application of a solution mapping to a graph pattern b uniformly

replaces each variable in b by the RDF term.

A simple example of a SELECT SPARQL query is shown below, in which

the result is the set of all triples related to people who live in the cities of “Boston”

or “New York”, with their email address, if available.

PREFIX ex: <http://example.com/exampleOntology#>

SELECT ?name ?city ?email

WHERE {

 ?name rdf:type ex:Person .

 ?name ex:live ?city .

 ?city rdf:type ex:City .

 OPTIONAL{ ?name ex:email ?email }.

 FILTER(?city IN ("Boston", "New York"))

 }

The SELECT clause identifies the variables that will appear in the result (in

this case, ?name ?city ?email). The WHERE clause contains the graph pattern

that is matched with a RDF graph. The pattern in this example is a set of triples that

join the class ex:Person to the class ex:City through the property ex:live,

filtered by the specified cities names, and optionally returning the ex:email

property value.

2.3 SPARQL 1.1 Federated Query Extension

SPARQL can be used to express queries across multiple data sources, whether the

data is natively stored as RDF or viewed as RDF via middleware. This section

summarizes the syntax and semantics of the SPARQL 1.1 Federated Query

extension for executing queries distributed over different SPARQL endpoints. This

extension allows for combining graph patterns that can be evaluated over several

endpoints within a single query. Results are returned to the federated query

processor and are combined with results from the rest of the query. The SERVICE

DBD
PUC-Rio - Certificação Digital Nº 1513152/CA

16

keyword instructs a federated query processor to invoke a portion of a SPARQL

query against a remote SPARQL endpoint (PRUD'HOMMEAUX and BUIL-

ARANDA, 2013; BUIL-ARANDA, et al., 2013).

The following example shows how to query a remote SPARQL endpoint and

join the returned data with the data stored into local RDF dataset. Consider a query

to find the names of the people that we know and data about the names of various

people available at the http://people.example.org/sparql endpoint:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?name

FROM <http://example.org/myfoaf.rdf>

WHERE{

 <http://example.org/myfoaf/I> foaf:knows ?person .

 SERVICE <http://people.example.org/sparql>

 { ?person foaf:name ?name }

}

The execution of a SERVICE pattern may fail due to several reasons: the

remote service may be down, the service IRI may not be available to be accessed,

or the endpoint may return an error to the query. Normally, under such

circumstances the invoked query containing a SERVICE pattern fails as a whole.

Queries may explicitly allow failed SERVICE requests with the use of the SILENT

keyword. The SILENT keyword indicates that errors encountered while accessing

a remote SPARQL endpoint should be ignored while processing the query. The

failed SERVICE clause is treated as if it had a result of a single solution with no

bindings.

In this case, the above query will be as follows:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?name

FROM <http://example.org/myfoaf.rdf>

WHERE{

 <http://example.org/myfoaf/I> foaf:knows ?person .

 SERVICE SILENT <http://people.example.org/sparql>

 { ?person foaf:name ?name }

}

Besides SERVICE, SPARQL 1.1 also introduces VALUES as one SPARQL

Federation extension. It can reduce the intermediate results during query execution

by giving constraints from the previous query to the next query.

DBD
PUC-Rio - Certificação Digital Nº 1513152/CA

17

2.4 Keyword-based Queries over Centralized RDF Graphs

In this section, we summarize the concepts related to keyword-based queries for

centralized RDF graphs introduced in (GARCÍA, et al., 2017).

Let T be an RDF dataset and GT be the corresponding RDF graph. We assume

that T follows an RDF schema S, with S T.

A keyword-based query K is simply a set of literals, or keywords.

Let L be the set of all literals. Let match: LL [0,1] be a similarity function

between literals such that match(s,t)=j indicates how similar s and t are: j=1 says

that s and t are identical, and j=0 indicates that s and t are completely dissimilar.

We also introduce a similarity threshold (0,1]. We leave match and

unspecified at this point.

The set MM[K,T] of metadata matches between K and the metadata

descriptions of the classes and properties in S (recall that S T) is defined as:

MM[K,T] = { (k,(r,p,v))KS / (r,p,v)S match(k,v) }

The set VM[K,T] of property value matches between K and property values of T is

defined as (recall that S T):

VM[K,T] = { (k,(r,p,v))KT / (r,p,v)S match(k,v) }

The set of matches between K and T is then defined as:

M[K,T] = MM[K,S] VM[K,T]

An answer for K over T is a subset A of T such that:

(1) There is a subset of K, denoted K/A, such that, for each kK/A:

a. There are (s,rdf:type,cn), (cn,rdfs:subClassOf,cn-1),..., (c1,rdfs:subClassOf,c0) and

(c0,p0,v0) in A such that (k,(c0,p0,v0))MM[K,T]; or

b. There are (s,qn,vn), (qn,rdfs:subPropertyOf,qn-1),..., (q1,rdfs:subPropertyOf,q0) and

(q0,p0,v0) in A such that (k,(q0,p0,v0))MM[K,T]; or

c. There is (r,p,v)A such that (k,(r,p,v))VM[K,T].

(2) There is no other answer B for K over T such that K/A K/B.

We say that K/A is the set of keywords matched by A.

Condition (1a) says that a keyword k has a class metadata match for a class

c0 and the answer A must contains an instance of c0 or one of its sub-classes cn, in

which case A must include all triples indicating that cn is a sub-class of c0. Likewise,

Condition (1b) says that a keyword k has a property metadata match for a property

DBD
PUC-Rio - Certificação Digital Nº 1513152/CA

18

q0 and the answer A must contains an instance of q0 or one of its sub-properties qn,

in which case A must include all triples indicating that qn is a sub-property of q0.

Condition (1c) simply says that k matches the literal of a triple (r,p,v) in A. Also,

Condition (1) does not require that all keywords in K be matched in an answer.

Indeed, we say that A is total iff K/A = K, and partial otherwise. Condition (2)

requires that an answer must match as many keywords in K as possible.

The definition of an answer is quite liberal. In particular, it allows an answer

A to be a set of disconnected triples. To circumvent this problem, (GARCÍA, et al.,

2017) defines a partial order between answers as follows. Given a directed graph

G, let |G| denote the number of nodes and edges of G and #c(G) denote the number

of connected components of G, when the direction of the edges of G is disregarded.

A partial order “<” for graphs is defined such that, given two graphs G and G’,

G < G’ iff (#c(G) + |G|) < (#c(G’) + |G’|) or

 (#c(G) + |G|) = (#c(G’) + |G’|) and #c(G) < #c(G’)

In (GARCÍA, et al., 2017) is used the partial order “<” between graphs to

compare answers. We say that an answer A is smaller than an answer B iff GA < GB,

where GA and GB are the RDF graphs of A and B (which may include metadata,

since the RDF schema is part of the dataset). An answer A for K over T is minimal

iff there is no other answer B for K over T such that GA < GB.

2.5 Keyword-based Queries over Federated RDF Graphs

Let R be the set of all IRIs and L be the set of all literals. Let T = {T1, T2, …, Tn} be

a set of distributed RDF datasets, where Ti is identified by a SPARQL endpoint si,

for i=1,…,n. Let GTi be the RDF graph corresponding to Ti, and assume that Ti

follows an RDF schema Si, with Si Ti. Let S be a set of inter-dataset RDF triples

of the form (si, p, oj) where si is an IRI occurring in a dataset Ti and oj is an IRI

occurring in Tj, where i, j [1,n] and i j. The global graph corresponding to T

and S is defined as the RDF graph corresponding to the set of triples

T1 T2 … Tn S.

A keyword-based query K is defined as for the centralized case as a set of

literals, or keywords.

DBD
PUC-Rio - Certificação Digital Nº 1513152/CA

19

We define a federated answer for K over T S as a minimal answer for K

over T S, where the notion of minimal answer was defined in the previous section.

The problem of finding answers for keyword-based queries over sets of

federated RDF graphs (or, briefly, the RDF-FKwS problem) is defined as: “Given

a set T of federated RDF graphs and a keyword-based query K, find an answer for

K over T”. A stricter form is the problem of finding minimal answers for keyword-

based queries over a set of federated RDF graphs (or, briefly, the minRDF-FKwS

problem), defined as: “Given a set T of federated RDF graphs and a keyword-based

query K, find a minimal answer for K over T”.

For example, if we search data about a drug, we can collect data from

DrugBank1, DBpedia2 and Kegg3 SPARQL endpoints. Figure 1 shows each schema

and the relation between these datasets. We obtain information about a drug and its

indicated use from DrugBank and DBpedia by using owl:sameAs. In this example,

Kegg stores the chemical composition and other information about drugs in the

Compound class. DrugBank and Kegg are connected by the object property

keggCompoundId that links the classes drug and Compound.

Figure 1. Schema and relationship between DBpedia, DrugBank and Kegg Dataset

(RAKHMAWATI, et al., 2013b)

Let K = {drug, fever, acetamide, ethanamide} be a keyword-based query and

let T be the set of data sources shown in Figure 1. The feasible matches are: ‘drug’

matches with the class name of the DBpedia class Drug. The keyword ‘fever’

matches with a value of the DrugBank drug:indication property; and ‘acetamine’

and ‘ethanamide’ match with label of instances of the class Compound in Kegg

dataset. An expected response to this query would then be Paracetamol4.

1 http://www4.wiwiss.fu-berlin.de/drugbank/sparql
2 http://dbpedia.org/sparql

3 http://kegg.bio2rdf.org/sparql
4 https://en.wikipedia.org/wiki/Paracetamol

DBD
PUC-Rio - Certificação Digital Nº 1513152/CA

20

3
Related Work

Many approaches have been developed to help solve the keyword search problem

over RDF graphs. The main challenge has been to synthesize SPARQL queries

from a set of keywords because users are generally unaware of the query language

and the RDF graph schema to be queried. This chapter provides an overview of

different approaches, which use SPARQL queries to access Linked (Open) Data, in

both centralized and distributed environments.

The set of works analyzed were selected based on their relevance for the

discussion. Each analyzed work contains a description of the main characteristics

of the approach, the elements that contribute to the development of current work

and drawbacks of obtained results linked to the goal of our work.

3.1 Keyword Search over RDF Graphs in Centralized Environments

A first version of an extension to the Konduit tool (DRAGAN, et al., 2009), that

provides non-expert users with a way to visually specify SPARQL queries, is

presented in (MÖLLER, DRAGAN and AMBRUS, 2008). Users avoid having to

write the SPARQL query, which can be tedious and error prone. Additionally, data

types for literals from a selection box can also be specified.

Figure 2. Building a SPARQL CONSTRUCT query in Konduit

(MÖLLER, DRAGAN and AMBRUS, 2008)

DBD
PUC-Rio - Certificação Digital Nº 1513152/CA

21

However, this tool has the disadvantage that the user has to have a basic

knowledge of the SPARQL query language and it is only possible to create

SPARQL CONSTRUCT queries.

The QUICK (QUery Intent Constructor for Keywords) tool, described in

(ZENZ, et al., 2009), is a system for helping users construct semantic queries in a

given domain. QUICK combines the convenience of keyword search with the

expressivity of semantic queries. Users start with a keyword query and then are

guided through a process of incremental refinement steps to specify the query

intention. The intermediate queries are listed and ranked.

Figure 3 shows the user interface of QUICK, which consists of three parts: a

search field (at the top), the construction pane showing the query construction

options (on the left), and the query pane showing semantic queries (on the right).

QUICK computes all possible semantic queries, presents the selected ones in the

query pane, generates a set of query construction options, and presents them in the

construction pane. The generated construction options ensure that the space of

semantic interpretations is rapidly reduced with each selection. When the user

selects the desired query, QUICK executes it and shows the results. This approach

still has the drawback that the user must have knowledge of the concept of RDF

schema.

