

Gil Capote Rodríguez

Produção e Caracterização de Filmes Finos de Carbono Amorfo Hidrogenado Depositados em Plasmas de Metano Diluídos por Gases Nobres

Tese de Doutorado

Tese apresentada ao Programa de Pós-graduação em Física da PUC-Rio como requisito parcial para obtenção do título de Doutor em Física.

Orientador: Prof. Fernando Lázaro Freire Jr.

Rio de Janeiro Setembro de 2003

Gil Capote Rodríguez

Produção e Caracterização de Filmes Finos de Carbono Amorfo Hidrogenado Depositados em Plasmas de Metano Diluídos por Gases Nobres

Tese apresentada como requisito parcial para obtenção do grau de Doutor pelo Programa de Pós-Graduação em Física da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

> Prof. Fernando Lázaro Freire Júnior Orientador Departamento de Física – PUC-Rio

Prof. Dante Ferreira Franceschini Filho UFF

> Prof. Israel Jacob Rabin Baumvol UFRGS

Prof. Sérgio Àlvaro de Souza Camargo Jr. UFRJ

> Prof. Vladimir Jesus Trava-Airoldi INPE

> > Prof. Ney Augusto Dumont Coordenador Setorial do Centro Técnico Científico – PUC-Rio

Rio de Janeiro, 23 de setembro de 2003

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Gil Capote Rodríguez

Graduou-se em Física na Faculdade de Física da Universidade Estatal de Sant Petersburgo, Rússia, em 1985, obtendo o titulo de "*master of science*" em Física e Matemática. Trabalhou durante 15 anos no Centro de Estudos Aplicados ao Desenvolvimento Nuclear (CEADEN) na Havana, Cuba. Dirigiu e participou em projetos de pesquisas no CEADEN. Participou de diversos congressos na área de Física Nuclear e Física da Matéria Condensada em Cuba, no Brasil e em outros paises. Publicou artigos científicos em diversos jornais internacionais. Atualmente pertence ao Laboratório de Revestimentos Protetores da PUC-Rio.

Ficha Catalográfica

Rodríguez, Gil Capote

Produção e Caracterização de Filmes Finos de Carbono Amorfo Hidrogenado Depositados em Plasmas de Metano Diluídos por Gases Nobres/ Gil Capote Rodríguez; orientador: Fernando Lázaro Freire Jr. – Rio de Janeiro: PUC, Departamento de Física, 2003.

v., 181 f.: 96 il. ; 29,7 cm

1. Tese (doutorado) – Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Física.

Inclui referências bibliográficas.

Física – Teses. 2. Carbono; 3. Filmes Finos;
 Metano; 5. Gases Nobres; 6. Propriedades Mecânicas;
 Microestrutura; 8. Plasma. I. Freire Jr., Fernando Lázaro.
 II. Pontifícia Universidade Católica do Rio de Janeiro.
 Departamento de Física. III. Título.

PUC-Rio - Certificação Digital Nº 9924963/CA

Aos meus filhos, Gilito, Gretell e Ariel

Agradecimentos

Ao meu orientador Professor Fernando Lázaro Freire Jr., pela oportunidade de trabalho, pela sua orientação e incentivo, pelo profissionalismo, seriedade e pela amizade.

A minha esposa Martha Lissette, pelo amor e carinho de todas as horas, pela confiança, ajuda e compreensão.

Aos meus filhos, pela motivação.

Aos meus pais, pelo incentivo e carinho de todos os momentos.

A todos os professores do Departamento de Física, pelos conhecimentos adquiridos durante o doutorado.

Ao Dr. Luiz Jacobsohn, pelas medidas de dureza, pela ajuda brindada nos primeiros momentos e pela amizade.

Ao Prof. Rodrigo Prioli, pelas medidas de microscopia de força atômica e pela sua amizade.

Ao Prof. Zanatta, pelas medidas dos espectros Raman.

À Cássia, pela ajuda na preparação das amostras.

Aos funcionários do Laboratório Van de Graaff, Nélio, Sérgio, Luiz Alberto, Edson, Nestor, Nilton e Carlos Augusto, pela assistência prestada em todos os momentos.

A Tânia, a Giza e a Jorge pela atenção e ajuda.

Aos meus colegas do Laboratório Van de Graaff, pela amizade e ajuda brindada, em especial ao Marcelo pela sua ajuda e amizade.

