

Hugo Portocarrero

Avaliação do Efeito de Técnicas de Bioengenharia em Parâmetros Hidrossedimentológicos Utilizando Instrumentação Automatizada

TESE DE DOUTORADO

Tese apresentada ao Programa de Pós-graduação em Engenharia Civil da PUC-Rio como requisito parcial para a obtenção do título de Doutor em Engenharia Civil.

> Orientador: Tácio Mauro Pereira de Campos Co-orientador: Aluísio Granato de Andrade

> > Volume I

Rio de Janeiro, Setembro de 2009.

Hugo Portocarrero

Avaliação do Efeito de Técnicas de Bioengenharia em Parâmetros Hidrossedimentológicos Utilizando Instrumentação Automatizada

Tese apresentada ao Programa de Pós-graduação em Engenharia Civil da PUC-Rio como requisito parcial para a obtenção do título de Doutor em Engenharia Civil. Aprovada pela Comissão Examinadora abaixo assinada.

> Prof. Tácio Mauro Pereira de Campos Presidente/Orientador Departamento de Engenharia Civil - PUC-Rio

> > Dr. Aluísio Granato de Andrade Embrapa Solos

Prof. Nelson Ferreira Fernandes Departamento de Geografia – UFRJ

Prof. Fernando Antônio Medeiros Marinho Departamento de Engenharia Civil - EPUSP

Prof. George de Paula Bernardes Departamento de Engenharia Civil - UNESP

> Prof. Franklin Antunes dos Santos Consultor Independente

Prof. Eurípedes do Amaral Vargas Júnior Departamento de Engenharia Civil – PUC-Rio

Prof. José Eugênio Leal Coordenador Setorial do Centro Técnico Científico – PUC-Rio

Rio de Janeiro, 25 de setembro de 2009.

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Hugo Portocarrero

Geógrafo, formado pela UERJ. Concluiu o mestrado em Geografia em 2004, com a dissertação de título – Monitoramento Hidrológico em Voçoroca Submetida a Práticas de Recuperação de Áreas Degradadas: Aeroporto Internacional do Rio de Janeiro Galeão/Tom Jobim. Atua na área de Geotecnia Ambiental como engenheiro de pesquisas da PUC-Rio.

Ficha Catalográfica

Portocarrero, Hugo

Avaliação do efeito de técnicas de bioengenharia em parâmetros hidrossedimentológicos utilizando instrumentação automatizada / Hugo Portocarrero; orientador: Tácio Mauro Pereira de Campos; co-orientador: Aluísio Granato de Andrade. – 2009.

711p 3 v. : il. (color.) ; 30 cm

Tese (Doutorado em Engenharia Civil)-Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2009.

Inclui bibliografia

Agradecimentos

Ao meu Orientador Tácio Mauro Pereira de Campos, verdadeiro mestre, pela oportunidade de inserção no programa de Pós-graduação em Engenharia Civil da PUC-Rio, e pelas valiosas aulas, orientações e ensinamentos, decisivos em meu desenvolvimento acadêmico, profissional e pessoal.

Ao meu Co-Orientador, mestre, companheiro de trabalho e amigo de longa data, desde a oportunidade na Embrapa Solos, conversas, ensinamentos e técnicas valiosas transmitidas, o trabalho conjunto bem sucedido durante mestrado, oportunidades de inserção em pesquisas e trabalhos técnicos, e principalmente pelas idéias e trabalho de orientação, essenciais nesta tese, e sem os quais seus objetivos não teriam sido alcançados.

Ao Professor Nelson Ferreira Fernandes (UFRJ), de extrema importância para meu desenvolvimento acadêmico e profissional, pelas sobre a tese e conversas, e oportunidade de inserção no PRONEX-Rio. Através desta bem sucedida relação foi possível a execução de um trabalho de dissertação de mestrado na UFRJ sob a sua orientação, aumentando o intercâmbio com a Embrapa Solos e possibilitando a minha inserção no grupo de pesquisas PRONEX-Rio. O período do mestrado fundamentou deste modo todos os meus desenvolvimentos posteriores, inclusive a oportunidade de contato com o professor Tácio Mauro de Campos. Obrigado.

A Tânia Caldas, Francisco Freitas e Fued Abraão Jr., pelo trabalho de parceria fundamental na INFRAERO, pelo espaço cedido à pesquisa, apoio financeiro e logístico às obras de recuperação ambiental e conformação do talude, visitas técnicas, discussões, desenvolvimento de publicações, trabalhos e pela divulgação. Foi muito bom estabelecer esta parceria com vocês, e espero que possamos colher frutos valiosos e dar continuidade a estas pesquisas ainda por muitos anos.

Aos estagiários Thiago Carnavale (UERJ), Caroline Pires (UERJ), Tatiana Martins (USU), Paula Benedetti (PUC-Rio) e João Mesquita (PUC-Rio). Foi muito bom trabalhar e conviver com vocês, e fica um agradecimento especial, pelo esforço que sei que empenharam, em prol da causa.

Ao professor Franklin Antunes, presença marcante no decorrer destes anos, pela atenção dedicada, por toda a orientação e apoio nesta tese, ensinamentos, pelo trabalho de campo no aeroporto, pelas revisões na parte de caracterização. Enfim, suas lições constituem pedra fundamental em meu aprendizado técnico-científico.

A Alexandre Santos, pelo espaço cedido no Laboratório de Geografia Física da UERJ para execução de ensaios relativos à tese, pelos equipamentos emprestados, pela oportunidade de inserção na UERJ como professor substituto, pelas visitas técnicas e, principalmente, pelo apoio na impressão deste documento.

Ao funcionário de campo André Luiz do Santos Barros. Sua presença foi marcante, com medições cuidadosas, manutenção da área, obras de construção das parcelas, calhas, estação meteorológica e hidrossedimentológica de forma criteriosa e dedicada ao longo destes anos de trabalho.

Aos pesquisadores da Embrapa Solos Cláudio Capeche, Fabiano Balieiro, Lucietta Martorano, Guilherme Donagemma, Rodrigo Demonte, Polidoro, Humberto, Rachel Prado. Obrigado por todo o conhecimento, oportunidade, apoio e confiança depositados ao longo destes anos de trabalhos e convívio.

Ao professor Cláudio Limeira (UFRJ), pelas valiosas orientações e transmissão de documento e conhecimentos acerca da Formação Macacu, representante dos materiais em estudo.

Ao professor Antônio Roberto pelo apoio nas atividades de calibração das calhas Parshall, no desenvolvimento da instrumentação para medição de concentração de sedimentos, e pelo trabalho de campo no aeroporto. Agradeço, pelo espaço cedido no laboratório de hidráulica, inclusive em relação ao apoio dos funcionários Euclides e Evandro.

Ao professor Araruna, pelo apoio logístico constante na execução da tese, principalmente com os levantamentos topográficos.

Ao professor Cláudio Amaral, desde as aulas até os conselhos e sugestões de grande valia em desenvolvimento técnico, acadêmico e pessoal.

Ao professor Vargas, pelas aulas, sugestões e conselhos relativos a esta tese, no decorrer desta pesquisa de doutorado.

Aos funcionários do Laboratório de Geotecnia e Meio Ambiente: Amaury, Josué, David, "Seu José", William.

Aos funcionários da Embrapa Solos Julio, Rogério, Wilson Santana, Sérgio, Marcelo Saldanha, John Lee. Aos estagiários da Embrapa Solos Gustavo Carvalho, Laura Tani, Mariana Navegante, Juliana. Obrigado pelo convívio agradável, apoio nas análises de laboratório e campo, e pela amizade. Aos técnicos agrícolas da Embrapa Solos, especialmente a Fabiano Oliveira.