Figure 3. QUICK User Interface

 (ZENZ, et al., 2009)

However, unlike (ZENZ, et al., 2009), in (GARCÍA, et al., 2017) the

translation of a set of keywords to a SPARQL query is fully automatic, although in

both tools to synthesize SPARQL queries, the RDF schema is explored. This last

approach features an algorithm to translate a keyword query into a SPARQL query

DBD
PUC-Rio - Certificação Digital Nº 1513152/CA

22

such that each result of the SPARQL query is an answer to the keyword query. Also

the implemented tool in this approach allows the user to specify a keyword-based

query which includes filters, which involve only comparison operators, expressed

in symbolic form, such as “<, >, =”, or using reserved words, such as “between”.

The syntax of the keywords and filters was specified by a grammar defined in

ANTLR4 (ANother Tool for Language Recognition) (PARR, 2013).

Our work consists of the extension of the centralized algorithm presented in

(GARCÍA, et al., 2017) for a distributed scenario.

3.2 Federated Queries over SPARQL Endpoints

Several frameworks, such as ARQ, Sesame and Virtuoso, have been built on top of

SPARQL query engines supporting SPARQL 1.1; but this field is still far from

maturity. In (RAKHMAWATI, et al., 2013a), a comparison of existing SPARQL

federation frameworks is given. Table 1 shows only the existing frameworks to

support SPARQL 1.1 Federation Extension. As we can see, all frameworks support

the SERVICE keyword, but not all of them support BIDING and VALUES operators.

Framework Platform SERVICE BINDINGS VALUES

ARQ Jena

SPARQL-FED Virtuoso

Sesame Sesame

SPARQL-DQP
OGSA-DAI

OGSA-DQP

Table 1 - The Existing Frameworks Support SPARQL 1.1 Federation Extension

For instance, ARQ 5 is a query engine processor for Jena that supports

federated query, providing SERVICE and VALUES operators. The framework

implements nested loop joins to retrieve and combine result from multiple SPARQL

endpoints. Also, it provides a set of Java packages6 to build SPARQL query

programmatically.

5 http://jena.apache.org/documentation/query/index.html
6 http://jena.apache.org/documentation/javadoc/arq/

DBD
PUC-Rio - Certificação Digital Nº 1513152/CA

23

Based on the data source location, the infrastructure for querying Linked Data

can be divided into two categories: central repositories and distributed repositories.

According to (RAKHMAWATI, et al., 2013b), systems belonging to the distributed

category can be grouped into two types: Link Traversal and Federation.

Federation systems use a query mediator to transform a user query into

several sub queries and generates results from the integrated data sources. As the

data sources need not be collected in a single repository, the data tend to be more

up-to-date than in a central repository, but query processing time takes longer.

There are two kinds of federation frameworks: federation over single repositories

and federation over SPARQL Endpoints (Figure 4).

Figure 4. Federation over SPARQL Endpoints

 (RAKHMAWATI, et al., 2013b)

An example of such tool is FedSearch, a system to access distributed linked

data (NIKOLOV, SCHWARTE and HÜTTER, 2013). This system implements a

hybrid query engine based on the SPARQL federation framework FedX

(SCHWARTE, et al., 2011). This approach proposes an extension to the SPARQL

query algebra that allows representing hybrid SPARQL queries in a triple-store-

independent way and suggests query optimization techniques to match keyword

search clauses to appropriate repositories, combining the retrieved results

seamlessly, and reducing the processing time.

ANAPSID: AN Adaptive query ProcesSing engIne for sparql enDpoints

(ACOSTA, et al., October, 2011) is an adaptive query processing engine for RDF

Linked Data accessible through SPARQL endpoint, which provides a set of

physical operators and an execution engine able to adapt the query execution to the

availability of the endpoints and to hide delays from users. ANAPSID is a system

that accepts SPARQL query federation in SPARQL 1.0 format, but it was built on

top of SPARQL query engine that supports SPARQL 1.1.

DBD
PUC-Rio - Certificação Digital Nº 1513152/CA

24

The tools described above, and already mentioned in the introduction, do not

focus on compiling federated SPARQL queries from keywords, but on query

optimization. The work reported in this dissertation extends the centralized algorithm

developed in (GARCÍA, et al., 2017) to compile federated SPARQL queries from

keyword-based queries. Our approach is developed following the architecture for a

federation of SPARQL Endpoints described in (RAKHMAWATI, et al., 2013b).

The Java packages that ARQ provides is used in the implementation to synthesize

the SPARQL queries.

DBD
PUC-Rio - Certificação Digital Nº 1513152/CA

25

4
Compiling Keyword-based Queries into Federated SPARQL
Queries

This chapter describes an algorithm and its implementation to compile keyword-

based queries into federated SPARQL queries. Section 4.1 presents the system

architecture. Section 4.2 explains the components present in the solution. Finally,

section 4.3 details the construction process of the federated SPARQL query.

4.1 Architecture

Figure 5 depicts the architecture of the system that we propose in this dissertation,

whose main elements are: (1) a Web interface that allows the user to perform

keyword search; (2) a component called Mediator; (3) a component that stores data

and metadata of the RDF graphs accessible via SPARQL endpoints; (4) a

component that saves the sameAs definition, the external object properties and the

mapping of the elements of different data sources to elements of the mediated

schema; and (5) a set of available SPARQL Endpoints.

Figure 5. Architecture of Federated Keyword Search System

DBD
PUC-Rio - Certificação Digital Nº 1513152/CA

26

The Mediator is called when a keyword-based query is submitted, and the

federated algorithm described in section 4.3.1 is executed. In general, the process

is divided into three main phases:

1. The Mediator gets the set of keywords specified by user and the centralized

algorithm is executed, for each endpoint, to compute a local subquery. In this

process, the Storage Component is queried to find the data and metadata

matches between the keywords.

2. The Mediator uses the Mediated Schema Component to find the external

joins between the computed subqueries. If necessary, UNION clauses are

created to combine the result of queries that are not linked by the joins found.

Then, the federated SPARQL query is synthesized.

3. Finally, the federated SPARQL query is executed and the response returned to

the user.

Figure 6 shows the sequence diagram of the construction process of the

federated SPARQL query.

Figure 6. Sequence Diagram of Federated Keyword Search Process

DBD
PUC-Rio - Certificação Digital Nº 1513152/CA

27

4.2 Components Description

4.2.1. Storage Component

The Storage Component is responsible for recording the metadata schema of each

RDF graphs and the indexed property values.

This component owns the following tables:

 EndpointTable: stores the URL of each SPARQL Endpoint (data source)

and a flag to indicate if it is available.

and, for each SPARQL endpoint:

 ClassTable: saves all classes and their metadata (label and description).

 PropertyTable: stores all properties with their metadata (domain, label,

description, range, etc.).

 ValueTable: stores the distinct searchable (indexed) property values with

information about their property and class domain.

 JoinTable: saves the object properties of the RDF graph.

 GroupTable: lists all properties that will be shown to the user, organized

into groups.

4.2.2. Mediated Schema Component

This component is responsible for saving the link definitions between two

endpoints, which can be either external object properties or sameAs definitions, and

the mappings between the local schema elements to elements of the mediated

schema.

The Mediated Schema Component has three tables:

 SameAsTable: stores the properties in different sources that represent the

sameAs definitions between two classes.

 ExternalObjectPropertyTable: saves the object properties that link two

classes in different endpoints.

 MapElementTable: records a mapping of elements (classes and

properties) of different data sources to homogeneous elements of the

mediated schema that can be combined in UNION clauses.

DBD
PUC-Rio - Certificação Digital Nº 1513152/CA

28

The sameAs definitions in SameAsTable and the object properties in

ExternalObjectPropertyTable describe which are the possible inter-dataset RDF

triples introduced in Section 2.5. We consider that the strategies to maintain and

update the auxiliary tables in the Storage and the Mediated Schema Components

are outside the scope of this work. Furthermore, in our approach, the presence of

materialized owl:sameAs properties will not be taken into account. That is, the

sameAs links will be computed on the fly from the information stored in

SameAsTable.

We say that there is an external join between classes ci and cj iff

1) There is a tuple of the form (ei, ci, (pi1, …, pin), ej, cj, (pj1, …, pjn)) in the

SameAsTable table (see Table 2), in which case we say that ci is the source

class and cj is the destination class of the external join; or

2) There is a tuple of the form (ei, ci, pm, ej, cj) in the

ExternalObjectPropertyTable table (see Table 3), in which case we say that

ci is the source class, cj is the destination class, and pm is the joining property

or the external join.

SameAsTable

Endpoint

Source

Class

Source

Properties

Source

Endpoint

Destination

Class

Destination

Properties

Destination

. . .

ei ci pi1, …, pin ej cj pj1, …, pjn

. . .

Table 2 - Definition and sample fragment of SameAsTable

ExternalObjectPropertyTable

Endpoint

Domain

Class

Domain

Object

Property

Endpoint

Range

Class

Range

. . .

ei ci pm ej cj

. . .

Table 3 - Definition and sample fragment of ExternalObjectPropertyTable

DBD
PUC-Rio - Certificação Digital Nº 1513152/CA

29

We also say that:

1) Two classes ci and cj, respectively declared in the schemas of the datasets

associated with endpoints ei and ej, are associated to (or mapped to) a

class X of the mediated schema iff there are two tuples of the form (X, ci,

NULL, ei) and (X, cj, NULL, ej) in the MapElementTable table (Table 4).

2) Two properties pi and pj, respectively declared with domains ci and cj in

the schemas of the datasets associated with endpoints ei and ej, are

associated to (or mapped to) a property Y of the mediated schema iff there

are two tuples of the form (Y, ci, pi, ei) and (Y, cj, pj, ej) in the

MapElementTable table (Table 4).

MapElementTable

Mediated Schema

Element

Local Schema

Class

Local Schema

Property
Source

. . .

X ci NULL ei

X cj NULL ej

Y ci pi ei

Y cj pj ej

. . .

Table 4 - Definition and sample fragment of MapElementTable

4.2.3. Mediator Component

The Mediator is the core component of our strategy. It runs the algorithm that

compiles keyword-based queries into federated SPARQL queries. It receives and

processes a set of keywords, submitted by the user, and connects with the databases

where the Storage Component and the Mediated Schema Component are

located. Finally, it returns to the user the response of the execution of the generated

query.

DBD
PUC-Rio - Certificação Digital Nº 1513152/CA

30

4.3 Constructing the Federated SPARQL Query

4.3.1. Overview of the Federated Translation Algorithm

Figure 7 shows a high-level description of the Federated Translation Algorithm.

It receives as input a keyword-based query K and a set of RDF datasets

T = {T1, T2, …, Tn} and returns an answer of K.

FEDERATED TRANSLATION ALGORITHM

Input: A keyword-based query K

 A set of RDF datasets T = {T1, T2 ,…, Tn}

Output: A SPARQL query Q over T

STAGE 1 Compute the set of local SPARQL queries:

 For each endpoint ei:

 1.1. Run the Centralized Translation Algorithm.

 1.2. Return the local SPARQL query Qi or NULL.

STAGE 2 Synthesize the federated SPARQL query Q:

 2.1. Discover the external joins which are candidates to link the local queries.

 2.2. Create a federated graph GF and compute a maximum spanning forest TF of GF,

to select the external joins that will be present in the federated query.

 2.3. Insert the triple patterns corresponding to the selected external joins into the

respective queries.

 2.4. If TF is not connected, then check if it is possible to compute UNION clauses.

 2.5. Synthesize and return Q.

STAGE 3 Execute the federated query:

 3.1. Execute Q.

 3.2. Returns the result to the user.

Figure 7. Outline of the Federated Translation Algorithm

Stage 1 runs the Centralized Translation Algorithm, for each dataset Ti.

The result may be a local query, Qi, if dataset Ti contributes to answering K, or

NULL, otherwise. Section 4.3.2 explains the process to compute the local queries.