Ao CNPq e à PUC-Rio, pelos auxílios concedidos para a realização deste trabalho.

A todos aqueles que contribuíram de alguma forma para a realização desta tese. Ao Brasil pela oportunidade.

Resumo

Rodríguez, Gil Capote; Freire Jr., Fernando Lázaro. **Produção e Caracterização de Filmes Finos de Carbono Amorfo Hidrogenado Depositados em Plasmas de Metano Diluídos por Gases Nobres.** Rio de Janeiro, 2003. 181p. Tese de Doutorado – Departamento de Física, Pontifícia Universidade Católica do Rio de Janeiro.

Neste trabalho são apresentados os efeitos da diluição da atmosfera precursora de metano por três gases nobres (Ar, Ne e He) nas propriedades mecânicas e na microestrutura de filmes de carbono amorfo hidrogenado (a-C:H). Tanto a influência da diluição da atmosfera precursora de metano (para V_b =-350 V), como da variação da tensão de autopolarização (V_b) são estudadas. A influência da temperatura do substrato também é estudada para três temperaturas do substrato (250 K, 300 K e 420 K) em filmes depositados em atmosferas de 100% CH₄ e 2% CH₄+98% Ar. Os filmes foram depositados utilizando a técnica de Deposição Química na Fase Vapor Assistida por Plasma (PECVD). As propriedades mecânicas e estruturais foram investigadas com o uso das técnicas nucleares (retroespalhamento Rutherford e detecção de íons de recuo elástico), espectroscopia de absorção no infravermelho, espectroscopia Raman, microscopia de força atômica, medidas de ângulo de contacto, medidas de tensão interna (por perfilometria) e medidas da dureza (por nanoindentação). Os resultados obtidos mostraram que a diluição da atmosfera precursora de metano por gases nobres não induz modificações substanciais à microestrutura do filme ou às propriedades mecânicas. Pelo contrário, os resultados mostraram que tanto a composição, como a microestrutura e as propriedades mecânicas dos filmes são fortemente dependentes da energia de bombardeamento dos íons. Também foi observada uma dependência das propriedades mecânicas e estruturais dos filmes em função da temperatura do substrato. Resultados experimentais importantes e originais foram obtidos a partir da medida da rugosidade dos filmes usando microscopia de força atômica que sugerem uma transição nos mecanismos de formação dos filmes de a-C:H de predominantemente por adsorção/difusão para a predominância dos processos balísticos.

Palavras-chave

Carbono; filmes finos; metano; gases nobres; propriedades mecânicas; microestrutura; plasma.

Abstract

Rodríguez, Gil Capote; Freire Jr., Fernando Lázaro. **Production and Characterization of Hydrogenated Amorphous Carbon Thin Films Deposited in Methane Plasmas Diluted by Noble Gases**. Rio de Janeiro, 2003. 181p. PhD. These – Departamento de Física, Pontifícia Universidade Católica do Rio de Janeiro.

In this work, the effects of the dilution of the precursor methane atmosphere by three noble gases (Ar, Ne and He) on the mechanical properties and the microstructure of hydrogenated amorphous carbon films (a-C:H) are presented. The influence of the precursor atmosphere (for V_b =-350 V) and the variation of the self-bias voltage (V_b) are studied. The influence of the substrate temperature also is studied for three temperatures 250 K, 300 K and 420 K for films deposited in atmospheres of 100% CH₄ and 2% CH₄ + 98% Ar. The films were deposited by Plasma Enhance Chemical Vapor Deposition (PECVD). The mechanical and structural properties were investigated with the use of the nuclear techniques (Rutherford backscattering and elastic recoil detection analysis), infrared and Raman spectroscopies, atomic force microscopy, contact angle measurements, internal stress and hardness measurements. The results shown that the precursor atmosphere dilution by noble gases did not induce substantial modifications in the microstructure or in the mechanical properties of the films. On the other side, the results shown that the composition, the microstructure and the mechanical properties of the films are strongly dependent on the ion bombardment regime. The dependence of the mechanical and structural properties of the films as a function of the substrate temperature was also investigated. Experimental results had been obtained from the film roughness measurements using atomic force microscopy. These results suggest the transition from predominantly adsorption/diffusion mechanisms to the predominance of the ballistic processes in the formation mechanisms of the a-C:H films.