Aos colegas de pós-graduação e graduação Mônica, Patrício, Taíse, Guilherme Slongo, Ivan, Felipe Frai, Ricardo Froitzheim, Julio, Thaís, Pecin, Ygor, Pedro Thá, Guilherme, Viviana, Álvaro, Carol, Saliba.

A Ponta do Céu, Jardinagem e Paisagismo, pelo apoio e execução dos trabalhos de conformação do talude e de recuperação de áreas degradadas. Fica um agradecimento especial para Rodrigo, Luciana, e Tim Maia.

A Deflor Bioengenharia, por todo apoio técnico, logístico, pessoal e pelo material cedido para a aplicação das biomantas.

A Fixa-Verde Indústria de Insumos e Paisagismo, pelo trabalho de hidrossemeadura. Um agradecimento especial a Luis Lucena, pelas palestras na Embrapa para intercâmbio de informações, Vitor Rebello, no apoio à instalação, avaliação de aspectos do mix de sementes, e trocas de informações.

A Vera Portocarrero, minha mãe, a Carolina de Campos Borges, minha namorada e companheira inseparável, a André Portocarrero, meu irmão de sempre, e toda a minha família, que me agüentaram e deram apoiaram neste período de luta. Amo muito todos vocês.

A PUC-Rio, CNPq, CAPES, PRONEX-Rio, INFRAERO e Embrapa Solos pelo apoio financeiro para viabilização desta pesquisa.

Resumo

Portocarrero, Hugo; Campos, Tácio Mauro de; Andrade, A.G. de; Avaliação do Efeito de Técnicas de Bioengenharia em Parâmetros Hidrossedimentológicos Utilizando Instrumentação Automatizada. Rio de Janeiro, 2009. 711p. Tese de Doutorado – Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

Esta tese teve como objetivo contribuir para o desenvolvimento de técnicas de monitoramento de parâmetros hidrossedimentológicos no sistema solo-planta-atmosfera, tendo sido para tal construída uma estação experimental visando avaliar efeitos de diferentes técnicas de bioengenharia aplicadas a taludes de corte. A recuperação ambiental da área em foco, a conformação de um talude, a instalação de parcelas de erosão e aplicação de diferentes técnicas de bioengenharia, a instalação, adaptação e desenvolvimento de uma instrumentação para o monitoramento in situ constituíram deste modo objetos desta tese. Na avaliação do perfil estratigráfico um padrão similar ao encontrado por Ferrari (2001) para sedimentos terciários da Formação Macacu foi encontrado, o que foi útil na delimitação das camadas e geração de um modelo 3D. Na caracterização dos materiais foram avaliados aspectos geotécnicos, hidráulicos, químicos, mineralógicos e relativos à erodibilidade das camadas do perfil. Os resultados de monitoramento mostraram que o controle da erosão foi maior sob a biomanta (60.11%), seguido do método adaptado da Embrapa Solos (53.63%), e da hidrossemeadura (32.94%), sendo que para o escoamento superficial as reduções foram entre 73.6% e 7.8%. A infiltração foi maior sob a biomanta, gerando um saldo acumulado no primeiro metro do solo cerca de 1600% superior em relação à seção do talude descoberta. A adaptação de um sistema de vazão em canal aberto para medição do escoamento superficial, com Calhas Parshall e transmissores de nível ultra-sônicos, se mostrou também uma boa alternativa para medição automatizada em parcelas de controle de erosão.

Palavras-chave

Monitoramento hidrossedimentológico; bioengenharia; sistema soloplanta-atmosfera; Formação Macacu.

Abstract

Portocarrero, Hugo; Campos, Tácio Mauro de (Advisor); Andrade, A.G. de; Evaluation of the Effect of Bioengineering Techniques on Hydro-Sedimentological Parameters Using Automatic Instrumentation. Rio de Janeiro, 2009. 711p. Doctorate Thesis – Departamento de Civil, Pontifícia Universidade Católica do Rio de Janeiro.

The objective of this thesis was to develop a set of monitoring techniques of hydro-sedimentological parameters, with emphasis on the soil-plant-atmosphere continuum. The development of an experimental station was conducted, for evaluation of different bioengineering techniques applied to cutslopes. The land reclamation, cutslope set up, installation of erosion control plots, application of different bioengineering techniques, installation, adaptation and development of in situ instrumentation were subject of the thesis. In the profile evaluation, a similar pattern was found between the cutslope materials and tertiary sediment deposits reported by Ferrari (2001). This proved to be useful for the delimitation of layers and 3D model definition. For materials characterization, geotechnical, hydraulic, chemical, mineralogical and erodibility parameters were evaluated. In situ monitoring results shown that biotextile provided the best soil erosion control (60.11%), followed by the adapted Embrapa Solos technique for cutslopes (53.63%) and hydro-seedling (32.94%). Runoff rates were within 73.6% and 7.8% lower than the uncovered section. The infiltration rate was greater under the biotextile technique, with an increase in storage, on the first meter of subsoil, of about 1600% in relation to the uncovered cutslope section. The use of ultrasonic level transmitters in the developed open channel system consisting of Parshall flumes lead to good monitoring results and an excellent alternative for the development of automated systems for soil erosion control plots.

Keyswords

Hydro-sedimentological monitoring; soil bioengineering; soil-plantatmosphere continuum; Macacu formation.

Sumário

1 Introdução	62
1.1. Objetivo Geral	63
1.2. Metas	63
1.3. Linha de Pesquisa	65
1.4. Organização da Tese	65
2 Campo Experimental do Galeão	67
2.1. Problemas de Erosão em Taludes de Corte	67
2.1.1. Convênio EMBRAPA/INFRAERO	70
2.1.2. Ações de RAD e Pesquisas no Aeroporto Internacional do Rio de	
Janeiro Galeão/ Tom Jobim	71
2.1.3. Ações de RAD e Pesquisa no Talude da Área Z	80
2.2. Aspectos Gerais da Área de Estudo	82
2.2.1. Localização	82
2.2.2. Aspectos Climáticos	82
2.2.2.1. Classificação Climática da Área de Estudo	88
2.2.3. Geologia	88
2.2.3.1. Interpretação Geológica dos Depósitos da Formação Macacu	90
2.2.4. Cobertura Pedológica	94
2.2.5. Geomorfologia Regional e Vegetação Original	96
2.2.6. Ocupação Anterior à Construção do Aeroporto	99
2.3. Diagnóstico do Estado de Degradação das Terras	100
2.3.1. Definições	100
2.3.2. Exploração dos Barreiros e Impactos Ambientais	102
2.3.3. Processos Erosivos Resultantes da Exploração da Área Z	103
2.3.3.1. Diagnóstico da Vertente para Conformação do Talude	105
2.4. Conformação do Talude	112
2.4.1. Dimensionamento	113
2.4.1.1. Inclinação	113
2.4.1.2. Altura	114
2.4.1.3. Comprimento da Rampa	118