Stage 2 synthesizes a federated SPARQL query Q from the local queries, and

is the central contribution of this dissertation. Section 4.3.3 details the steps 2.1, 2.2

and 2.3, and section 4.3.4 covers Step 2.4. Step 2.1 finds the set of external joins

that are candidates to link the set of local queries. Step 2.2 first creates the federated

multigraph GF = <VF, EF, WF> corresponding to the local queries and the candidate

external joins, and then computes a maximum directed spanning forest TF of GF,

considering the weight of the arcs in WF. Step 2.3 inserts into the local queries the

triple patterns associated to the external links corresponding to the arcs present in

TF. If TF is not connected, then Step 2.4 tries to combine the subqueries represented

DBD
PUC-Rio - Certificação Digital Nº 1513152/CA

31

by the connected components of TF through UNION clauses, as explained in section

4.3.4. Step 2.5 synthesizes the federated SPARQL query Q, as described in sections

4.3.5 and 4.3.6.

Stage 3 executes Q and returns an answer of K to the user.

4.3.2. Computing the Set of Local Queries

To compute the set of local queries, Stage 1 of the Federated Translation

Algorithm runs the Centralized Translation Algorithm.

The Centralized Translation Algorithm (see Figure 8) accepts a keyword-

based query K and an RDF dataset Ti, and outputs a SPARQL query or NULL. After

removing stop words from K, it matches the remaining elements in K with literals

stored in tables ClassTable, PropertyTable and ValueTable corresponding to Ti.

The match process creates a set of metadata matches MM[K,Ti] and a set of

property value matches VM[K,Ti], as mentioned in Section 2.4. If MM[K,Ti] and

VM[K,Ti] are empty, the centralized algorithm returns NULL. Otherwise, it

synthesizes and returns a local SPARQL query Qi, in which case we say that the

dataset Ti contributes to answering K.

CENTRALIZED TRANSLATION ALGORITHM

Input: A keyword query K

 An RDF dataset T, with a simple RDF schema S

Output: A SPARQL query Q over T

1. Keyword matching:

 Match the keywords in K with literals in T, creating the sets of matches MM[K,T]

and VM[K,T].

2. Nucleus generation:

 Use MM[K,T] and VM[K,T] to compute a set M of nucleuses

3. Nucleus score computation:

 Compute the score of each nucleus in M.

4. Nucleus selection:

 Compute a set of nucleuses N such that N covers as many keywords as possible.

5. Steiner tree generation:

 Let DS be the RDF schema diagram of S.

 Compute a Steiner tree ST of DS that contains the set of classes of the nucleuses in N.

6. Synthesis of the SPARQL query Q:

 Construct the WHERE and the TARGET clauses of Q from the nodes and edges in ST

Figure 8. Outline of the Centralized Translation Algorithm

(GARCÍA, et al., 2017)

DBD
PUC-Rio - Certificação Digital Nº 1513152/CA

32

Assume that the TARGET clause of Qi is composed of variables v1,…,vn.

Then, the Centralized Translation Algorithm also returns, for each variable vk

(k=1,…,n):

(1) the set of keywords Kk that vk covers;

(2) the IRIs of the elements that vk binds to, as follows:

 if vk binds to instances of a class ci, then the IRI of ci;

 if vk binds to property values of a property pi, then the IRIs of pi and ci,

where ci is the domain of the property pi.

The set of keywords that the query Qi covers is given by Ki = K1 … Kn,

such that Ki K.

4.3.3. Computing the External Joins of the Federated Query

Recall that the result of executing the centralized algorithm for a dataset Ti is a local

query Qi or NULL. For the sake of simplicity and without loss of generality, by

reordering the datasets, we may assume that the Centralized Translation

Algorithm returns a non-null answer for datasets T1, T2, …, Tk, for k n. Let Ci

denote the set of classes presents in Qi, for 1 i n. Also, for each ciCi, let

score(ci) be the score of the nucleus computed by the Centralized Translation

Algorithm that contains the class ci, as defined in (GARCÍA, et al., 2017).

Recall from Section 4.2.2 that the external joins are defined using tables

SameAsTable and ExternalObjectPropertyTable.

To identify which external joins are candidates to construct the federated

SPARQL query, Step 2.1 checks if, for a pair of local queries Qi and Qj, with

1 i j n, there are classes ciCi and cjCj, such that there is an external join

from ci to cj. We also define the score of a candidate external join as the summation

of the scores of ciCi and cjCj.

The next procedure shows how to compute the set of candidate external joins

and their scores.

Compute the set of candidate external joins (EJ):
Input: List of queries Qe

 ExternalObjectPropertyTable extObjProperty

 SameAsTable sameAsDef

Output: List of Candidate External Joins

List<ExternalJoin> EJ =

DBD
PUC-Rio - Certificação Digital Nº 1513152/CA

33

for each Query qi in Qe:

 for each Class ci in qi.Classes():

 ei = qi.Endpoint()

 qj Qe qi ≠ qj

 ej = qj.Endpoint()

 if(∃(ei,ci,(pi1,…,pin),ej,cj,(pj1,…,pjn)) sameAsDef)

 EJ.add(new SameAs(qi, qj, ci, cj))

 else if(∃(ei,ci,pi,ej,cj) extObjProperty)

 EJ.add(new ObjectProperty(qi, qj, ci, cj)

return EJ

After computing the set of candidate external joins, Step 2.2 first creates the

federated multigraph GF = <VF, EF, WF> corresponding to the local queries and the

candidate external joins, where:

 VF = {Q1,…,Qk} is the set of local queries that Stage 1 returns;

 there is an arc (Qi,Qj) in EF with score w((Qi,Qj)) = s iff there is a candidate

external join, returned by Step 2.1, between a class ci of Qi and a class cj

of Qj whose score is s.

Note that GF is indeed a multigraph, since there can be more than one

candidate external join linking the same pair of local queries. Also, GF may have

more than one connected component.

Step 2.2 then computes an approximation of a maximum spanning forest TF

of GF, by calling a specific procedure, called MST, that we leave unspecified. The

arcs in TF represent the selected external joins that will be used to bind the local

queries. The method to compute theses external joins is shown below.

Select the external joins with the highest score (SJ):
Input: List of External Joins EJ

 List of endpoint queries Qe

Output: List of External Joins SJ

GF = CreateFederatedGrap(EJ, Qe);

TF = MST(GF)

SJ = TF.Arcs()

return SJ

Having already selected the external joins, the score value of the queries is

calculated. We define the score of the query Qi, denoted by score(Qi), as the highest

score value of the external join outgoing of it:

score(Qi) = max{w((Qi,Qj)), ∀QjVF : (Qi, Qj)TF }

DBD
PUC-Rio - Certificação Digital Nº 1513152/CA

34

Then, for each selected external join, Step 2.3 adds the related triples pattern

to the corresponding query. We refer to such triple patterns as external join triple

patterns.

There are two cases to consider. If the selected external join is based on an

external object property, the following code shows how the triple pattern is inserted

into the local query corresponding to the domain endpoint.

Insert the triple patterns associated to external objectProperty:
Input: Set of External Joins EF

 List of endpoint queries Qe

for each eJ in SJ:

 if (eJ IS ObjectProperty)

 Qi = getDomainQueryEndpoint(eJ)

 ci = getDomainClass(eJ)

 oP = getObjectProperty(eJ)

 cj = getClassRange(eJ)

 Qi.addTriplePattern(ci, oP, cj)

The following fragment shows how the triple pattern (si pim sj) is appended

to the subquery Qi, where some query elements that did not intervene in the

discussion were omitted for convenience.

 SERVICE SILENT <ei>{

 ...

 ?ci rdf:type rdfs:Class .

 ?si rdf:type ?ci .

 ?si pim ?sj .

 ... }

 SERVICE SILENT <ej>{

 ...

 ?cj rdf:type rdfs:Class .

 ?sj rdf:type ?cj .

 ... }

If the selected external join is a sameAs definition, the following code shows

how the triple patterns are appended to the corresponding subqueries.

Insert the triple patterns associated to SameAs Definition:
Input: List of External Joins SJ

 List of endpoint queries Qe

for each eJ in SJ:

 if(eJ IS SameAs)

 Qi = getDomainQueryEndpoint(eJ)

 Qj = getRangeQueryEndpoint (eJ)

 ci = getDomainClass(eJ)

 cj = getRangeClass(eJ)

 for i = 0 to getProperties(eJ).size()

 Create a new variable value: vi

 pdi = getDomainPropertyIndex(eJ, i)

 pri = getRangePropertyIndex(eJ, i)

 Qi.addTriple(ci, pdi, vi)

 Qj.addTriple(cj, pri, vi)

DBD
PUC-Rio - Certificação Digital Nº 1513152/CA

35

For each definition of sameAs, triple patterns of the form (si pik vk) and

(sj pjk vk) are included in the subqueries Qi and Qj. For each pair of properties pik and

pjk, a variable vk is created by matching the property values, where ciCi is the

domain of property pik and cjCj is the domain of property pjk. The fragment below

highlights how the query pattern is created, where again some query elements that

did not intervene in the discussion were omitted for convenience.

 SERVICE SILENT <ei>{

 ...

 ?ci rdf:type rdfs:Class .

 ?si rdf:type ?ci .

 ...

 ?si pi1 ?v1 .

 ...

 ?si pin ?vn . }

 SERVICE SILENT <ej>{

 ...

 ?cj rdf:type rdfs:Class .

 ?sj rdf:type ?cj .

 ?sj pj1 ?v1 .

 ...

 ?sj pjn ?vn . }

In the present solution, the property values in the sameAs definitions are

compared using perfect matching. This approach can be changed by applying

transformations (e.g. lower case function) and similarity measures (e.g. Levenshtein

distance), as in tools that compute links between different datasets, like as the Silk

Linking Framework (VOLZ, et al., 2009).

4.3.4. Computing the UNIONs

Recall that Step 2.2 of the Federated Translation Algorithm creates a federated

graph GF and computes a maximum spanning forest TF of GF. If TF is an

unconnected graph, then Step 2.4 is executed to compute the feasible UNION

clauses. In this section, we present the conditions under which queries can be

combined using UNION clauses.

The computation of an UNION clause that combines the results of two

unlinked queries in TF requires that certain conditions be met. Let Ǭ1 and Ǭ2 be two

SPARQL queries, assume that S1 = {v11, v12, …, v1n} is the TARGET clause of Ǭ1,

S2 = {v21, v22, …, v2n} is the TARGET clause of Ǭ2, S1 covers the keywords set K1

and S2 covers the keywords set K2. It is possible to combine Ǭ1 and Ǭ2 with the

help of a UNION clause iff

DBD
PUC-Rio - Certificação Digital Nº 1513152/CA

36

(1) K1 = K2,

(2) S1 and S2 have the same number of variables,

(3) The pair of variables v1k S1 and v2k S2 (for k=1,…,n) are bound to classes

or properties that map to the same mediated schema element, as we defined

in section 4.2.2. For the sake of simplicity, we also say that v1k and v2k map

to the same mediated schema element.

The algorithm to compute a UNION clause is shown below.

Compute a UNION clause:

Input: Pair of subqueries: Qi, Qj

 MapElementTable mapTable

Output: A UNION query Ǭ

if(Qi.variables() ≠ Qj.variables()) return null

for s=0 to Qi.variables().size()

 Var qi = Qi.variables(s)

 Var qj = Qj.variables(s)

 Element ei = mapTable.MediatedSchemaElement(qi)

 Element ej = mapTable.MediatedSchemaElement(qj)

 if(ei ≠ ej) return null

Ǭ = Qi ⋃ Qj

return Ǭ

To generate a federated SPARQL query with a UNION clause, a bind variable

us (s=0,…,k)is created, for each pair of variables in the respective TARGET clauses

that refer to the same element of the mediated schema, where k is the number of

variables present in SQi and SQj.

An example template of the UNION pattern is shown below.