Keywords

Carbon; thin films; methane; noble gases; mechanical properties; microstructure; plasma

Sumário

1. Introdução	23
1.1. Carbono Amorfo Hidrogenado	23
1.2. Motivação e Objetivos	24
1.3. Estrutura da Tese	25

2. Carbono Amorfo Hidrogenado	27
2.1. Introdução	27
2.2. Mecanismos de Deposição dos Filmes de a-C:H	29
2.2.1. Mecanismo de Subimplantação Iônica	30
2.2.2. Mecanismo da Camada Absorvida	32
2.3. Estrutura Atômica do Carbono Amorfo	33
2.4. Efeitos da Diluição da Atmosfera Precursora de CH4 por	
Gases Nobres na Produção de Filmes de a-C:H	35
2.5. Efeitos da Temperatura do Substrato nos Filmes	
Depositados	42

 Deposição e Caracterização dos Filmes 	45
3.1. Introdução	45
3.2. Deposição dos Filmes	45
3.2.1. Deposição por PECVD	46
3.2.2. Sistema de Deposição	47
3.3. Técnicas Utilizadas na Caracterização dos Filmes	53
3.3.1. Técnicas de Análise Química por Feixe de Íons (IBA)	53
3.3.1.1. Retroespalhamento Rutherford (RBS)	54
3.3.1.2. Análise por Detecção de Íons de Recuo Elástico (ERD)	57
3.3.2. Análise Estrutural dos Filmes	58
3.3.2.1. Espectroscopia Raman	58

62
64
64
66
68
68
69

 Diluição da Atmosfera de Metano por Gases Nobres 	72
4.1. Introdução	72
4.2. Taxa de Deposição	72
4.3. Composição Química e Densidade Atômica	74
4.4. Análise Estrutural dos Filmes	78
4.4.1. Espectroscopia no Infravermelho	78
4.4.2. Espectroscopia Raman	80
4.5. Propriedades Mecânicas	83
4.5.1. Tensão Interna	83
4.5.2. Dureza	84
4.6. Topografia e rugosidade	85
4.7. Considerações Finais	86

 Influência da Tensão de Autopolarização 	89
5.1. Introdução	89
5.2. Taxa de Deposição	89
5.3. Composição Química e Densidade Atômica	91
5.4. Análise Estrutural dos Filmes	93
5.4.1. Espectroscopia no Infravermelho	93
5.4.2. Espectroscopia Raman	105
5.5. Propriedades Mecânicas	111
5.5.1. Tensão Interna	111
5.5.2. Dureza	113
5.6. Ângulo de Contato	115

5.7. Considerações Finais

6. Efeito da Temperatura do Substrato	117
6.1. Introdução	117
6.2. Diluição da Atmosfera Precursora de Metano por Argônio	117
6.2.1. Taxa de Deposição	117
6.2.2. Composição Química e Densidade Atômica	120
6.2.3. Análise Estrutural dos Filmes	123
6.2.4. Propriedades Mecânicas dos Filmes	126
6.2.5. Ângulo de Contato	129
6.3. Influência da Tensão de Autopolarização	130
6.3.1. Taxa de Deposição	130
6.3.2. Composição Química e Densidade Atômica	134
6.3.3. Análise Estrutural dos Filmes	136
6.3.3.1. Espectroscopia no Infravermelho	136
6.3.3.2. Espectroscopia Raman	150
6.3.4. Propriedades Mecânicas	158
6.3.4.1. Tensão Interna	158
6.3.4.2. Dureza	159
6.3.5. Caracterização Superficial	161
6.3.5.1. Medida do Ângulo de Contato	161
6.3.5.2. Topografia e Rugosidade	162
7. Conclusões e Perspectivas	174