2.4.2. Processo de Construção	118
2.4.2.1. Drenagem	121
2.4.2.2. Equipamento Utilizado	123
2.4.2.3. Volume de Terra Mobilizado	124
2.5. Estratégias de Recuperação de Áreas Degradadas	129
2.5.1. Seleção de Espécies para Revegetação de Taludes	131
2.5.1.1. Gramíneas	131
2.5.1.2. Leguminosas	135
2.5.2. Ações de RAD na Área Z	139
2.5.2.1. Dimensionamento	139
2.5.2.2. Práticas Mecânicas Implantadas	139
2.5.2.2.1. Terraceamento	140
2.5.2.2. Bacias de Sedimentação	141
2.5.3. Resultados das Práticas Mecânicas	142
2.5.3.1. Práticas Edáficas e Vegetativas	149
2.5.3.1.1. Aquisição de Mudas	150
2.5.3.1.2. Adubação	151
2.5.3.1.3. Cobertura Morta	151
2.5.3.1.4. Plantio	153
2.6. Parcelas de Controle de Erosão	157
2.6.1. Critérios para Instalação de Parcelas	157
2.6.2. Processo Construtivo	159
2.6.2.1. Determinação das perdas de solo e escoamento superficial	164
2.7. Técnicas de Bioengenharia de Solos	168
2.7.1. Técnicas de Bioengenharia de Solos e Engenharia Tradicional	169
2.7.2. Breve Histórico da Bioengenharia de Solos	171
2.7.3. Bioengenharia de Solos no Brasil	173
2.7.4. Divisão do Talude e Tratamentos Testados	176
2.7.4.1. Parcela I – Método Adaptado da Embrapa Solos para Tratamento de	
Taludes de Corte	177
2.7.4.1.1. Detalhamento do Tratamento 1	177
2.7.4.2. Parcela II - Controle	186
2.7.4.3. Parcela III - Hidrossemeadura	187
2.7.4.3.1. Potencialidades e Aplicações	188

2.7.4.3.2. Limitações	188
2.7.4.3.3. Detalhamento do Tratamento 2	190
2.7.4.4. Parcela IV – Semeio à Lanço com Biomanta Antierosiva	203
2.7.4.4.1 Potencialidades e Aplicações	204
2.7.4.4.2. Biomantas como Geossintéticos aplicados à Bioengenharia	205
2.7.4.4.3. Detalhamento do Tratamento 3	207
2.7.5 Quadro Resumido dos Tratamentos	216
2.8. Sumário de Obras	217
2.8.1. Cronograma Executivo	217
2.8.2. Resultados Preliminares de Práticas de RAD no Entorno do Talude	219
2.8.3. Relatório Fotográfico	220
2.9. Parâmetros para Modelagem de Processos Erosivos	229
2.9.1. Equação Universal de Perda de Solo – USLE	230
2.9.2. Parâmetros da USLE e Condições Experimentais no Talude	230
2.9.3. Modelos com Base em Processos Físicos	233
2.9.3.1. Equação de Continuidade do Modelo WEPP	234
2.9.3.2. Previsões em Parcelas com a Equação de Erosão do WEPP	236
3 Caracterização do Perfil Estratigráfico	239
3.1. Delimitação Espacial de Diferentes Camadas de Solo	240
3.1.1. Seqüência Deposicional e Delimitação de Camadas de Solo	240
3.1.2. Distribuição das Camadas nos Tratamentos e Parcelas	254
3.1.3. Modelo 3D	255
3.1.4. Coleta de Amostras no Talude	256
3.2. Ensaios de Realizados e Metodologias Adotadas	258
3.2.1. Caracterização Geotécnica	259
3.2.2. Caracterização Química	262
3.2.3. Caracterização Mineralógica	265
3.2.4. Análises Micromorfológicas	266
3.2.5. Parâmetros Hidráulicos	266
3.2.5.1. Curva de Retenção de Umidade	267
3.2.5.2. Porosimetria por injeção de mercúrio	271
3.2.5.3. Permeabilidade Saturada (Ksat)	273

3.4. Avaliação do Potencial de Erosão	308
3.4.1. Ensaios de Erodibilidade	311
3.4.1.1. Desagregação	311
3.4.1.2. Dispersividade	315
3.4.2. Relações entre Erodibilidade e Propriedades dos Solos	319
3.4.3. Determinação do Parâmetro K da Equação USLE	328
4 Técnicas de Monitoramento das Parcelas de Erosão	329
4.1. Introdução	329
4.1.1. Precipitação	331
4.1.2. Intercepção e Atravessamento	332
4.1.3. Monitoramento da Água no Solo	333
4.1.4. Escoamento Superficial	335
4.1.5. Evapotranspiração	335
4.1.5.1. Evapotranspiração de Referência (ETO)	339
4.1.5.2. Coeficientes Culturais (Kc) e Estimativa da Evapotranspiração da	
Cultura (ETc)	344
4.2. Parâmetros Meteorológicos de Superfície	345
4.2.1. Tipos de Estações Meteorológicas de Superfície	345
4.2.2. Instrumentação Implementada	346
4.2.2.1. Pluviômetros	346
4.2.2.2. Piranômetro	349
4.2.2.3. Termo-higrômetro	350
4.2.2.4. Anemômetro e Cata-ventos	351
4.2.2.5. Aquisição de Dados	352
4.3. Sucção Matricial	355
4.3.2. Sistema de Aquisição de Dados	357
4.4. Teor de Umidade Volumétrico	359
4.4.1. Métodos Eletromagnéticos	360
4.4.1.1. Reflectometria no Domínio do Tempo (TDR)	361
4.4.1.2. Reflectometria no Domínio da Freqüência (FDR)	362
4.4.1.3. Radar de Penetração no Solo (GPR)	364
4.4.1.4. Discussão	365
4.4.2. Sondas FDR ECH2O	367

4.4.3. Sistema de Aquisição de Dados	369
4.4.4. Técnicas de Calibração Implementadas	371
4.4.4.1. Preparação das Amostras	372
4.4.4.2. Método I	372
4.4.4.3. Método II	374
4.4.4. Método III	374
4.4.5. Resultados de Calibrações	378
4.4.5.1. Resultados Experimentais do Método I	378
4.4.5.2. Resultados Experimentais com o Método II	381
4.4.5.3. Resultados Experimentais pelo Método III	383
4.4.6. Discussão	395
4.5. Escoamento Superficial	403
4.5.1. Calhas Parshall	404
4.5.2. Transmissor de nível ultra-sônico	410
4.5.3. Técnica de Calibração e Resultados Obtidos	414
4.6. Concentração de Sedimentos nas Enxurradas	416
4.6.1.1. Total de Sólidos Suspensos	421
4.6.1.2. Turbidez	424
4.7. Caracterização da Vegetação	428
4.7.1. Estabelecimento, Crescimento e Desenvolvimento	428
4.7.1.1. Métodos Não-Destrutivos	430
4.7.1.2. Métodos Destrutivos	431
4.7.1.2.1. Biomassa Aérea e Densidade Populacional	431
4.7.1.2.2. Sistemas Radiculares	431
4.7.1.2.2.1. Avaliação do Perfil de Solo	432
4.7.1.2.2.2. Arquitetura Radicular	434
4.7.1.2.2.3. Biomassa Radicular	436
4.7.2. Caracterização da Vegetação nas Parcelas de Erosão	436
4.7.2.1. Parcela 1	437
4.7.2.2. Parcela 3	438
4.7.2.3. Parcela 4	439
4.7.3. Comportamento hidrológico	439
4.7.3.1. Avaliação da Intercepção e Atravessamento	440
4.7.3.2. Resistência Superficial e Aerodinâmica	440

4.7.3.2.1. Resistência Aerodinâmica (ra)	441
4.7.3.3. Resistência Superficial (rs)	442
4.8. Instalação da Instrumentação em campo	445
4.8.1. Abrigo Meterológico	445
4.8.2. Monitoramento da água no solo	447
4.8.2.1. Pontos de Monitoramento	447
4.8.2.2. Técnicas de Instalação	450
4.8.2.3. Aquisição de dados	452
4.8.3. Instalação de Calhas Parshall	456
4.8.3.1. Aquisição de Dados	459
5 Resultados de Monitoramento	460
5.1. Períodos de Monitoramento	462
5.2. Parâmetros Meteorológicos de Superfície	464
5.2.1. Precipitação Pluvial	466
5.2.1.1. Condições Antecedentes	466
5.2.1.2. Precipitação no Período de Monitoramento	469
5.2.1.2.1. Delimitação de Classes de Chuvas no Período de Monitoramento	475