 SELECT (?si AS ?u1) (?vi1 AS ?u2) ... (?vik-1 AS ?uk)

 WHERE{

 SERVICE SILENT <ei>{

 ?ci rdf:type rdfs:Class .

 ?si rdf:type ?ci .

 ... }

 }

 UNION{

 SELECT (?sj AS ?u1) (?vj1 AS ?u2) ... (?vjk-1 AS ?uk)

 WHERE{

 SERVICE SILENT <ej>{

 ?cj rdf:type rdfs:Class .

 ?sj rdf:type ?cj .

 ... }

 }

 }

DBD
PUC-Rio - Certificação Digital Nº 1513152/CA

37

4.3.5. Defining the WHERE clause of the Federated SPARQL Query

Let Qi (i=1,…,k) be the local SPARQL queries computed in Stage 1 of the

Federated Translation Algorithm. Let Q be the federated SPARQL query to be

constructed, and WQ be the WHERE clause of Q. The definition of WQ is given by

the expression WQ = ⋃Ǭj, where Ǭj = ⋈iQi, i=1,…,m; m ≤ n, corresponds to a tree

of the spanning forest, and j corresponds to the number of connected components.

For a better understanding of the above definition, consider the following

example. Suppose that the following local SPARQL queries Q1, Q2, Q3 and Q4 were

generated, where for convenience we omit the syntax of queries. Assume that Q1

and Q2 are joined by a sameAs definition, and Q3 and Q4 are joined by an object

property, and that these are no other joins between these queries. Based on these

assumptions, we can compute Ǭ1 and Ǭ2 as:

Ǭ1 = Q1 ⋈ Q2 and Ǭ2 = Q3 ⋈ Q4

where the symbol “⋈” concisely represents a join between two queries via a sameAs

or an object property. Assume that the results of Ǭ1 and Ǭ2 can be combined by a

UNION clause. Then, we can compute WQ as:

WQ = Ǭ1 ⋃ Ǭ2 = (Q1 ⋈ Q2) ⋃ (Q3 ⋈ Q4).

Note that, when Ǭ1 and Ǭ2 cannot be combined by a UNION clause, that is,

when they do not meet the conditions defined in Section 4.3.4, then the Federated

Translation Algorithm will generate only one of the queries, Ǭ1 or Ǭ2.

4.3.6. Defining the TARGET clause of the Federated SPARQL Query

Let Q be the federated query with TARGET clause SQ and WHERE clause WQ. The

construction of SQ consists mainly in the computation of a subset Var(SQ) of the set

of variables Var(WQ) present in WQ. The computation of Var(SQ) depends on WQ

and the coverage of the keywords set K.

The different situations that can occur are explained below.

DBD
PUC-Rio - Certificação Digital Nº 1513152/CA

38

Federated Query with a WHERE clause without external join triple patterns or

UNION clauses

The first case occurs when the Federated Translation Algorithm creates a single

local query Q1. Then, the federated SPARQL query Q will be Q1, with an additional

“SERVICE SILENT” clause to query the target dataset, and Var(SQ)=Var(SQ1).

Federated Query with a WHERE clause with external join triple patterns, but

without UNION clauses

The second case occurs when, for each pair of local queries Qi and Qj used to

compose the federated SPARQL query Q, there is an external join (generate either

by an object property or by a sameAs definition). In this case, the WHERE clause

of Q will be of the form WQ = ⋈iQi.

To compute the set of variables Var(SQ) of the TARGET clause of Q, a greedy

strategy is used, based on the score values of the subqueries, and taking into account

the coverage of the keywords set K by the variables in Var(SQ).

Let CQ = {Q1, …, Qm} be the set of computed local queries.

The strategy starts with Var(SQ) = and a set of covered keywords K’ = .

Assume that the subquery Qi (1 ≤ i ≤ m) has the highest value score. Then,

the variables in Var(SQi) are added to Var(SQ), and the keywords covered by

Var(SQi) to K’, as mentioned in Section 4.3.2.

If K = K’ or all subqueries have been analyzed, the process stops.

Otherwise, the next subquery Qj in decreasing score value order is analyzed

and, if there is a variable vj Var(SQj) such that vj covers a set of keywords Kj K,

and there is a keyword kKj and kK’, then vj is added to Var(SQ) and k to K’.

Federated Query with a WHERE clause with only UNION clauses

The third situation occurs when the WHERE clause WQ is of the form

WQ=Q1⋃…⋃Qn. That is, the WHERE clause WQ of the federated query Q is

composed entirely of UNION clauses.

As an example, suppose that a pair of local queries Q1 and Q2 satisfy the

UNION conditions defined in the Section 4.3.4, so that the final SPARQL query Q

is given by Q = Q1 ⋃ Q2. Assume that SQ1 = {v1, …, vm}, SQ2 = {w1, …, wm}, and

DBD
PUC-Rio - Certificação Digital Nº 1513152/CA

39

there is a permutation of 1,…,m such that each pair of variables vi and w(i) map

to the same mediated schema element. Then, a new variable ui is created to bind the

results of variables vi and w(i) and the TARGET clause SQ is composed by the bind

variables u1,…,um.

Federated Query with All Elements in WHERE Clause

The last situation is when the WHERE clause WQ is of the form WQ = ⋃Ǭj, i.e. the

WHERE clause of Q is composed of different types of external joins as well as

UNION clauses. In this case, the strategy for choosing the variables is a bit more

complex and is based on the composition of WQ.

As an example, suppose that the federated SPARQL query Q is of the form

Q = (Q1⋈Q2) ⋃ (Q3⋈Q4), that is, subqueries Q1 and Q2 are joined by an external

join, as are the subqueries Q3 and Q4. We assume that the sets of variables

Var(SQ1⋈Q2) and Var(SQ3⋈Q4) cover the keywords set K. Suppose that

S(Q1 ⋈Q2)={v1,…,vn} and S(Q3 ⋈Q4)={w1,…,wn} and that these two sets of

variables satisfy Conditions (1) and (2) defined in Section 4.3.4. To meet Condition

(3), there must be a permutation of 1,…,n such that each pair of variables vi and

w(i) map to the same mediated schema element, as defined in 4.3.4. Then, the

results of the queries Q1⋈Q2 and Q3⋈Q4 can be combined via an UNION clause,

and a new variable ui is created to bind the results of variables vi and w(i), for

i=1,…,n. The set of variables Var(Q) is composed by new bind variables u1,…,un.

DBD
PUC-Rio - Certificação Digital Nº 1513152/CA

40

5
Experiments

This chapter presents the experiments performed to test the performance of an

implementation of the Federated Translation Algorithm. Section 5.1 describes

the configuration of the experiments. Section 5.2 shows the results obtained with

selected datasets. Finally, section 5.3 summarizes and discusses the results.

5.1 Data Configuration

In order to test an implementation of the Federated Translation Algorithm, we

selected data from three free RDF datasets: DBpedia, DrugBank, and Kegg Drug.

Each one is exposed in different SPARQL endpoints following the steps that we

explain in Appendix I.

To run the experiments using these RDF datasets, it was necessary to populate

the tables allocated in the Storage Component and Mediated Schema

Component. The details are explained in the following subsections.

5.1.1. DBpedia RDF Dataset Setup

DBpedia is a crowd-sourced community effort to extract structured information

from Wikipedia and make this information available on the Web. Localized

versions of DBpedia are available in 125 languages. The English version of the

DBpedia knowledge base describes 4.58 million objects, out of which 4.22 million

are classified in a consistent ontology, including 1,445,000 persons, 735,000 places

(including 478,000 populated places), 411,000 creative works (including 123,000

music albums, 87,000 films and 19,000 video games), 241,000 organizations

(including 58,000 companies and 49,000 educational institutions), 251,000 species

and 6,000 diseases7.

7 http://wiki.dbpedia.org/about

DBD
PUC-Rio - Certificação Digital Nº 1513152/CA

41

For our experiments, the classes drug (http://dbpedia.org/ontology/Drug) and

enzyme (http://dbpedia.org/ontology/Enzyme) from the named graph

http://dbpedia.org/resource/classes# were chosen, with the following schema.

Schema

Properties
Values

Drug Enzyme

rdf:type owl:Class owl:Class

rdfs:label drug (en) enzyme (en)

Table 5 - Schema of classes in DBpedia data source

The instances of the selected classes were obtained by querying the DBpedia

SPARQL Endpoint8 executing the query below.

SELECT DISTINCT ?s

WHERE {

 ?s rdf:type ?o .

 FILTER (?o IN (<http://dbpedia.org/ontology/Drug>,

 <http://dbpedia.org/ontology/Enzyme>))

}

The query result and the triples that represent the RDF schema were exported

into an N-triples file. This file was transformed into an SQL file with the objective

of inserting each triple into the RDF model named dbpedia_drug_mat created in

the Oracle Server using the rdf_data table. A sample fragment of the file with the

transformation result is as follows:

INSERT INTO rdf_data (TRIPLE) VALUES (

 SDO_RDF_TRIPLE_S('DBPEDIA_DRUG_MAT', '<http://dbpedia.org/Drug>',

 '<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>',

 '<http://www.w3.org/2002/07/owl#Class>'));

INSERT INTO rdf_data (TRIPLE) VALUES (

 SDO_RDF_TRIPLE_S('DBPEDIA_DRUG_MAT', '<http://dbpedia.org/Drug>',

 '<http://www.w3.org/2000/01/rdf-schema#label>',

 '"drug"'));

INSERT INTO rdf_data (TRIPLE) VALUES (

 SDO_RDF_TRIPLE_S('DBPEDIA_DRUG_MAT', '<http://dbpedia.org/Enzyme>',

 '<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>',

 '<http://www.w3.org/2002/07/owl#Class>'));

INSERT INTO rdf_data (TRIPLE) VALUES (

 SDO_RDF_TRIPLE_S('DBPEDIA_DRUG_MAT', '<http://dbpedia.org/Enzyme>',

 '<http://www.w3.org/2000/01/rdf-schema#label>',

 '"enzyme"'));

INSERT INTO rdf_data (TRIPLE) VALUES (

 SDO_RDF_TRIPLE_S('DBPEDIA_DRUG_MAT',

 '<http://dbpedia.org/Drug/Amoxicillin>',

 '<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>',

 '<http://dbpedia.org/Drug>'));

 ...

8 http://dbpedia.org/sparql/

http://dbpedia.org/ontology/Drug
http://dbpedia.org/ontology/Enzyme
http://dbpedia.org/resource/classes
DBD
PUC-Rio - Certificação Digital Nº 1513152/CA

42

In this case, to populate the auxiliary tables allocated in the Storage

Component, we followed the process:

 Insert the instance label, for each instance:

INSERT INTO rdf_data (triple)

SELECT SDO_RDF_TRIPLE_S('DBPEDIA_DRUG_MAT',

 subj$rdfterm, pred$rdfterm,

 '"' || upper(substr(lb, 1,1))||substr(lb, 2) || '"')

FROM(SELECT subj$rdfterm, pred$rdfterm,

 REGEXP_REPLACE(SUBSTR(obj, - INSTR(REVERSE(obj), '/') + 1),

 '([[:lower:]])([[:upper:]])', '\1 \2') lb

 FROM TABLE(SEM_MATCH(

 'CONSTRUCT{ ?s rdfs:label ?s}

 WHERE { ?s rdf:type ?c.

 ?c rdf:type owl:Class

 }',

SEM_MODELS('DBPEDIA_DRUG_MAT'),NULL,NULL,NULL)));

 Create a property named name having as values the labels of classes

instances:

INSERT INTO RDF_DATA (TRIPLE)

VALUES (SDO_RDF_TRIPLE_S('DBPEDIA_DRUG_MAT',

 '<http://dbpedia.org/name>', 'rdfs:label', '"Name"'));

INSERT INTO RDF_DATA (TRIPLE)

SELECT SDO_RDF_TRIPLE_S('DBPEDIA_DRUG_MAT',

 subj$rdfterm, pred$rdfterm, obj$rdfterm)

FROM TABLE(SEM_MATCH(

'CONSTRUCT { ?s <http://dbpedia.org/name> ?lb }

 WHERE {

 { SELECT DISTINCT ?s ?lb

 WHERE { ?c rdf:type owl:Class .