8. Referências Bibliográficas 177

Lista de Figuras

Figura 2.1 - Representação esquemática das três formas de	
ligação do carbono.	28
Figura 2.2 - Diagrama de fase ternário mostrando os possíveis	
tipos de carbono amorfo em função das concentrações de	
ligações <i>sp</i> ², <i>sp</i> ³ e de hidrogênio.	29
Figura 2.3 - Esquema dos diferentes processos envolvidos no	
mecanismo de crescimento dos filmes de a-C:H.	30
Figura 2.4 - Esquema do processo de densificação por	
subimplantação.	31
Figura 2.5 - Esquema das bases do modelo de subimplantação:	
a penetração direta, a penetração indireta ou por colisão com	
recuo ("knock-on") dos átomos da superfície e a relaxação da	
região densificada.	32
Figura 2.6 - Diagrama esquemático da estrutura de bandas do	
carbono amorfo.	34
Figura 2.7 - Esquema das possíveis estruturas que podem estar	
pressentes no carbono amorfo: anéis grafiticos/aromáticos,	
cadeias olefínicas (=), tetraedros e ligações terminais com	
hidrogênio.	34
Figura 2.8 - Densidade de espécies radicais no final da região	
da descarga ($z = 4$ cm) em dependência da concentração de	
Ar.	39
Figura 3.1 - Sistema de deposição do Laboratório de	
Revestimentos Protetores da PUC-Rio.	48
Figura 3.2 - Sistema de esfriamento usando vapor de nitrogênio	
liquido.	49
Figura 3.3 - Montagem utilizada para aquecer os substratos:	
a) Resistência; b) Posição na câmara.	50

Figura 3.4 - Diferentes plasmas utilizados: a) 100% CH ₄ ;	
b) 2% CH ₄ + Ar; c) 2% CH ₄ + Ne e d) 2% CH ₄ + He.	52
Figura 3.5 - Espalhamento elástico em ângulo traseiro de um	
íon do feixe de massa M1 por um átomo do alvo de massa M2,	
$\operatorname{com} M_2 > M_1.$	55
Figura 3.6 - Espectro Raman de um filme de a-C:H obtido pela	
técnica de PECVD em um plasma de metano e V_b = -350 V.	59
Figura 3.7 - Modos vibracionais C-H que contribuem para o	
espectro de absorção infravermelho dos filmes de a-C:H. Os	
modos de uma mesma configuração estrutural, mas com	
simetria diferente, são conectados por linhas tracejadas.	64
Figura 3.8 - Esquema de detecção de deflexão de cantilever por	
meio de um feixe de laser.	66
Figura 3.9 - Esquema ilustrativo do ângulo de contato entre o	
líquido e a superfície sólida.	67
Figura 3.10 - Esquema do método padrão de indentação de	
filmes.	70
Figura 3.11 - Curva típica de carga-deslocamento.	71
Figura 4.1 - Taxa de deposição dos filmes a-C:H depositados	
com V_b = -350 V em função da pressão parcial de CH ₄ .	73
Figura 4.2 - Espectro de RBS de um filme depositado em uma	
atmosfera de 2% CH ₄ e 98% Ar e com V_b = -350 V.	75
Figura 4.3 - Espectro de ERD de um filme depositado em uma	
atmosfera de 2% CH ₄ e 98% Ar, com V_b = -350 V e 200 nm de	
espessura.	75
Figura 4.4 - Densidade atômica dos filmes em função da	
pressão parcial de metano para os três gases nobres	
estudados.	77
Figura 4.5 - Espectros de infravermelho dos filmes de a-C:H	
depositados com V_b = -350 V, obtidos com a atmosfera	
precursora de CH4 diluída com Ar (a); dependência da	
intensidade total de absorção em função da pressão parcial de	

o da pressão

CH ₄ (b). As pressões parciais de CH ₄ na atmosfera precursora	
são indicadas em (a).	79
Figura 4.6 - Espectros Raman obtidos dos filmes de a-C:H com	
V_b = -350 V: (a) depositados com pressões parciais de CH ₄ de	
2, 50 e 100 % e atmosferas de CH_4/Ar ; (b) para todas as	
misturas de gases utilizadas.	80
Figura 4.7 - Razão I_D/I_G em função da pressão parcial de	
metano.	81
Figura 4.8 - Posição e largura da banda <i>G</i> .	82
Figura 4.9 - Tensão interna dos filmes de a-C:H em função da	
pressão parcial de CH4.	84
Figura 4.10 - Dureza dos filmes de a-C:H depositados com	
V_b = -350 V em função da pressão parcial de CH ₄ para as três	
atmosferas utilizadas.	85
Figura 4.11 - Rugosidade r.m.s. em função da concentração de	
CH ₄ nos filmes.	86
Figura 5.1 - Taxa de deposição dos filmes de a-C:H obtidos em	
função da tensão da autopolarização para metano puro e	
pressões parciais de CH4 de 2% em atmosferas precursoras de	
Ar/CH ₄ , Ne/CH ₄ e He/CH ₄ .	90
Figura 5.2 - Conteúdo de hidrogênio presente nos filmes em	
função de V_b para as quatro atmosferas precursoras utilizadas.	92
Figura 5.3 - Densidade atômica dos filmes em função de V_b	
para as quatro atmosferas precursoras utilizadas.	92
Figura 5.4 - Espectros de infravermelho normalizados pela	
espessura para filmes de a-C:H em função da tensão de	
autopolarização: 2% CH ₄ + 98% Ar e100% CH ₄ .	94
Figura 5.5 - Resultados da deconvolução dos espectros usando	
Gaussianas para atmosfera de 2% CH ₄ + 98% Ar: a) V_b = -75 V;	
b) $V_b = -200$ V. As bandas analisadas são identificadas.	96
Figura 5.6 - Resultados da deconvolução dos espectros	
usando Gaussianas para atmosfera de 2% CH ₄ + 98% Ar:	
a) V_b = -350 V; b) V_b = -500 V. As bandas analisadas são	
identificadas.	97