5.2.1.1. Condições Antecedentes	466
5.2.1.2. Precipitação no Período de Monitoramento	469
5.2.1.2.1. Delimitação de Classes de Chuvas no Período de Monitoramento	475
5.2.1.3. Resultados da Estação Meteorológica Campbell	483
5.2.1.4. Intercepção pelas Copas, Atravessamento e Gotejamento	490
5.3. Caracterização da Vegetação	492
5.3.1. Resultados de Avaliações na Parcela I	493
5.3.1.1. Mortalidade e Replantios	493
5.3.1.2. Crescimento e Desenvolvimento das Mudas	496
5.3.1.3. O Capim Vetiver	503
5.3.1.4. Biomassa Aérea	503
5.3.1.5. Sistemas Radiculares	504
5.3.1.5.1. Arquitetura e Biomassa Radicular de Mimosa caesalpiniaefolia	
537 dias após o Transplantio	504
5.3.1.5.2. Arquitetura e Biomassa Radicular de Acacia auriculiformis 537	
dias após o Transplantio	507
5.3.2. Resultados de Avaliações na Parcela III	510
5.3.2.1. Tempos de Emergência das Espécies	510

512

5.3.2.2. Crescimento e Desenvolvimento

5.3.2.3. Sistemas Radiculares	512
5.3.3. Resultados de Avaliações na Parcela IV	514
5.3.3.1. Estabelecimento e Emergência	514
5.3.3.2. Crescimento e Desenvolvimento	517
5.3.3.3. Avaliações de Sistemas Radiculares	518
5.3.4. Taxas de Recobrimento	519
5.3.5. Parâmetros de Resistência Superficial e Aerodinâmica nas Parcelas	
em Avaliação	531
5.3.5.1. Índices de Área Foliar	532
5.3.5.1.1. Parcela I	532
5.3.5.1.2. Parcela III	537
5.3.5.1.3. Parcela IV	539
5.3.6. Determinação da ETm nas Diferentes Parcelas	541
5.4. Escoamento Superficial e Erosão	548
5.4.1. Monitoramento das Caixas Coletoras	549
5.4.1.1. Período Completo	549
5.4.1.2. Períodos de Avaliação	552
5.4.1.2.1. Primavera de 2007	552
5.4.1.2.2. Verão 2007/2008	556
5.4.1.2.3. Outono de 2008	558
5.4.1.2.4. Inverno de 2008	563
5.4.1.2.5. Primavera de 2008	563
5.4.1.2.6. Verão 2008/2009	567
5.4.1.2.7. Outono e Inverno de 2009	571
5.4.1.3. Discussão Sobre o Monitoramento nas Caixas Coletoras	574
5.4.2. Monitoramento Automatizado do Escoamento Superficial	575
5.4.2.1. Resultados na Parcela II com uso do Datalogger Ahlborn 2890-9	576
5.4.2.1.1. Etapa I – Aquisição de Dados em Intervalos de 20 segundos	576
5.4.2.1.2. Etapa II – Aquisição de Dados em Intervalos de 1 Minuto	581
5.4.2.2. Adaptação da Estação Hidrossedimentológica para Monitoramento	
Automatizado do Escoamento Superficial e Concentração de Sedimentos	
nas Parcelas de Erosão	585
5.4.2.2.1. Instalação do Abrigo e Adaptação da Estação	585
5.4.2.2.2. Calibrações dos LU-20 e de Turbidímetros	586

5.4.3. Análises Comparativas de Resultados Experimentais e Simulações de	
Processos Erosivos	591
5.5. Perfis de Sucção e Umidade	595
5.5.1. Intervalos de Aquisição de Dados	596
5.5.2. Resultados do Monitoramento da Sucção e do Teor de Umidade	
Volumétrico	603
5.5.2.1. Comportamento Geral - Avaliação do Período Completo	604
5.5.2.2. Avaliações por Parcelas	604
5.5.2.2.1. Parcela I	605
5.5.2.2.2. Parcela II	611
5.5.2.2.3. Parcela III	613
5.5.2.2.4. Parcela IV	614
5.5.2.2.5. Considerações sobre a Avaliação dos Perfis por Parcelas	615
5.5.2.3. Avaliações Por Profundidades	616
5.5.2.3.1. Avaliações a 0.25 m	616
5.5.2.3.2. Avaliações a 0.50m	622
5.5.2.3.3. Avaliações a 0.75m	623
5.5.2.3.4. Avaliações a 0.90m	624
5.5.2.4. Perfis Médios de Sucção e Teor de Umidade Volumétrico	625
5.5.2.4.1. Perfis Médios Mensais	628
5.5.2.4.2. Perfis Médios Sazonais	630
5.5.2.5. Períodos de Monitoramento Detalhados	631
5.5.3. Comparação entre Curvas de Retenção de Umidade de Laboratório e	
Perfis de Campo de Sucção e Umidade Volumétrica	636
5.6. Balanços Hídricos	639
5.6.1. ETrc e Registros Simultâneos de θ e Ψ em Campo	640
5.6.2. Resultados das Análises de Balanços Hídricos	642
5.6.3. Perfis de Campo de Ψ e θ e Simulações de Fluxos na Parcela I	647
5.6.3.1. Geometria de Análise do Problema	648
5.6.3.2. Funções de Permeabilidade	650
5.6.3.3. Discussão dos Resultados	653

6.2. Caracterização do Perfil Estratigráfico	660
6.3. Parâmetros Meteorológicos de Superfície	664
6.4. Caracterização da Vegetação	666
6.5. Escoamento Superficial e Erosão	668
6.6. Perfis de Sucção e Umidade	673
6.7. Balanços Hídricos	676
6.8. Monitoramento de Campo e Simulações Numéricas	676
6.9. Sugestões para Pesquisas Futuras	677

Referências Bibliográficas

Lista de figuras

Figura 2 1 Obras de terraplenagem e aterramento para a construção do	
Aeroporto Internacional do Rio de Janeiro Galeão/ Tom Jobim.	
Observa-se que as obras envolveram grande parte da Ilha do	
Governador, modificando completamente seu relevo.	67
Figura 2 2 Talude do Eixo Viário no Aeroporto Internacional Tancredo	
Neves (Confins/MG) (Andrade, A.G.; Capeche, C.L. Acervo	
Fotográfico/Convênio Embrapa/INFRAERO).	68
Figura 2 3 Taludes de corte desprovidos de vegetação apresentando erosão	
em sulcos e ravinas em talude do Aeroporto Internacional	
Eduardo Gomes (Manaus/AM) (Andrade, A.G.; Demonte,	
R.F.; Acervo Fotográfico/Convênio Embrapa/INFRAERO).	69
Figura 2 4 Talude no Aeroporto de Foz do Iguaçu na área de empréstimo na	
cabeceira 14 (Andrade, A.G., Demonte, R.F. Acervo	
Fotográfico/Convênio Embrapa/INFRAERO).	70
Figura 2 5 Vista geral das principais áreas de intervenção no contexto do	
Convênio Embrapa/INFRAERO no AIRJ atualmente, sobre	
foto do final da década de 1970.	72
Figura 2 6 Suavização dos taludes da cava mais íngremes mediante	
realocação dos entulhos (a) e recobrimento com material	
terroso (b) no ano 2000 (Andrade, A.G. & Capeche, C.L.	
Acervo Fotográfico/Convênio Embrapa/INFRAERO).	73
Figura 2 7 Cava do Itacolomi logo após o plantio de blocos experimentais	
para avaliação dos efeitos do lodo de esgoto na fertilidade do	
substrato e desempenho da vegetação no ano de 2001	
(Capeche, C.L. Acervo Fotográfico/Convênio	
Embrapa/INFRAERO).	74
Figura 2 8 (a) Desenvolvimento da vegetação nos blocos experimentais com	
aplicação de diferentes doses de lodo; (b) vegetação no verão	
de 2004; (c) vegetação no inverno de 2007; (d) abate de	

leguminosas arbóreas na Cava do Itacolomi para medições de

biomassa e estoques de carbono.