 ?s rdf:type ?c .

 ?s rdfs:label ?lb

 } }

}',SEM_MODELS('DBPEDIA_DRUG_MAT'),NULL,NULL,NULL));

 Assign rdf:Property and rdf:domain to the new property:

INSERT INTO RDF_DATA (TRIPLE)

SELECT SDO_RDF_TRIPLE_S('DBPEDIA_DRUG_MAT',

 subj$rdfterm, pred$rdfterm, obj$rdfterm)

FROM TABLE(SEM_MATCH(

 'CONSTRUCT { ?p rdf:type rdf:Property }

 WHERE { SELECT distinct ?p

 WHERE { ?s ?p ?o .

 ?s rdf:type ?c .

 ?c rdf:type rdfs:Class .

 FILTER (?p != rdf:type)

 FILTER (?p != rdfs:label)} }',

SEM_MODELS('DBPEDIA_DRUG_MAT'),NULL,NULL,NULL));

DBD
PUC-Rio - Certificação Digital Nº 1513152/CA

43

INSERT INTO RDF_DATA (TRIPLE)

SELECT SDO_RDF_TRIPLE_S('DBPEDIA_DRUG_MAT',

 subj$rdfterm, pred$rdfterm, obj$rdfterm)

FROM TABLE(SEM_MATCH(

 'CONSTRUCT { ?p rdfs:domain ?c}

 WHERE { SELECT distinct ?p ?c

 WHERE { ?p rdf:type rdf:Property .

 ?s ?p ?o .

 ?s rdf:type ?c . } }',

SEM_MODELS('DBPEDIA_DRUG_MAT'),NULL,NULL,NULL));

5.1.2. DrugBank RDF Data Setup

The DrugBank database is a unique bioinformatics and cheminformatics resource

that combines detailed drug (i.e. chemical, pharmacological and pharmaceutical)

data with comprehensive drug target (i.e. sequence, structure, and pathway)

information. The database was created following a given schema9.

We downloaded the N-triples data file available in the D2R Server

publishing the DrugBank Database10, with an accessible SPARQL Endpoint11.

The N-triples file was transformed into an SQL file and the triples were inserted

into the RDF model named drugs_mat created in the Oracle Server using the

rdf_data table.

 Figure 9 shows a partial RDF schema diagram. The diagram depicts all 5

classes (rectangles), all 6 object properties (single arrows, starting on the domain

and ending on the range), with their names omitted to avoid cluttering the diagram.

Figure 9. RDF Schema of DrugBank

Table 6 and Table 7 expose the statistics of the RDF dataset, with 765,936

triples and 19,770 class instances representing 4,472 drugs instances, 10,096 drug

interaction entries, 53 enzymes, 96 references, and 4,553 drug target. The dataset

 9 http://download.bio2rdf.org/release/3/drugbank/drugbank.schema.owl
10 http://wifo5-03.informatik.uni-mannheim.de/drugbank/
11 http://wifo5-03.informatik.uni-mannheim.de/drugbank/sparql

drugdrug interaction enzyme

referencedrug target

DBD
PUC-Rio - Certificação Digital Nº 1513152/CA

44

has 118 datatype properties and a large number of RDF links to other Linked Data

sources (59,661).

Classes (label) # Instances Triple Type # Triples

Enzymes 53 Class declarations 5

Reference 96 Datatype property declarations 118

Drug 4.772 Class instances 19.570

drug interaction 10.096 Object property declarations 6

Table 6 - Statistics of DrugBank Classes
 RDF links to other sources 59.661
 Total number of triples 765.936

 Table 7 - Statistics of DrugBank RDF Data

5.1.3. Kegg Drug RDF Data Setup

The Kyoto Encyclopedia of Genes and Genomes (Kegg) is a collection of databases

and resources for studying high-level functions and utilities of the biological

systems. These databases are broadly categorized into systems information,

genomic information, chemical information and health information (Figure 10).

Figure 10. Main categories for Kegg databases

The Kegg data in the N-triples format were downloaded from the available

FTP Kegg12. The N-triples file was transformed into an SQL file and the triples

were inserted into the RDF model named kegg_mat created in the Oracle Server

using the rdf_data table.

Figure 11 presents the schema of the Kegg RDF triples. The RDF dataset has

4 classes (represented by rectangles) and 4 object properties (single arrows, starting

on the domain and ending on the range), with their names omitted to avoid

cluttering the diagram.

12 ftp://ftp.genome.jp/pub/kegg/medicus/drug/

DBD
PUC-Rio - Certificação Digital Nº 1513152/CA

45

Figure 11. RDF Schema of Kegg Drug

Table 8 and Table 9 show the statistics about the Kegg RDF dataset with

21,873 class instances representing 9,773 Kegg drug instances, 996 metabolism

entries, 4,808 interactions, and 6,296 targets. The RDF graph contains 713,737

triples and 40 datatype property declarations.

Classes (label) # Instances Triple Type # Triples

KEGG drug 9.773 Class declarations 4

Metabolism 996 Datatype property declarations 40

Interaction 4.808 Class instances 21.873

Target 6.296 Object property declarations 4

Table 8 - Statistics of Kegg Classes Total number of triples 713.737

 Table 9 - Statistics of Kegg RDF Data

5.1.4. Common Settings

In order to fill in all auxiliary tables allocated in the Storage Component, we need

to insert in the RDF graphs additional information about their respective schemas.

The missing information is mainly related to the cardinalities of classes and

properties, the definition of properties groups, and the property values that will be

indexed.

This can be accomplished by running, for the respective RDF models

(replacing the real values highlighted in bold), the following SQL queries (see the

queries details in Appendix III):

Q1. Insert the order of the classes by the cardinality

Q2. Insert the order of the properties by the cardinality

Q3. Indexing TRUE the properties with STRING type

Q4. Insert the default group order

Q5. Insert all properties in the “default” group

Q6. Insert the triples with the pattern form

 (property rdfs:range owl:ObjectProperty)

TargetInteractionMetabolism

KEGG drug

DBD
PUC-Rio - Certificação Digital Nº 1513152/CA

46

5.1.5. Mediated Schema Composition and Setting

The allocated tables in the Mediated Schema Components will be populated with

the mediated schema information. Figure 12 depicts the links between the three data

sources (represented by dashed type single arrows, when the dash type varies with

the link type).

Figure 12. Mediated Schema of DBpedia, DrugBank and Kegg Drug

As is defined in Table 10, all drug information in DBpedia is connected with

the class drug in DrugBank, and the enzyme instances in DrugBank are joined with

the class enzyme in DBpedia, both by a sameAs definition.

SameAsTable

Endpoint

Source

Class

Source

Properties

Source

Endpoint

Destination

Class

Destination

Properties

Destination

DBpedia Drug Name DrugBank drug rdfs:label

DrugBank enzyme rdfs:label DBpedia enzyme Name

Table 10 - SameAsTable populated with the sameAs definition in the selected data sources

The object property drugbank:keggDrugId has as domain the class drug in

DrugBank and the class Kegg Drug in RDF Kegg as range, according Table 11

shows below.

ExternalObjectPropertyTable

Endpoint

Source

Class

Source

Object

Property

Endpoint

Destination

Class

Destination

DrugBank Drug keggDrugId Kegg Kegg Drug

Table 11 - ExternalObjectPropertyTable populated with the external joins in the selected data sources

The instances of classes enzyme (DrugBank) and Metabolism (Kegg Drug)

were mapped to the same mediated schema element to be able to construct UNION

clauses in the TARGET clause of a federated SPARQL query when these classes

are involved in the federated query. The same happens with the instances of the

classes drug interaction (DrugBank) and Interaction (Kegg Drug) (see Table 12).

Kegg DrugDrugBank

TargetInteractionMetabolism

KEGG drugdrugdrug interaction enzyme

referencedrug target

DBpedia

drug

sameAs

Definition External Join

Same

Element

Same

Element

enzyme

sameAs

Definition

DBD
PUC-Rio - Certificação Digital Nº 1513152/CA

47

MapElementTable

Mediated

Schema Element

Local Schema

Class

Local Schema

Property
Source

Enzyme Enzyme NULL DrugBank

Enzyme Metabolism NULL Kegg Drug

Drug Interaction drug interaction NULL DrugBank

Drug Interaction Interaction NULL Kegg Drug

Table 12 - MapElementTable populated with the elements maps of the Mediated Schema

5.2 Experiments with Selected Data

We ran a suite of keyword-based queries to assess the performance of the

Federated Translation Algorithm. The keyword-based queries were selected to

show the different compositions that the WHERE clause of the federated query can

take, and the coverage of the set of keywords by the variables in the TARGET

clause. In the queries, the IRIs of the different SPARQL endpoints will be replaced

by the name of data source, as follows:

 DBpedia SPARQL Endpoint: dbpedia

 DrugBank SPARQL Endpoint: drugbank

 Kegg Drug SPARQL Endpoint: kegg

5.2.1. Translated Queries over a Single SPARQL Endpoint

The first case covers keyword-based queries for which the Federated Translation

Algorithm generates SPARQL queries over a single data source.

The example keyword-based query K1 = “indication for backache” expresses

the search “drugs that are indicated for backache”. The first stage of the translation

algorithm eliminates the stop word “for”, matches the keyword “indication” with

the label of property Indication of the class drug in DrugBank dataset, and the

keyword “backache” with the values of the same property Indication. This stage

then returns a single local query. The second stage of the algorithm generates the

following SPARQL query.

DBD
PUC-Rio - Certificação Digital Nº 1513152/CA

48

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

SELECT ?C_0_0 ?P_0_0

WHERE{

 SERVICE SILENT <drugbank> {

 ?I_C_0_0 rdf:type <http://www4.wiwiss.fu-

berlin.de/drugbank/resource/drugbank/drugs> .

 ?I_C_0_0 <http://www4.wiwiss.fu-

berlin.de/drugbank/resource/drugbank/indication> ?P_0_0

 FILTER <http://xmlns.oracle.com/rdf/textContains>(?P_0_0,

"fuzzy({backache}, 70, 1)", 1)

 ?I_C_0_0 rdfs:label ?C_0_0

} }

FQ 1 - Federated SPARQL query generated by responding to K1

The query only accesses the DrugBank SPARQL Endpoint via the SERVICE

SILENT clause in line 3. The Centralized Translation Algorithm returns the local

query in lines 4 to 10. It founds a match with the label property Indication and

generates the triple pattern in lines 6 and 7. Since the domain of property Indication

is the class drug, the variable I_C_0_0 will bind to instances of this class (lines 4

and 5). The FILTER declaration in lines 8 and 9 matches the keyword “backache”

with the value in P_0_0, using the Oracle fuzzy matching function with the

appropriate parameters (70 and 1). Line 10 translates the URI in I_C_0_0 to a label,

which is hopefully user-friendly, and binds it to C_0_0. The TARGET clause in line

1 returns a table with the binding variables C_0_0 and P_0_0, the same variables

present in the TARGET clause of the local query.

5.2.2. Translated Queries with only external joins in the WHERE

clause

The second case covers keyword-based queries for which the Federated

Translation Algorithm generates SPARQL queries that retrieve data from

different data sources linked by external joins. In more detail, the Centralized

Translation Algorithm generates local subqueries, and the Federated

Translation Algorithm synthesizes a federated SPARQL query whose WHERE

clause contains external joins, generated by sameAs definitions or external object

properties.