Figura 5.7 - Resultados da deconvolução dos espectros usando	
Gaussianas para atmosfera de 100% CH ₄ : a) V_b = -75 V;	
b) $V_b = -200$ V. As bandas analisadas são identificadas.	98
Figura 5.8 - Resultados da deconvolução dos espectros usando	
Gaussianas para atmosfera de 100% CH ₄ : a) V_b = -350 V;	
b) $V_b = -500$ V. As bandas analisadas são identificadas.	99
Figura 5.9 - Posição das bandas C-H do modo vibracional de	
estiramento em função da tensão de autopolarização: 2% CH_4	
+ 98% Ar e 100% CH ₄ .	100
Figura 5.10 - Larguras das bandas em função de V_b para filmes	
depositados com atmosfera de 2% CH ₄ + 98% Ar.	101
Figura 5.11 - Larguras das bandas em função de V_b para filmes	
depositados com atmosfera de 100% CH ₄ .	102
Figura 5.12 - Intensidades relativas das bandas em função de	
V_b para filmes depositados com atmosfera de 2% CH ₄ + 98% Ar	
e 100% CH ₄ .	103
Figura 5.13 - Intensidade integrada das bandas do modo de	
estiramento em função de V_b para filmes depositados com	
atmosferas de 2% CH ₄ + 98% Ar e de 100% CH ₄ .	105
Figura 5.14 - Espectros Raman obtidos dos filmes depositados	
com pressão parcial de 2% CH4 + 98% Ar (a) e 100% CH4 (b)	
para diferentes tensões de autopolarização. As setas indicam a	
posição dos picos <i>D</i> e <i>G.</i>	106
Figura 5.15 - Espectros Raman obtidos dos filmes depositados	
com pressão parcial de 2% CH_4 + 98% He (a) e 2% CH_4 + 98%	
Ne (b) para diferentes tensões de autopolarização. As setas	
indicam a posição das bandas <i>D</i> e <i>G.</i>	107
Figura 5.16 - Ajuste de um espectro Raman de um filme	
depositado em atmosfera de 2% CH ₄ + 98% Ar e V_b = -350 V.	
As setas indicam as bandas $D \in G$.	108
Figura 5.17 - Razão das intensidades das bandas $D \in G$, I_D/I_G ,	
em função de V_b para as quatro atmosferas precursoras	
utilizadas.	108