Figura 2 9 Processo de recuperação ambiental e estabilização da voçoroca do Morro do Radar, no Aeroporto Internacional do Rio de Janeiro Galeão/ Tom Jobim. Acima, sobrevôo na área durante a década de 80, e seqüência abaixo: práticas mecânicas e vegetativas implemetadas. 76 Figura 2 10 Talude de Corte do Morro do Radar antes (a), no ano 2000 (fotode Andrade, A.G.), e após (b) os trabalhos de RAD, no 77 ano de 2004. Figura 2 11 Parcelas de Controle de Erosão Implantadas no reverso do 78 Morro do Radar. Figura 2 12 Galpão de Compostagem: a - parte do viveiro coberta com sombrite com mudas de pinhão manso em estágio inicial; b mudas de Capim de Vetiver e arbóreas; b1 e b2 - Abizia Guachapelle e Acacia auriculiformis em rustificação na parte descoberta do viveiro; d1 e d2 - Acacia mangium e Albizia lebbek; e - horta comunitária; peneira rotativa; f - pilhas em processo de compostagem; g - triturador. 80 Figura 2 13 Vertente onde foi executado o talude anteriormente às obras, localizada no morro do lado direito do Galpão da TAP. 82 Figura 2 14 Localização da Área Z, próximo ao Galpão da TAP, no Aeroporto Internacional do Rio de Janeiro na Ilha do 83 Governador. Figura 2 15 Valores de precipitação média mensal (mm) na estação meteorológica da Ilha do Governador (GEORIO) durante o período de 1997 a 2008. 86 Figura 2 16 Localização da Área Z em relação à Estação Meteorológica da GEORIO na Ilha do Governador, destacando-se a distância entre os dois pontos de 2.230 metros. 87 Figura 2 17 Depósitos da Formação Macacu na Área Z. 1 (identificação das litofácies reconhecidas por Ferrari 2000 em preto): (1) Ap; (2) Amp; (3) Ap; (4)Llm, Acpb; (5) Llm; (6) Lac sobrejacente à Llm; (7) Acpb sobrejacente à Llm; (8) ACpb edivenciando a presença de canga laterítica ou crosta gibsítica (9). 93

- Figura 2 18 A,B Cobertura pedológica da Área Z, podendo ser observado no remanescente do relevo original da encosta o solo residual maduro (horizonte Bw). Abaixo (C) se observa o solo residual jovem (horizonte C ou Formação a Macacu), exposto com a erosão, presente na forma de ravinas.
- Figura 2 19 Aspectos geomorfológicos. a,b Visão do talude no sentido S e SE, observando-se ao longe o Maciço da Tijuca. c Detalhe do Cristo Redentor (visto do Talude). d Detalhe da Pedra da Gávea (vista do Talude). e vista da Serra dos Órgãos do topo do morro da Área Z. f detalhe do Dedo de Deus visto do testemunho no topo do Morro.
- Figura 2 20 Distância entre a Área Z, na Ilha do Governador, e o Laboratório de Geotecnia da PUC-Rio, na Gávea.
- Figura 2 21 Morro ao Lado Direito do Hangar da Varig (atual TAP), fotos do primeiro diagnóstico efetuado pela Embrapa Solos. Acima vista geral das pistas direita e o Hangar à esquerda, observando-se erosões na vertente onde foi posteriormente conformado o talude; No centro Imagem do Google Earth realçando a Área Z; Abaixo reverso da vertente do talude, uma área atualmente utilizada como bota-fora da apara de grama, observa-se o testemunho ao topo do talude.
- Posteriormente a este diagnóstico foram efetuadas expedições na área de estudo durante o ano de 2007, durante a implantação do projeto de RAD, visando à obtenção de informações mais detalhadas para a implantação de um campo experimental. 105
- Figura 2 22 De frente para o talude: A observador ao meio olhando para a direita; B observador ao meio olhando para esquerda. C de cima do talude, observando-se o piso onde foi construído posteriormente o aterro da seção mista do talude.
 106
- Figura 2 23 Topografia da área anteriormente à execução das obras.107Figura 2 24 Topografia e delimitação da área de escopo para o talude e
- entorno. 108 Figura 2 25 Diagnóstico da Área Z em 2007.1-2: Visão frontal a vertente para execução do talude. 3-4: Voçorocamentos ao lado da

95

97

98

vertente. 5–6: Vertente acima do local para construção do talude, observando-se o grande sulco que origina a uma das voçorocas. 7-8: área apresentando erosão em sulcos na área de contribuição da vertente. 9-10-11: Ravinas do lado esquerdo da vertente do talude.

- Figura 2 26 Voçoroca V.I, ao lado da vertente para construção do talude (referente aos pontos 3-4 na figura anterior). A profundidade da feição chegou a 4.2 m (medido com trena – Foto A), sendo possível observar exfiltração em sua base evidenciada pela formação de um leito no fundo bem definido (B).
- Figura 2 27 Voçoroca V.II, à montante (leste) da Voçoroca V.I, que contribui para o mesmo canal de saída à jusante. A Visão de montante à jusante. B Visão do alto. C Ravinas ao lado da voçoroca que contribuem para o mesmo canal de saída, destacando-se também o testemunho no topo do morro: Observa-se nitidamente, assim como nas demais áreas, o quanto as fácies areníticas (coloração clara) são mais resistentes que os lamitos subjacentes (colorações arroxeadas). 111
- Figura 2 28 Área ao redor do testemunho no topo do morro. A local à montante da Voçoroca II (a sul do testemunho), observando-se um declive acentuado (suavizado posteriormente revegetação formando o Talude III (ver 2.5)). B vertente oposta, do outro lado do topo do morro, a norte do testemunho.
- Figura 2 29 (Talude A) com altura de 5 m apresentando inclinação entre 1:2, arredondado nas concordâncias com a estrada. 114
- Figura 2 30 A (Talude B) próximo ao corpo de bombeiros, do outro lado da pista. B, C (Talude C) tamébm próximo com seção expondo a Formação Macacu. D (Talude D) de corte degradado na via de serviço que margeia a cabeceira 28 próximo à Área Z.
- Figura 2 31 Localização de outros taludes (A,B,C,D).
- Figura 2 32 Processo de conformação do talude, podendo-se observar o desdobro dos diferentes materiais que compõem material terroso (A,B) e o resultado das diferentes fácies facilmente reconhecíveis (Ap, ACpb, Amp e Llm) durante a fase de

109

110

. . .