The example keyword-based query K2 = “'drug target' of ibuprofen”

expresses the search “targets information (i.e. sequence, structure, and pathway)

associated to ibuprofen”. The first stage of the translation algorithm eliminates the

stop word “of”, matches the keyword “drug target” with the label of class drug

DBD
PUC-Rio - Certificação Digital Nº 1513152/CA

49

target in DrugBank dataset, and the keyword “ibuprofen” with the values of an

instance of the class Drug in DBpedia dataset and with an instance of class drug in

DrugBank source. This stage then returns two local queries. The second stage of

the algorithm generates the following federated SPARQL query.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

SELECT ?C_0_0 ?C_1_1

WHERE{

 SERVICE SILENT <dbpedia>{

 ?I_C_0_0 rdf:type <http://dbpedia.org/Drug> .

 ?I_C_0_0 <http://dbpedia.org/name> ?sA_1_0

 FILTER <http://xmlns.oracle.com/rdf/textContains>(?C_0_0,

"{\"ibuprofen\"}", 0)

 ?I_C_0_0 rdfs:label ?C_0_0 }

 SERVICE SILENT <drugbank>{

 ?I_C_1_0 <http://www4.wiwiss.fu-

berlin.de/drugbank/resource/drugbank/target> ?I_C_1_1 .

 ?I_C_1_0 rdfs:label ?sA_1_0

 FILTER <http://xmlns.oracle.com/rdf/textContains>(?sA_1_0,

"{\"ibuprofen\"}", 0)

 ?I_C_1_1 rdfs:label ?C_1_1 }

}

FQ 2 - Federated SPARQL query generated by responding to K2

The Centralized Translation Algorithm returns two local queries. Lines 3

to 8 show the local query to access the DBpedia SPARQL Endpoint, and lines 9 to

15 show the local query to access the DrugBank SPARQL Endpoint, both via a

SERVICE SILENT clause. In what follows, we respectively use the terms DBpedia

query and DrugBank query to refer us to these subqueries.

Related to the DBpedia query, the triple pattern in line 4 binds instances of

class Drug to the variable I_C_0_0, due to the match with label of the class. The

FILTER declaration in lines 6 and 7 matches the keyword “ibuprofen” with the

value in C_0_0, using the Oracle textContains matching function. Line 8 translates

the URIs in I_C_0_0 to labels, binding them to C_0_0. Although not reflected in

the local query, the TARGET clause is composed only of the variable C_0_0,

because it covers the keyword “ibuprofen”.

As for the DrugBank query, the (local) object property drugbank:target

generates the triple pattern in lines 10 and 11. Note that, since the domain of the

object property is the class drug and the range is the class drug target, variables

I_C_1_0 and I_C_1_1 bind to instances of these classes, respectively. Hence, it is

not necessary to include triple patterns that force I_C_1_1 to be of type drug target,

and I_C_1_0 to be of type drug. The variable sA_1_0 translates the URIs in

DBD
PUC-Rio - Certificação Digital Nº 1513152/CA

50

I_C_1_0 to labels. As seen in DBpedia query, the FILTER declaration in lines 13

and 14 matches the keyword “ibuprofen” with the value in sA_1_0. Although it is

not reflected, the Centralized Translation Algorithm constructs the TARGET

clause of the local query with the variables sA_1_0 and C_1_1. The variable sA_1_0

covers the keyword “ibuprofen”, and C_1_1 covers “drug target”.

DBpedia query and DrugBank query are joined by a sameAs definition, as

Table 10 defines, so the Federated Translation Algorithm generates the triple

patterns in lines 5 and 12. The variable sA_1_0 binds, with a perfect matching, the

properties values of the respective properties http://dbpedia.org/name and

rdfs:label joining the instances class bound by the variable I_C_0_0 with the

instances class that the variable I_C_1_0 binds.

The TARGET clause in line 1 returns a table with the binding variables C_0_0

and C_1_1. To select the variables in the TARGET clause was followed the strategy

described in the second situation of Section 4.3.6. As the DBpedia query is the

query with the highest score value, then C_0_0 belongs to the TARGET clause. The

variable C_1_1 is also added to the TARGET clause to cover the keyword-based

query K2.

5.2.3. Translated Queries with only UNIONs in the WHERE clause

The third case covers keyword-based queries for which the Federated Translation

Algorithm generates SPARQL queries whose WHERE clauses contain only

UNION elements.

The example keyword-based query K3 = “interaction” expresses a search

about the interactions of drugs. The first stage of the translation algorithm matches

the keyword “interaction” with the labels of the classes drug interactions of

DrugBank and Interaction of Kegg Drug. This stage then returns two local

queries. The second stage of the algorithm generates the following federated

SPARQL query.

DBD
PUC-Rio - Certificação Digital Nº 1513152/CA

51

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

SELECT ?U_0

WHERE{

{ SELECT (?C_1_0 AS ?U_0)

 WHERE{

 SERVICE SILENT <drugbank>{

 ?I_C_1_0 rdf:type <http://www4.wiwiss.fu-

berlin.de/drugbank/resource/drugbank/drug_interactions> .

 ?I_C_1_0 rdfs:label ?C_1_0

 } }

 UNION{

 SELECT (?C_0_0 AS ?U_0)

 WHERE{

 SERVICE SILENT <kegg>{

 ?I_C_0_0 rdf:type <http://bio2rdf.org/kegg:Interaction> .

 ?I_C_0_0 rdfs:label ?C_0_0

} } } }

FQ 3 - Federated SPARQL query generated by responding to K3

The first subquery (DrugBank query), in lines 3 to 9, accesses the DrugBank

SPARQL Endpoint and the second subquery (Kegg query), in lines 11 to 16,

accesses the Kegg Drug SPARQL Endpoint. The queries results are combined by

a UNION clause (line 10), since these queries satisfy the conditions defined in

Section 4.3.4.

In the DrugBank query, the triple pattern in lines 6 and 7 binds instances of

the class drug interaction to the variable I_C_1_0, due to the match with the label

of the class. Line 8 translates the URIs in I_C_1_0 to labels, binding them to C_1_0.

The TARGET clause is composed of the variable C_1_0, binding their values to the

new variable U_0.

In the Kegg query, the triple pattern in line 14 binds instances of class

Interaction to the variable I_C_0_0, and line 15 translates the URIs in I_C_0_0 to

labels, binding them to C_0_0. The TARGET clause is composed of the variable

C_0_0, which also binds their values to the new variable U_0.

The TARGET clause of the federated SPARQL query in line 1 returns a table

with the binding variable U_0 created to combine the values that the variables

C_1_0 and C_0_0 bind to.

5.2.4. Translated Queries with All Elements in the WHERE clause

The last case covers keyword-based queries for which the Federated Translation

Algorithm generates federated SPARQL queries whose WHERE clause contains

both external joins and UNION clauses.

DBD
PUC-Rio - Certificação Digital Nº 1513152/CA

52

The example keyword-based query K4 = “interaction with enzyme and

metabolism” expresses a search about drug interactions and the enzymes of these

drugs. The first stage of the translation algorithm eliminates the stop words “with”

and “and”, matches the remaining keywords, and returns three local queries. The

second stage of the algorithm generates the following federated SPARQL query.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

SELECT ?U_0 ?U_1

WHERE {

 { SELECT (?C_2_0 AS ?U_0) (?sA_1_0 AS ?U_1)

 WHERE {

 SERVICE SILENT <drugbank>{

 ?I_C_2_1 <http://www4.wiwiss.fu-

berlin.de/drugbank/resource/drugbank/enzyme> ?I_C_2_2 .

 ?I_C_2_0 <http://www4.wiwiss.fu-

berlin.de/drugbank/resource/drugbank/interactionDrug1> ?I_C_2_1 .

 ?I_C_2_2 rdfs:label ?sA_1_0 .

 ?I_C_2_0 rdfs:label ?C_2_0 . }

 SERVICE SILENT <dbpedia>{

 ?I_C_0_0 rdf:type <http://dbpedia.org/Enzyme> .

 ?I_C_0_0 <http://dbpedia.org/name> ?sA_1_0 .

 } } }

 UNION

 { SELECT (?C_1_0 AS ?U_0) (?C_1_1 AS ?U_1)

 WHERE{

 SERVICE SILENT <kegg>{

 ?I_C_1_0 <http://bio2rdf.org/kegg:metabolism> ?I_C_1_2 .

 ?I_C_1_0 <http://bio2rdf.org/kegg:interaction> ?I_C_1_1 .

 ?I_C_1_1 rdfs:label ?C_1_0 .

 ?I_C_1_2 rdfs:label ?C_1_1 }

} } }

FQ 4 - Federated SPARQL query generated by responding to K4

The query in lines 5 to 11 accesses the DrugBank SPARQL Endpoint, the

query in lines 12 to 15 accesses the DBpedia SPARQL Endpoint, and the query in

lines 17 to 23 accesses the Kegg SPARQL Endpoint, all via a SERVICE SILENT

clause. Below, we use the terms DrugBank query, DBpedia query, and Kegg query

to refer us the respective subqueries.

In the DrugBank query, the keywords “enzyme” and “interaction”

respectively match the label of classes enzyme and drug interactions, then the triple

patterns in lines 6 to 9 represent the path leaving from drug interaction to enzyme

that goes through the class drug. The object property drugbank:enzyme joins the

classes drug and enzyme, which generates the triple pattern in lines 6 and 7. Note

that, since the domain of the object property is the class drug and the range is the

class enzyme, variables I_C_2_1 and I_C_2_2 respectively bind to instances of

these classes. Hence, it is not necessary to include triple patterns that force I_C_2_1

to be of type drug, and I_C_2_2 to be of type enzyme. The link between the classes

DBD
PUC-Rio - Certificação Digital Nº 1513152/CA

53

drug and drug interactions is through the object property drugbank:interactions,

which is reflected in the triple pattern in lines 8 and 9. Note that, since the domain

of the object property is the class drug interaction and the range is the class drug,

the variables I_C_2_0 and I_C_2_1 bind to instances of these classes, respectively.

The variables sA_1_0 and C_2_0, in lines 10 and 11, translate the URIs in I_C_2_2

and I_C_2_0 to labels. Although not reflected in the local query, the TARGET

clause is composed of the variables C_2_0 and sA_1_0, which cover the set of

keywords in K4 (excluding the stop words).

In the DBpedia query, the triple pattern in line 13 binds instances of class

Enzyme to the variable I_C_0_0, since the keyword “enzyme” matches with the

label of the class. The triple pattern in line 14 reflects the sameAs definition with

the class enzyme in DrugBank query; also the variable sA_1_0 translates the URIs

in I_C_0_0 to labels. The TARGET clause is composed of the variable sA_1_0,

covering the keyword “enzyme”.

Related to Kegg query, the keywords “interaction” and “metabolism” match

with the label of the classes Interaction and Metabolism, respectively. These

classes are connected via the class Kegg Drug, which is the root of the tree that they

form. Then, the Centralized Translation Algorithm generates the triple patterns

in lines 20 and 21. The triple pattern in line 20 represents the join between the

classes Kegg Drug and Metabolism via the object property kegg:metabolism, since

the domain of the object property is the class Kegg Drug and the range is the class

Metabolism; the variables I_C_1_0 and I_C_1_2 will respectively bind to

instances of these classes. The object property kegg:interaction in lines 21 joins the

domain class Kegg Drug to the range class Interaction, where the variables

I_C_1_0 and I_C_1_1 bind to instances of their respective classes. The triple

patterns in lines 10 and 11 translate the URIs in I_C_1_1 and I_C_1_2 to labels,

binding them to variables C_1_0 and C_1_1. The TARGET clause of the local

subquery in line 17 is composed of the variables C_1_0 and C_1_1, which cover

K4 (excluding the stop words) and bind their values to the created variables U_0

and U_1, respectively.

Let Q be the SPARQL query synthesized by the Federated Translation

Algorithm, then Q is given by

Q = (DrugBank query ⋈ DBpedia query) ⋃ Kegg query.