Figura 5.18 - Posição e largura da banda G em função de V_b	
para as quatro atmosferas precursoras utilizadas.	109
Figura 5.19 - Posição e largura da banda D em função de V_b	
para as quatro atmosferas precursoras utilizadas.	110
Figura 5.20 - Tensão interna dos filmes em função de V_b para	
os gases estudados.	113
Figura 5.21 - Dureza em função da tensão de autopolarização	
para pressões parciais de CH4 de 2 e 100 % e misturas de (Ar,	
Ne, He)/metano.	114
Figura 5.22 - Dependência do ângulo de contato com V_b para	
os filmes depositados em atmosferas de 100% CH4 e de	
2% CH ₄ + 98% Ar.	115
Figura 6.1 - Taxa de deposição dos filmes a-C:H depositados	
com V_b = -350 V a diferentes temperaturas do substrato em	
função da pressão parcial de CH4.	119
Figura 6.2 - Diagrama de Arrhenius da taxa de deposição dos	
filmes a-C:H depositados com V_b = -350 V para diferentes	
pressões parciais de CH4 em função do inverso da temperatura	
do substrato.	119
Figura 6.3 - Conteúdo de hidrogênio presente nos filmes em	
função da pressão parcial de metano e da temperatura do	
substrato.	121
Figura 6.4 - Micrografia ótica da superfície de um filme	
depositado com pressão parcial de metano de 2%, temperatura	
do substrato de 250 K e V_b = -200 V.	121
Figura 6.5 - Densidade atômica dos filmes em função da	
pressão parcial de metano e da temperatura do substrato.	122
Figura 6.6 - Razão das intensidades das bandas $D \in G$, I_D/I_G ,	
em função da pressão parcial de metano e da temperatura do	
substrato.	123
Figura 6.7 - Posição e largura da banda G em função da	
pressão parcial de metano e da temperatura do substrato.	124
Figura 6.8 - Posição e largura da banda D em função da	

Figura 6.9 - Tensão interna dos filmes em função da pressão	
parcial de metano e da temperatura do substrato.	128
Figura 6.10 - Dureza dos filmes em função da pressão parcial	
de metano e da temperatura do substrato.	128
Figura 6.11 - Ângulo de contato dos filmes em função da	
pressão parcial de metano e da temperatura do substrato.	130
Figura 6.12 - Taxa de deposição em função da tensão da	
autopolarização e da temperatura do substrato para metano	
puro e pressão parcial de CH4 de 2% em atmosfera precursora	
Ar/CH ₄ .	132
Figura 6.13 - Diagramas de Arrhenius da taxa de deposição dos	
filmes a-C:H depositados em função de V_b para metano puro e	
pressão parcial de CH4 de 2% em atmosfera precursora Ar/CH4	
em função do inverso da temperatura do substrato.	133
Figura 6.14 - Conteúdo de hidrogênio presente nos filmes em	
função de V_b e da temperatura para as duas atmosferas	
precursoras utilizadas.	135
Figura 6.15 - Densidade atômica dos filmes em função de V_b e	
da temperatura para as duas atmosferas utilizadas.	135
Figura 6.16 - Espectros de infravermelho de filmes depositados	
à baixa temperatura do substrato (LT) e em atmosferas de 2%	
CH_4 + 98% Ar e 100% CH_4 em função de V_b .	137
Figura 6.17 - Espectros de infravermelho de filmes depositados	
à alta temperatura do substrato (HT) e em atmosferas de 2%	
CH_4 + 98% Ar e 100% CH_4 em função de V_b .	138
Figura 6.18 - Posição das bandas C-H do modo vibracional de	
estiramento de filmes depositados à baixa temperatura do	
substrato (LT) e em atmosferas de 2% CH ₄ + 98% Ar e	
100% CH ₄ em função de V_{b} .	140
Figura 6.19 - Posição das bandas C-H do modo vibracional de	
estiramento de filmes depositados à alta temperatura do	
substrato (HT) e em atmosferas de 2% CH ₄ + 98% Ar e	
100% CH ₄ em função de V_b .	141