. . .

compactação do aterro (C). Detalhes da discriminação e	
delimiitação espacial destes materiais encontram-se no	
Capítulo III.	120
Figura 2 33 A - Canaleta de drenagem de crista com erosão nos solos ao	
redor. B – pedaços de canaleta destruída devido ao	
subdimensionamento da drenagem. C - visão geral da área,	
onde este problema de drenagem ocasionou na formação de	
uma voçoroca.	121
Figura 2 34 Problemas de dimensionamento de drenagens no Morro do	
Radar. A.B – canaleta na seção montante que foi picotada e	
enterrada no local visando o ordenamento este resíduo e da	
superfície do terreno. C – sobrevôo na voçoroca do Morro do	
Radar na década de 80 observando-se nitidamente que esta foi	
desencadeada devido a um rompimento da drenagem na junção	
de duas canaletas de crista.	122
Figura 2 35 Inclinação nas plataformas na crista do talude (A,B) e no talude	
lateral (C) com caimento para fora de 1%.	123
Figura 2 36 Escavadeira Hidráulica CAT 315C-L utilizada nas obras do	
Talude da Área Z.	124
Figura 2 37 Topografia da área de estudos após a conformação do Talude I.	126
Figura 2 38 Hipsometria e declividade na área de estudos antes e depois das	
obras.	127
Figura 2 39. Perfil transversal utilizado para a estimativa do volume de	
terras mobilizado, observando-se o a topografia antes e depois	
da execução da seção mista. A área sombreada representa a	
movimentação de terras em termos de corte e aterro.	128
Figura 2 40 A - Retirada de Capim Vetiver dos terraços no Morro do Radar	
para reaproveitamento na Área Z. B – separação de dois	
perfilhos. C - cestos para transporte dos perfilhos. D -	
Resultado do plantio dos perfilhos retirados do Morro do	
Radar.	133
Figura 2 41. A - Mudas noduladas e micorrizadas de Acacia mangium,	
utilizadas no projeto de revegetação da Área Z, no viveiro em	
processo de rustificação. B – Acácia mangium em campo após	

12 meses de plantio. C - muda noduladas e micorrizadas de	
Mimosa caesalpiniaefolia. D – nódulos presentes no sistema	
radicular de Mimosa caesalpiniaefolia indicando a eficiência	
dos processos de inoculação da semente.	136
Figura 2 42 Croqui das práticas mecânicas implantadas (em vermelho	
Voçorocas V.1 e V.2; letras R e S na imagem no canto: ravinas	
e sulcos).	143
Figura 2 43 Processo de construção do Terraço a: A - vista para montante	
(leste); B – vista para jusante (oeste).	144
Figura 2 44 Processo de construção do Terraço b. A - Primeiro trecho,	
próximo ao testemunho. B – curvatura para norte rumo à Bacia	
I. C – Terraço b logo após sua construção, ainda sem vegetação	
e cobertura morta.	145
Figura 2 45 Processo de construção do Terraço c: A - vista para jusante	
(direção NNO), rumo à Bacia II; B - vista para montante	
(direção SSE), estando este terraço alinhado com a direção dos	
Taludes I e II.	145
Figura 2 46 A - Bacia I: durante no dia do término da construção, podendo-	
se observar a profundidade de 1.2 m, bem como sua saia com 3	
m de largura (B-C). D – Bacia I após o primeiro período	
chuvoso (29-10-07).	146
Figura 2 47 Bacia II: (A)após a conformação, (b) depois das primeiras	
chuvas (06-11-07), sulco à esquerda devido à falta de	
recobrimento vegetal (B-C). Para solução deste problema foi	
aplicada apara de grama.	147
Figura 2 48. (A) construção da Bacia II*. (B) altura de em torno de 0.8 m.	
(C) água escoando pelo ladrão (C) (13-11-07). (D)	
sedimentação após as primeiras chuvas (40 mm em 24hs).	147
Figura 2 49 Bacia III: (A) logo após seu término; (B) durante o processo de	
construção; (C) depois das primeiras chuvas (29-10-07).	148
Figura 2 50 Implementos utilizados nos processos de RAD na área Z. A, B,	
C, D, E – Case 580L. F,G,H – New Holland D130.	148
Figura 2 51 Outras máquinas utilizados na Área, incluindo caminhão com	
caçamba móvel (A, B, C), caminhão muque (D) e com	

caçamba fixa (E, F), utilizado no transporte de resíduos de	
poda no aeroporto.	149
Figura 2 52 Aplicação de apara de grama na área da Voçoroca V.1 com	
retroescadaveira.	152
Figura 2 53 Apara de grama chegando na área (A) e em dia de chuva devido	
à compostagem natural do resíduo em campo elevando sua	
temperatura (B).	152
Figura 2 54 Aplicação da apara de grama no Terraço e com auxílio de	
caminhão (A) e com uma "mãozinha" da escavadeira	
hidráulica CAT 315C L (B).	152
Figura 2 55 Aspecto da Bacia I após o espalhamento da apara de grama no	
terraço acima, provocando o transporte de ácidos fúlvicos para	
a bacia trazendo o aspecto escuro para seu espelho d'água (22-	
11-07).	153
Figura 2 56. A - preenchimento de covas com composto. B - plantio de	
mudas. C - Acacia Mangium. D - coveamento com uso da	
retroescavadeira CASE 580L. E – aspecto da área de	
contribuição do Terraço c após o plantio. F – área acima do	
Talude II após o plantio. G,H - rega com auxílio de caminhão	
pipa para salvamento das mudas durante estiagem (06-03-08).	154
Figura 2 57 Plantio do Capim Vetiver na crista do Talude I. A – poda dos	
perfilhos. B - plantio em linha com um único sulco. C -	
coroamento com apara de grama na crista do Talude I. D -	
talude lateral protegido com Vetiver logo após coroamento.	155
Figura 2 58. A - Coroamento do Capim Vetiver no Talude II logo após seu	
plantio em fevereiro de 2008. B - rega de salvamento com	
caminhão pipa em 06-03-08.	155
Figura 2 59 Coveamento para plantio do Capim Vetiver em duas linhas de	
cada lado do Terraço c, utilizando-se a mesma configuração	
implantada no Morro do Radar.	156
Figura 2 60 Parcelas de controle de erosão e zonas de amortecimento.	159
Figura 2 61 Etapas iniciais da instalação das parcelas. A - marcação das	
parcelas. B – escavação de sulcos.	160
Figura 2 62. Posicionamento das folhas de zinco.	160

Figura 2 63 - A - Chumbamento das folhas com concreto. B - uso de	
gabarito para posicionar as folhas na crista adequadamente.	160
Figura 2 64. A – fixação na parede do talude. B - Aspecto das parcelas I, II	
e III nesta fase.	161
Figura 2 65. A – emboque da Parcela I visto de frente. B – vista por dentro	
da rampa de aproximação em concreto visando direcionar os	
sedimentos e evitando o entupimento.	161
Figura 2 66 Posicionamento dos canos. Os comprimentos e gradiente foram	
mantidos para todas as parcelas.	161
Figura 2 67 Fundação da caixa 1 da Parcela IV, observando-se os rejeitos de	
concreto reaproveitados de pilhas de entulhos existentes no	
aeroporto.	162
Figura 2 68 A - Selamento da base da caixa 1 da Parcela I evitando	
infiltrações na estrutura. B – detalhe da fundação com pedra	
britada formando um piso abaixo da caixa 1 da Parcela II para	
proteger contra a erosão provocada pela enxurrada que escoar	
pelos quarteadores.	162
Figura 2 69 Vista frontal das Parcelas na fase de acabamento final logo após	
uma chuva.	162
Figura 2 70 A - Aspecto geral das parcelas após o término das obras. B -	
peça de uma das escadas de eucalipto instaladas nas laterais das	
parcelas.	163
Figura 2 71 Desenho esquemático do projeto final das parcelas de controle	
de erosão incluindo escadas em cada uma das parcelas e as	
dimensões das áreas de amortecimento de 4 m entre cada	
parcela.	163
Figura 2 72 A – medição do nível na caixa coletora. B, C – homogeinização	
do material. D - Coleta de amostras de escoamento superficial.	
E – abertura do flange com alicate. F – esvaziamento da caixa	
após a execução das medições.	166
Figura 2 73 A - cortina atirantada na Rodovia Rio Juiz de Fora. B - controle	
biotécnico com reaproveitamento de moirões de concreto	
deixando a vegetação crescer dentro (na mesma rodovia). C -	
Controle biotécnico em talude de corte (Paquetá-RI) D –	