DBD
PUC-Rio - Certificação Digital Nº 1513152/CA

54

Lines 3 to 15 correspond to the join between DrugBank query and DBpedia

query. These queries are joined by a sameAs definition between the classes enzyme

(DrugBank query) and enzyme (DBpedia query), as Table 10 records, which

correspond to the triple patterns in lines 10 and 14. The variable sA_1_0 binds, with

a perfect matching, the properties values of the respective properties rdfs:label and

http://dbpedia.org/name, joining the instances class bound by the variable I_C_2_2

with the instances class bound by the variable I_C_0_0. The TARGET clause of this

join query in line 3 is composed of the binding variables C_2_0 and sA_1_0, which

cover K4 (excluding the stop words) and bind their results to the variables U_0 and

U_1, respectively. The UNION clause to combine the queries results is shown in

line 16. The TARGET clause of Q in line 1 returns a table with the binding variables

U_0, that binds values about the mediated schema element ‘Drug Interaction’, and

U_1, which binds values about the mediated schema element ‘Enzyme’. Table 12

was used to compute these maps.

5.3 Discussion of the Results

The runtime to process the selected keyword-based queries and the response

structure of each of the generated SPARQL federated queries are summarized in

Table 13.

The results show that all queries were successfully executed in less than 4

seconds, which is quite reasonable, considering that the system returns 750 results

as limit, the size of the datasets, and that the subqueries results come from different

datasets allocated in a local network. The tests were performed in accordance with

each of the discussed cases and the queries were synthesized following, for each

situation, the corresponding strategy. The variables in the TARGET clause of each

SPARQL query cover the respective set of keywords. These results suggest that the

algorithm performs well to respond the keyword-based search over federated RDF

graphs.

DBD
PUC-Rio - Certificação Digital Nº 1513152/CA

55

Query ID/

Keywords
Federated SPARQL Query Structure

Execution

Time (s)

FQ 1

indication

backache

0.34

FQ 2

'drug target'

ibuprofen

1.32

FQ 3

interaction

1.54

FQ 4

interaction

enzyme

metabolism

3.55

Table 13 - Runtime to process sample keyword-based queries

DrugBankDrugBank

drug

“backache”

s

rdf:type

:indication
rdfs:d

omain

 :in
dicatio

n

rdf:type
“Ibuprofen”

:name

rdfs:label

DBpediaDBpedia

DrugBankDrugBank

drug s

:ta
rget

Drug d

rdf:type

rdrug target
rdf:type

“Ibuprofen”:name
rdfs:domain

rd
fs:

label

“Ibuprofen”

sameAs
definition

Kegg DrugKegg Drug

Interactions
rdf:type

Interaction

rdfs:label

drug interactions

DrugBankDrugBank

r
drug_interactions

rdf:type

rdfs:label

Same
Element

s ru =

sameAs
definition

Interaction b

DrugBankDrugBank

rdrug_interactions

Same
Element

enzymes t
rdf:type

drugs

rdf:type

:enzyme

:in
te

ra
ct

io
n

D
ru

g1

Interaction

rdfs:label

enzymes

rdfs:label

rdf:type

:enzyme

rdfs:domain
:interactionDrug1

rdfs:domain

rdfs:label
drug interactions

rdf:type

drug

a

rdf:type

Metabolismc

Metabolism

rdfs:label
rdf:type

KeggKegg

:interaction

rdfs:domain

:metabolism

rdfs:domain

:metabolism:interaction

Same
Element

DBpediaDBpedia

enzyme

?sA_1_0

s

rd
f:

ty
p

e

:name

rdfs:domain :name

rdfs:label

?sA_1_0

r bu0 =

t cu1 =

DBD
PUC-Rio - Certificação Digital Nº 1513152/CA

56

6
Conclusions

In this work, we presented an algorithm, called Federated Translation Algorithm,

to perform keyword search over federated RDF graphs by exploring their schemas.

This algorithm extends the Centralized Translation Algorithm developed in

(GARCÍA, et al., 2017), which is used as part of Stage 1 of the federated algorithm.

As the main objective was to extend the centralized algorithm to a federation of

RDF datasets, we first analyzed what additional requirements would have to be

incorporated to take into account the elements involved in a federation of RDF

datasets. Then, we introduced an architecture to the system and described its

components.

We detailed the design decisions to construct the federated SPARQL query,

based on the existing relationships (called here external joins) between the local

subqueries generated by the Centralized Translation Algorithm. We also defined

the conditions to combine, with the help of the UNION clauses, the results of queries

that have no external joins between them. We defined the composition of the

WHERE clause of the federated SPARQL query and explained how the TARGET

clause is constructed, according to the composition of the WHERE clause. Finally,

we performed some experiments to test the performance of the proposed approach

using three freely accessible RDF databases with joins between them.

The lessons learned were:

 The proposed algorithm generates queries with the following

characteristics:

 The local queries only access the data sources whose indexed data

and metadata matched the keywords.

 The variables in the TARGET clause of the federated SPARQL query

cover a subset of the set of keywords submitted by the user.

 The experiments suggest that the proposed algorithm performs well for

keyword-based search over federated RDF graphs.

DBD
PUC-Rio - Certificação Digital Nº 1513152/CA

57

As future work, we plan to test this solution in scenarios with a larger number

of data sources, with RDF graphs that have more interconnections between them,

and with more data and metadata. Furthermore, it is interesting to create a failure

mechanism strategy to remove the SILENT reserved word from the federated

queries and to handle exceptions in query execution, such as the timeout exceptions

caused by out-of-service SPARQL endpoints or by large query answers. Finally,

we plan to extend the current implementation to other federated RDF storage

systems and to make the tool publicly available.

DBD
PUC-Rio - Certificação Digital Nº 1513152/CA

58

7
Bibliography

ACOSTA, M. et al. ANAPSID An Adaptive Query Processing Engine for SPARQL

Endpoints. International Semantic Web Conference. Bonn, Germany: Springer Berlin

Heidelberg. October, 2011. p. 18-34.

BIZER, C.; HEATH, T.; BERNERS-LEE, T. Linked data: Principles and state of the

art. World wide web conference. 2008. p. 140.

BRICKLEY, D.; GUHA, R. V. RDF Schema 1.1, 25 February 2014. Available at:

<https://www.w3.org/TR/rdf-schema/>.

BUIL-ARANDA, C. et al. Federating queries in SPARQL 1.1 Syntax, semantics and

evaluation. Web Semantics: Science, Services and Agents on the World Wide Web, v. 18,

n. 1, p. 1-17, 2013.

CYGANIAK, R.; WOOD, D.; LATHANER, M. RDF 1.1 Concepts and Abstract Syntax,

25 Febraury 2014. Available at: <https://www.w3.org/TR/rdf11-concepts/>.

DRAGAN, L. et al. Converging Web and Desktop Data with Konduit. Proc. of Scripting

and Development for the Semantic Web Workshop. 2009. p. 40-51.

ELBASSUONI, S.; BLANCO, R. Keyword search over RDF graphs. Proceedings of the

20th ACM International Conference on Information and Knowledge Management.

Glasgow, UK: ACM. 2011. p. 237-242.

GARCÍA, G. M. et al. RDF Keyword-based Query Technology Meets a Real-World

Dataset. 20th International Conference on Extending Database Technology (EDBT).

March 2017.

HARRIS, S.; SEABORNE, A. SPARQL 1.1 Query Language, 21 March 2013. Available

at: <https://www.w3.org/TR/sparql11-query/>.

HUANG, J.; ABADI, D. J.; REN, K. Scalable SPARQL querying of large RDF graphs.

Proceedings of the VLDB Endowment, v. 4, n. 11, p. 1123-1134, 2011.

MÖLLER, K.; DRAGAN, L.; AMBRUS, O. A Visual Interface for Building SPARQL

Queries in Konduit. Proceedings of the 2007 International Conference on Posters and

Demonstrations. 2008. p. 68-69.

MURRAY, C. Spatial and Graph RDF Semantic Graph Developer's Guide 12c.

Oracle., p. 636. 2014. (E51611-06).

DBD
PUC-Rio - Certificação Digital Nº 1513152/CA

59

NIKOLOV, A.; SCHWARTE, A.; HÜTTER, C. Fedsearch Efficiently combining

structured queries and full-text search in a sparql federation. International Semantic

Web Conference. Sydney, Australia: Springer Berlin Heidelberg. 2013. p. 427-443.

PARR, T. The definitive ANTLR 4 reference. 2013.

PRUD'HOMMEAUX, E.; BUIL-ARANDA, C. SPARQL 1.1 Federated Query, 21

March 2013. Available at: <https://www.w3.org/TR/sparql11-federated-query/>.

QUILITZ, BASTIAN; LESER, U. Querying distributed RDF data sources with

SPARQL. European Semantic Web Conference. Tenerife, Spain: Springer Berlin

Heidelberg. 2008.

RAKHMAWATI, N. A. et al. A comparison of federation over SPARQL endpoints

frameworks. International Conference on Knowledge Engineering and the Semantic Web.

St. Petersburg, Russia: Springer Berlin Heidelberg. 2013a. p. 132-146.

RAKHMAWATI, N. A. et al. Querying over Federated SPARQL Endpoints---A State

of the Art Survey. DERI – DIGITAL ENTERPRISE RESEARCH INSTITUTE. Galway,

Ireland. 2013b. (arXiv preprint arXiv:1306.1723).

SCHWARTE, A. et al. Fedx Optimization techniques for federated query processing

on linked data. International Semantic Web Conference. Bonn, Germany: Springer Berlin

Heidelberg. 2011. p. 601-616.

VOLZ, J. et al. Discovering and maintaining links on the web of data. International

Semantic Web Conference. Chantilly, VA, USA: Springer Berlin Heidelberg. 2009. p. 650-

665.

ZENG, KAI et al. A Distributed Graph Engine for Web Scale RDF Data. Proceedings

of the VLDB Endowment. February 2013. p. 265-276.

ZENZ, G. et al. From keywords to semantic queries—Incremental query construction

on the Semantic Web. Web Semantics: Science, Services and Agents on the World Wide

Web, v. 7, n. 3, p. 166-176, 2009.

ZHOU, Q. et al. SPARK adapting keyword query to semantic search. The Semantic

Web. 2007. p. 694-707.

DBD
PUC-Rio - Certificação Digital Nº 1513152/CA

60

Appendix

Appendix I: Setting Up the SPARQL 1.1 Federated Query in Oracle

12c

Oracle Spatial and Graph, a native option for Oracle Database, enables to store

semantic data and ontologies, with native support for World Wide Web Consortium

(W3C) standards ̶ RDF and OWL are standards for representing and defining

semantic data and SPARQL is a query language designed specifically for graph

analysis.

To query semantic data, use the SEM_MATCH table function with following

specification. Their parameters are explained in (MURRAY, 2014). However, it is

important to highlight that, the query and models attributes are required and the

others are optional (that is, each can be a null value).

SEM_MATCH(

 query VARCHAR2,

 models SEM_MODELS,

 rulebases SEM_RULEBASES,

 aliases SEM_ALIASES,

 filter VARCHAR2,

 index_status VARCHAR2,

 options VARCHAR2,

 graphs SEM_GRAPHS,

 named_graphs SEM_GRAPHS

)RETURN ANYDATASET;

The SEM_MATCH function also supports SPARQL 1.1 Federated Query. How

the SERVICE construct can be used to retrieve results from a specified SPARQL

endpoint URL, it is feasible to combine local RDF data (native RDF data or RDF

views of relational data) with other, possibly remote, RDF data served by a W3C

standards-compliant SPARQL endpoint.

In this way and whereas the local RDF triples are stored in the model called

family, the example of the SPARQL query presented in Section 2.3 would be

written as follows:

DBD
PUC-Rio - Certificação Digital Nº 1513152/CA

61

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT name

FROM SEM_MATCH(

 'SELECT ?name

 WHERE

 {

 <http://example.org/myfoaf/I> foaf:knows ?person .