Figura 6.20 - Larguras das bandas de filmes depositados à	
baixa temperatura do substrato (LT) e em atmosferas de	
2% CH ₄ + 98% Ar em função de V_b .	142
Figura 6.21 - Larguras das bandas de filmes depositados à	
baixa temperatura do substrato (LT) e em atmosferas de	
100% CH ₄ em função de V_b .	143
Figura 6.22 - Larguras das bandas de filmes depositados à alta	
temperatura do substrato (HT) e em atmosferas de 2% CH ₄ +	
98% Ar em função de <i>V_b</i> .	144
Figura 6.23 - Larguras das bandas de filmes depositados à alta	
temperatura do substrato (HT) e em atmosferas de 100% CH_4	
em função de V_b .	145
Figura 6.24 - Intensidades relativas das bandas de filmes	
depositados à baixa temperatura do substrato (LT) e em	
atmosferas de 2% CH ₄ + 98% Ar e 100% CH ₄ em função de V_b .	147
Figura 6.25 - Intensidades relativas das bandas de filmes	
depositados à alta temperatura do substrato (HT) e em	
atmosferas de 2% CH ₄ + 98% Ar e 100% CH ₄ em função de V_b .	148
Figura 6.26 - Intensidades integradas das bandas do modo de	
estiramento de filmes depositados à três temperaturas do	
substrato (LT, RT e HT) e em atmosferas de 2% CH_4 + 98% Ar	
e 100% CH ₄ em função de V_b .	149
Figura 6.27 - Espectros Raman obtidos dos filmes depositados	
com pressão parcial de 2% CH ₄ + 98% Ar e 100% CH ₄ à baixa	
temperatura do substrato (LT) para diferentes tensões de	
autopolarização. As setas indicam a posição dos picos D e G.	151
Figura 6.28 - Espectros Raman obtidos dos filmes depositados	
com pressão parcial de 2% CH ₄ + 98% Ar e 100% CH ₄ à alta	
temperatura do substrato (HT) para diferentes tensões de	
autopolarização. As setas indicam a posição dos picos D e G.	152
Figura 6.29 - Razão das intensidades das bandas $D \in G$, I_D/I_G ,	
em função de V_b para as três temperaturas do substrato e as	
duas atmosferas precursoras utilizadas: a) LT e RT; b) HT.	153

11.

Figura 6.30 - Posição e largura da banda G em função de V_b	
para LT e RT do substrato e as duas atmosferas precursoras	
utilizadas.	154
Figura 6.31 - Posição e largura da banda G em função de V_b	
para HT do substrato e as duas atmosferas precursoras	
utilizadas.	155
Figura 6.32 - Posição e largura da banda D em função de V_b	
para LT e RT do substrato e as duas atmosferas precursoras	
utilizadas.	156
Figura 6.33 - Posição e largura da banda D em função de V_b	
para HT do substrato e as duas atmosferas precursoras	
utilizadas.	157
Figura 6.34 - Tensão interna dos filmes em função de V_b para	
as três temperaturas do substrato e as duas atmosferas	
precursoras utilizadas.	160
Figura 6.35 - Dureza em função da tensão de autopolarização	
para as três temperaturas do substrato e as duas atmosferas	
precursoras utilizadas.	160
Figura 6.36 - Ângulo de contato em função da tensão de	
autopolarização para as três temperaturas do substrato e as	
duas atmosferas precursoras utilizadas.	162
Figura 6.37 – Rugosidade dos filmes em função de V _b , da	
temperatura do substrato e da atmosfera precursora.	164
Figura 6.38 – Imagens topográficas obtidas por AFM nos filmes	
depositados com atmosfera de metano altamente diluída por	
argônio (98%) para V_b = -75 V e -500 V.	165
Figura 6.39 – Imagens topográficas obtidas por AFM nos filmes	
depositados com atmosfera de metano puro para V_b = -75 V e	
–500 V.	166
Figura 6.40 – Imagens topográficas obtidas por AFM nos filmes	
depositados com atmosferas de metano puro e altamente	
diluídas por Ar para a RT e HT e V_b = -200 V.	167

Figura 6.41 - Densidade do espectro de potência dos filmes	
depositados com atmosfera de 2% metano à RT e V_b = -75 V e	
–500 V.	169
Figura 6.42 - Densidade do espectro de potência dos filmes	
depositados com atmosfera de metano puro à RT e V_b = -75 V	
e -500 V.	170
Figura 6.43 - Densidade do espectro de potência dos filmes	
depositados com atmosfera de metano puro à HT e V_b = -100 V	
e -500 V.	171
Figura 6.44 - Expoente de rugosidade em função da tensão de	
autopolarização para as três condições estudadas: 2% CH ₄ RT;	
100% CH4 RT e 100% CH4 HT.	172

Lista de Tabelas

Tabela 3.1 - Valores da potência em função da V_b para cada gás utilizado. 51 Tabela 3.2 - Modos vibracionais de estiramento ("stretching") 63 das ligações CH_n. Tabela 4.1 - Composição química dos filmes depositados com V_b = -350 V em função da pressão parcial de CH₄ na atmosfera precursora. Os erros experimentais na determinação de cada concentração elementar são aproximadamente de 10 %. 77 Tabela 4.2 - Composição química, taxa de deposição e densidade atômica dos filmes depositados com V_b = -350 V em função do fluxo total de gás para uma pressão parcial fixa de 5% de CH₄ e 95% de Ar. 78