Detalhe das jardineiras chumbadas na pedreira visando o recobrimento vegetal e trazendo um aspecto paisagístico. E -Biomanta logo após instalação em talude de corte na Rodovia Rio Santos (altura de Parati). F - vegetação brotando e atravessando as biomantas em talude próximo. 170 Figura 2 74 Dimensões e numeração das Parcelas experimentais (áreas de 15 x 12 m) para identificação dos tratamentos. 176 Figura 2 75 Acima - Numeração das covas e espaçamento na Parcela I. Abaixo - Identificação das mudas no período de 17 de dezembro de 2007 à 6 de março de 2008 (AA = Acacia auriculiformis; AH = Acacia holocericea; AB = Albizia guachapelle; CR = Cratylia argêntea; SB = Mimosa caesalpiniaefolia). 179 Figura 2 76 A - Preenchimento da cova com composto. B - Plantio. C -Mudas recém plantadas. D - Parcela I logo após o término dos 185 plantios. Figura 2 77 Visão frontal da Parcela I, podendo-se observar as mudas de 186 leguminosas e os cordões de capim vetiver. Figura 2 78 A - termômetro para monitoramento da temperatura dentro do tanque. B – sistema de agitação da massa. C – Celulose utilizada como Mulch. E - esterco de curral aplicado após o jateamento para fixação e adubação final. 187 Figura 2 79 Limitações da hidrossemeadura. A – observa-se a perda de sementes e insumos e carregamento para as sarjetas das pistas e drenagens, evidenciado pelo aparecimento de brotos nestes pontos. B - Má fixação da massa de sementes/insumos pode provocar a sua descida concentrando a vegetação no terço inferior e deixando os taludes descobertos nas cristas e terços 189 médio/superior. Figura 2 80 A,B - coveamento da área da parcela. C - caminhão pipa adaptado para hidrossemeadura da empresa Fixa Verde. D, E,F 199 - jateamento da hidrossemeadura. Figura 2 81 A – aspecto do talude após a aplicação do jateamento. B,C –

lanço de esterco e megamulch para fixação final da massa. D –

Aspecto do talude após o lanço dos últimos insumos. E – vista	
frontal do talude como um todo após a aplicação da	
hidrossemeadura na Parcela III.	200
Figura 2 82. A ,B - coveamento do Talude II. C,D - detalhe das covas	
(micro-covas). E - caminhão de hidrossemeadura da empresa	
Fixa-Verde no acesso acima da crista do Talude II. F – início	
do jateamento no Talude II.	201
Figura 2 83. A,B - Jateamento no Talude II. C - aspecto do talude após o	
jateamento. D,E,F - aplicação de esterco e megamulch.	202
Figura 2 84 Aspecto da superfície do solo antes (A) e após (B) o	
recobrimento final com esterco e megamulch. C, detalhe do	
aspecto da massa, observando-se sua aderência nas mãos do	
funcionário. D – semente de feijão-guandu. E – aspecto final	
do Talude II após a aplicação da hidrossemeadura.	203
Figura 2 85 A - Aspecto das biomantas embaladas para transporte e	
fornecimento. B – aspecto da biomanta em detalhe,	
observando-se a tela georreforçadora e a matriz orgânica de	
fibra de coco.	208
Figura 2 86 Seqüência ilustrativa do processo de aplicação da Biomanta	
Sintemax 400TF.	211
Figura 2 87. A - coveamento do talude. B,C,D - Aplicação e espalhamento	
de esterço e insumos, E – primeira faixa de biomanta	
desenrolada no talude. F – pessoal pronto para estender a	
segunda faixa da manta.	212
Figura 2 88. A,B – biomanta instalada à direita da Parcela IV. C,D – detalhe	
da superposição das biomantas. E – biomantas chegando no	
campo. F – mix de sementes.	213
Figura 2 89. A - Recobrimento inicial do lado esquerdo da Parcela com	
esterco e insumos. B - talude faltando somente as biomantas	
dentro da parcela de controle de erosão. C - Término da	
instalação da biomanta. D – visão geral do talude após a	
conclusão da instalação da biomanta, observando-se a sua	
semelhança com a cobertura morta aplicada na Parcela I. E -	
Visão frontal do Talude I após a aplicação da biomanta.	214

Figura 2 90 Esquemas para fixação das biomantas sugeridos pela Deflor	
Bioengenharia LTDA de acordo com a declividade dos taludes.	
Para o caso do Talude da Área Z a primeira configuração, da	
esquerda para a direita, é a mais adequada.	215
Figura 2 91 Área abaixo do Talude II no acesso para veículos, antes e depois	
das obras.	220
Figura 2 92 Crista do Talude após roçada e à direita observa-se o	
crescimento do Vetiver.	220
Figura 2 93 [22-11-06] sulcos e ravinas no local onde foi construído o	
Talude II. [29-11-07] logo após a conformação do Talude II.	
[11-01-09] desenvolvimento da vegetação.	221
Figura 2 94 Plantio do Capim Vetiver na crista do Talude II.	221
Figura 2 95 Processo de recuperação ambiental da Voçoroca V.I ao lado	
direito do Talude I. [26-11-06] diagnóstico. [29-11-07]	
aplicação de apara de grama. [19-01-09]	222
Figura 2 96 Práticas mecânicas no Talude I.	223
Figura 2 97 Técnicas de Bioengenharia de solos no Talude I.	224
Figura 2 98 Comparações de diversos pontos da Área Z antese depois dos	
trabalhos de RAD.	225
Figura 2 99 Imagem do Satétile Quickbird da Área Z – 16-05-03.	226
Figura 2 100 Imagem do Satétile Quickbird da Área Z – 22-09-07.	227
Figura 2 101 Imagem do Satétile Quickbird da Área Z – 06-06-08.	228
Figura 3 1 Localização de afloramentos da Formação Macacu mapeados por	
Ferrari (2001) na Ilha do Governador, no entorno do Aeroporto	
Galeão (pontos 22, 23 e 24 em amarelo).	241
Figura 3 2 Identificação das litofácies expostas na face do talude. Observa-	
se a existência de uma linha de seixos no contato entre a 4ª e a	
5 ^a litofácies.	242
Figura 3 3 Estratigrafia do talude interpretada de acordo com o modelo de	
assinatura tectônica proposto por Ferrari (2001) para a	
Associação de Fácies C da Formação Macacu.	244
Figura 3 4 Material Vermelho Escuro presente abaixo da crosta laterítica,	
formando concreções no contato das Fácies Llm de lamitos e	
Amp de arenitos	245