 SERVICE SILENT <http://people.example.org/sparql>

 { ?person foaf:name ?name . }

 }',

SEM_Models('family'), null, null, null, null, null));

 The Mediator Component will be located in an Oracle user. In order to use

the SERVICE construct within SEM_MATCH queries it needs to grant EXECUTE

privilege on the SPARQL_SERVICE function in MDSYS user by a user with DBA

privileges, it is possible running the following statement:

grant execute on mdsys.sparql_service to <mediator_user>;

Furthermore, an Access Control List (ACL) should be used to grant the

CONNECT privilege to the user attempting a federated query. The following a

template is presented to create a new ACL to grant the user the CONNECT privilege

and assigns the domain * to the ACL.

BEGIN

dbms_network_acl_admin.create_acl (

 acl => 'test.xml',

 description => 'Allow <USER_NAME> to query SPARQL endpoints',

 principal => '<USER_NAME>',

 is_grant => true,

 privilege => 'connect'

);

dbms_network_acl_admin.assign_acl (

 acl => 'test.xml',

 host => '*'

);

END;

DBD
PUC-Rio - Certificação Digital Nº 1513152/CA

62

Appendix II: Setting Up the SPARQL Endpoint Service in Oracle 12c

Oracle Spatial and Graph enables to set up a SPARQL web service endpoint by

deploying the joseki.war file, available to download in http://www.oracle.com/

technetwork/database/options/spatialandgraph/downloads/index-156999.html. It is

possible to deploy this file in WebLogic Server or Apache Tomcat or JBoss. In this

work, the Application Server used was JBoss AS 7.1.1.Final13.

Firstly, it is mandatory that the Oracle 12 user who owns the RDF graph that

will be exported to the SPARQL Endpoint has CREATE PROCEDURE privileges14.

To deploy Joseki in JBoss 7.1.1.Final, we followed these steps, also available

in Oracle Database Online Documentation 12c Release 1 (12.1)15.

1. Download and install JBoss Application Server 7.1.1.Final.

2. Install the JDBC driver:

create directory <JBOSS_file>/modules/oracle/jdbc/main/

3. Copy ojdbc6.jar16 into this directory.

4. Create module.xml in this directory with the following content:

<?xml version="1.0" encoding="UTF-8"?>

 <module xmlns="urn:jboss:module:1.0" name="oracle.jdbc">

 <resources>

 <resource-root path="ojdbc6.jar"/>

 </resources>

 <dependencies>

 <module name="javax.api"/>

 <module name="javax.transaction.api"/>

 </dependencies>

</module>

13 http://jbossas.jboss.org/downloads/
14 https://community.oracle.com/thread/4000821
15 https://docs.oracle.com/database/121/RDFRM/GUID-A18AD59B-10B6-41E3-8791-

EF9A8DE4A1F6.htm#RDFRM745
16 http://www.oracle.com/technetwork/apps-tech/jdbc-112010-090769.html

DBD
PUC-Rio - Certificação Digital Nº 1513152/CA

63

5. Modify <JBOSS_file>/standalone/configuration/standalone.xml by

adding the highlighted line:

 ...

 <drivers>

 <driver name="OracleJDBCDriver" module="oracle.jdbc"/>

 <driver name="h2" module="com.h2database.h2">

 <xa-datasource-class>

 org.h2.jdbcx.JdbcDataSource

 </xa-datasource-class>

 </driver>

 </drivers>

 ...

6. Create the necessary data source.

a. Log into the JBoss AS Administration Console:

http://<hostname>:9990/console/App.html#server-overview

b. Click Datasource.

c. Click Profile.

d. Click Add, and enter the following:

Name: OracleSemDS

JNDI Name: java:jboss/datasources/OracleSemDS

e. Select OracleJDBCDirver

f. Click Next.

The following information is displayed:

Connection URL: jdbc:oracle:thin:@hostname:port:sid

Username: scott

Password: tiger

Security Domain: (Leave empty)

g. Customize the highlighted information and leave Security Domain blank,

and click Done.

7. Highlight this new data source, click Enable, and then click Confirm.

8. Copy the joseki.war file in following directory:

<JBOSS_file>\standalone\deployments\

9. Deploy the joseki.war file using the JBoss Administration Console.

a. Go to the following page:

http://<hostname>:9990/console/App.html#deployments

b. Click Deployments.

c. Click Manage Deployments.

d. Click Add and specify the joseki.war file.

DBD
PUC-Rio - Certificação Digital Nº 1513152/CA

64

10. Verify if the deployment by using a Web browser to connect to a URL in the

following format (assume that the Web application is deployed at port 8080):

http://<hostname>:8080/joseki.

We should see a page titled Oracle SPARQL Service Endpoint using Joseki, and

the first text box should contain an example SPARQL query.

11. Configure the joseki-config.ttl file:

By default, the joseki-config.ttl file contains an oracle:Dataset definition

using a model named M_NAMED_GRAPHS. The following snippet shows the

configuration.

<#oracle> rdf:type oracle:Dataset;

 joseki:poolSize 1 ; ## Number of concurrent connections

 ## allowed to this dataset.

 oracle:connection

 [a oracle:OracleConnection ;

];

 oracle:allGraphs [oracle:firstModel "M_NAMED_GRAPHS"] .

The oracle:allGraphs predicate denotes that the SPARQL service

endpoint will serve queries using all graphs stored in the

M_NAMED_GRAPHS model. However, it is necessary to change this value

by the real model name stored in Oracle user. Also, we recommend increase the

value of joseki:poolSize property.

DBD
PUC-Rio - Certificação Digital Nº 1513152/CA

65

Appendix III: Common SQL Queries to Insert Metadata into Local

RDF Graph

Q1. Insert the order of the classes by the cardinality

INSERT INTO RDF_DATA (TRIPLE)

SELECT SDO_RDF_TRIPLE_S('MODEL_NAME',

 subj$rdfterm, pred$rdfterm, '"' || rownum || '"')

FROM (SELECT subj$rdfterm, pred$rdfterm

FROM TABLE(SEM_MATCH(

'CONSTRUCT { ?c <PREFIX/order> ?cnt }

 WHERE{{SELECT ?c (COUNT(?r) as ?cnt)

 WHERE{ ?r rdf:type ?c .

 ?c rdf:type rdfs:Class }

 GROUP BY ?c }}',

SEM_MODELS('MODEL_NAME'), NULL, NULL, NULL))

ORDER BY to_number(obj) DESC);

Q2. Insert the order of the properties by the cardinality

INSERT INTO RDF_DATA (TRIPLE)

SELECT SDO_RDF_TRIPLE_S('MODEL_NAME',

 subj$rdfterm, pred$rdfterm, '"' || rownum || '"')

FROM (SELECT subj$rdfterm, pred$rdfterm

FROM TABLE(SEM_MATCH(

'CONSTRUCT { ?p <PREFIX/order> ?cnt }

 WHERE{{

 SELECT ?p (COUNT(*) as ?cnt)

 WHERE{ ?s ?p ?o .

 ?p rdf:type rdf:Property }

 GROUP BY ?p }}',

SEM_MODELS('MODEL_NAME'), NULL, NULL, NULL))

ORDER BY to_number(obj) DESC);

Q3. Indexing TRUE the properties with STRING type

INSERT INTO RDF_DATA(TRIPLE)

SELECT SDO_RDF_TRIPLE_S('MODEL_NAME',

 subj$rdfterm, pred$rdfterm, obj$rdfterm)

FROM TABLE(SEM_MATCH(

'CONSTRUCT { ?p <PREFIX/indexing> "true"}

 WHERE{

 SELECT distinct ?p

 WHERE { ?p rdf:type rdf:Property .

 ?p rdfs:range ?rg .

 FILTER(?rg in

 (<http://www.w3.org/2000/01/rdf-schema#Literal>,

 <http://www.w3.org/2001/XMLSchema#string>))

 FILTER(?p != rdfs:label)

 }}',

SEM_MODELS('MODEL_NAME'), NULL, NULL, NULL));

DBD
PUC-Rio - Certificação Digital Nº 1513152/CA

66

Q4. Insert the default group order

INSERT INTO RDF_DATA (TRIPLE)

VALUES (SDO_RDF_TRIPLE_S('MODEL_NAME',

 '<PREFIX#group_default>',

 '<PREFIX/order>',

 '"' || 1 || '"'));

Q5. Insert all properties in the “default” group

INSERT INTO RDF_DATA (TRIPLE)

SELECT SDO_RDF_TRIPLE_S('MODEL_NAME',

 subj$rdfterm, pred$rdfterm, obj$rdfterm)

FROM TABLE(SEM_MATCH(

'CONSTRUCT { ?p rdfs:subPropertyOf <PREFIX#group_default> }

 WHERE { ?p rdf:type rdf:Property }',

SEM_MODELS('MODEL_NAME'),NULL, NULL, NULL));

Q6. Insert the triple joins ?p rdf:type owl:ObjectProperty

INSERT INTO RDF_DATA (TRIPLE)

SELECT SDO_RDF_TRIPLE_S('MODEL_NAME',

 subj$rdfterm, pred$rdfterm, obj$rdfterm)

FROM TABLE(SEM_MATCH(

'CONSTRUCT { ?p rdf:type owl:ObjectProperty }

 WHERE { SELECT distinct ?p

 WHERE { ?p rdf:type rdf:Property .

 ?s ?p ?o .

 FILTER (isIRI(?o)) }

}',

SEM_MODELS('MODEL_NAME'), NULL, NULL, NULL

DBD
PUC-Rio - Certificação Digital Nº 1513152/CA

	Bibliographic data
	Inclui bibliografia
	Acknowledgments
	Abstract
	Resumo
	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Motivation
	1.2 Goal and Contributions
	1.3 Dissertation Structure

	2 Background
	2.1 Resource Description Framework (RDF)
	2.2 SPARQL 1.1 Query Language
	2.3 SPARQL 1.1 Federated Query Extension
	2.4 Keyword-based Queries over Centralized RDF Graphs
	2.5 Keyword-based Queries over Federated RDF Graphs

	3 Related Work
	3.1 Keyword Search over RDF Graphs in Centralized Environments
	3.2 Federated Queries over SPARQL Endpoints

	4 Compiling Keyword-based Queries into Federated SPARQL Queries
	4.1 Architecture
	4.2 Components Description
	4.2.1. Storage Component
	4.2.2. Mediated Schema Component
	4.2.3. Mediator Component

	4.3 Constructing the Federated SPARQL Query
	4.3.1. Overview of the Federated Translation Algorithm
	4.3.2. Computing the Set of Local Queries
	4.3.3. Computing the External Joins of the Federated Query
	4.3.4. Computing the UNIONs
	4.3.5. Defining the WHERE clause of the Federated SPARQL Query
	4.3.6. Defining the TARGET clause of the Federated SPARQL Query

	5 Experiments
	5.1 Data Configuration
	5.1.1. DBpedia RDF Dataset Setup
	5.1.2. DrugBank RDF Data Setup
	5.1.3. Kegg Drug RDF Data Setup
	5.1.4. Common Settings
	5.1.5. Mediated Schema Composition and Setting

	5.2 Experiments with Selected Data
	5.2.1. Translated Queries over a Single SPARQL Endpoint
	5.2.2. Translated Queries with only external joins in the WHERE clause
	5.2.3. Translated Queries with only UNIONs in the WHERE clause
	5.2.4. Translated Queries with All Elements in the WHERE clause

	5.3 Discussion of the Results

	6 Conclusions
	7 Bibliography
	Appendix
	Appendix I: Setting Up the SPARQL 1.1 Federated Query in Oracle 12c
	Appendix II: Setting Up the SPARQL Endpoint Service in Oracle 12c
	Appendix III: Common SQL Queries to Insert Metadata into Local RDF Graph