Figura 3 5 Identificação de diferentes tipos de solos em campo (V - VA -	
A2).	246
Figura 3 6 Identificação de diferentes tipos de solos em campo $(R - A1 - A2)$	
- VE).	247
Figura 3 7 Identificação de diferentes tipos de solos em campo (VE – $R - V$	
– A).	248
Figura 3 8 Identificação de diferentes tipos de solos em campo (VE - R -	
VA - A).	249
Figura 3 9 Delimitação espacial dos diferentes tipos de solos presentes no	
talude.	250
Figura 3 10 Gráficos representando a distribuição percentual das diferentes	
camadas de solo ao longo dos diferentes tratamentos conforme	
na figura acima.	254
Figura 3 11 Gráficos representando a distribuição percentual das diferentes	
camadas de solo ao longo das diferentes parcelas conforme na	
figura acima.	255
Figura 3 12 Modelo 3D com as diferentes camadas de solo reconhecidas na	
face do talude.	257
Figura 3 13 Localização dos pontos de coletas de amostras no talude.	258
Figura 3 14 Anel do solo VE apresentando expansão durante a saturação por	
imersão.	269
Figura 3 15 Aplicação do método das tangentes para obtenção dos valores	
de entrada de ar (yar), sucção residual (yres), teor e umidade	
volumétrico saturado (θs) e residual (θres).	270
Figura 3 16 Curvas de distribuição granulométrica das camadas de solo	
estudadas.	277
Figura 3 17 Histogramas com percentuais de areia, silte e argila para as	
diferentes camadas de solo, obtidos através das análises	
granulométricas.	278
Figura 3 18 Aspectos macroscópicos da mineralogia das areias e dos	
cascalhos do perfil estratigráfico, facilmente identificáveis	
através de observações de campo.	286
Figura 3 19 Difratogramas de lâminas orientadas da camada VE e	
submetidas a diferentes tratamentos: NA - amostra natural;	

Lâminas orientadas: ST – sem tratamento, 540° - tratamento por aquecimento à 540° C, EG – tratamento com glicolagem (etilenoglicol).

287

- Figura 3 20 Difratogramas de lâminas orientadas da camada R e submetidas a diferentes tratamentos: NA – amostra natural; Lâminas orientadas: ST – sem tratamento, 540° - tratamento por aquecimento à 540°C, EG – tratamento com glicolagem (etilenoglicol).
- Figura 3 21 Difratogramas de lâminas orientadas da camada V e submetidas a diferentes tratamentos: NA – amostra natural; Lâminas orientadas: ST – sem tratamento, 540° - tratamento por aquecimento à 540°C, EG – tratamento com glicolagem (etilenoglicol).
- Figura 3 22 Difratogramas de lâminas orientadas da camada VA e submetidas a diferentes tratamentos: NA amostra natural;
 Lâminas orientadas: ST sem tratamento, aquecimento à 540°C, EG tratamento com glicolagem (etilenoglicol). 290
- Figura 3 23 Difratogramas de lâminas orientadas da camada A e submetidas a diferentes tratamentos: NA – amostra natural; Lâminas orientadas: ST – sem tratamento, 540° - tratamento por aquecimento à 540°C, EG – tratamento com glicolagem (etilenoglicol).
- Figura 3 24 Pontos experimentais relacionando a sucção dos solos com os graus de saturação para as diferentes camadas, obtidos pelo método do papel filtro. 294
- Figura 3 25 Pontos experimentais relacionando a sucção dos solos com os teores de umidade volumétricos para as diferentes camadas, obtidos pelo método do papel filtro. 295
- Figura 3 26 Variabilidade dos índices de vazios em função dos teores de umidade gravimétricos obtidos durante os ensaios pelo método do papel filtro para as diferentes camadas de solo. 296
- Figura 3 27 Distribuição acumulativa dos diâmetros de poros para as diferentes camadas de solo avaliadas. 297

Figura 3 29 distribuição dos diâmetros dos poros para as diferentes camadas	
de solo avaliadas.	300
Figura 3 30 Curvas de retenção de umidade ajustadas através de ensaios de	
porosimetria por injeção de mercúrio e pontos experimentais	
pelo método do papel filtro.	301
Figura 3 31 Curvas de retenção de umidade [unimodal] das camadas VE e R	
ajustadas através do modelo de van Genüchten (1980).	302
Figura 3 32 Ajustes para curvas de retenção unimodais e bimodais para a	
camada V pelo modelo de van Genüchten.	303
Figura 3 33 Curvas de retenção de umidade [unimodal e bimodal] da	
camada A de ajustadas através do modelo de van Genüchten	
(1980).	304
Figura 3 35 Detalhes de processos erosivos atuantes em diferentes camadas	
do perfil.	309
Figura 3 36 Detalhes dos processos erosivos atuantes nas diferentes camadas	
do perfil.	310
Figura 3 37 Gabarito utilizado para a montagem dos corpos de prova, pedra	
porosa e amostra confeccionada.	311
Figura 3 38 Corpos de prova anteriormente e 24 h após o ensaio de	
desagregação.	312
Figura 3 39 Resultados dos ensaios de desagregação comparados com as	
observações de feições erosivas em campo.	315
Figura 3 40 Triângulo textural mostrando as camadas de solo estudadas	
comparadas a outros dados da literatura referentes à	
erodibilidade dos solos.	320
Figura 3 41 Curvas de distribuição granulométrica obtidas com e sem o uso	
de dispersante, para a camada VE.	321
Figura 3 42 Curvas de distribuição granulométrica obtidas com e sem o uso	
de dispersante, para a camada R.	322
Figura 3 43 Curvas de distribuição granulométrica obtidas com e sem o uso	
de dispersante, para a camada V.	322
Figura 3 44 Curvas de distribuição granulométrica obtidas com e sem o uso	
de dispersante, para a camada VA.	323

Figura 3 45 Curvas de distribuição granulométrica obtidas com e sem o uso	
de dispersante, para a camada A.	323
Figura 4 1 Aspectos hidrológicos da vegetação em taludes.	329
Figura 4 2 Distribuição dos potenciais da água no sistema SPAC.	331
Figura 4 3 Representação esquemática dos estômatos, em corte (acima) e em	
planta, mostrando sua fisionomia quando aberto (abaixo à	
esquerda) ou fechado (abaixo à direita).	337
Figura 4 4 Pluviômetros instalados no Campo Experimental do Galeão. A,B	
– Ville de Paris; C – Davis; D,E – Decagon ECRN1; F –	
aspecto do ECRN; G,H - Decagon ECRN2; I - Modelo do	
Talude incluindo a estação meteorológica, parcelas de erosão e	
posição de todos os pluviômetros instalados.	348
Figura 4 5 Piranômetro CS300 e sua posição na Estação Meteorológica.	350
Figura 4 6 Termo-Higrômetro CS215.	351
Figura 4 7 Anemômetro e Cata-Ventos Wind Sentry3002-5 (Young	
Meteorological Instruments).	352
Figura 4 8 Estação Meteorológica Compacta Campbell, destacando-se o	
abrigo para sistema de aquisição de dados e o Painel Solar.	353
Figura 4 9 Sensor GMS da marca Watermark modelo 200SS-15.	356
Figura 4 10 Efeito da temperatura na conversão de k Ω para kPa utilizando-	
se a equação de Shock et al. de 1998 (Chard, 2006).	357
Figura 4 11 Sistema de Aquisição de Dados Watermark Monitor#900M.	358
Figura 4 12 Instalação de programação do Monitor 900M para seis sensores	
GMS e dois geotermômetros.	359
Figura 4 13 Ilustração de um circuito de capacitor não polarizado.	363
Figura 4 14 Carga do capacitor após fechamento da chave.	363
Figura 4 15 Sonda FDR ECH2O EC-10, observando-se dimensões, área de	
influência e componentes básicos.	368
Figura 4 16 Efeito do tipo de plug utilizado para confecção de extensões.	369
Figura 4 17 Detalhes do Datalogger Em50.	371
Figura 4 18 Solos após destorroamento e peneiramento.	372
Figura 4 19 Material utilizado para e extração de amostras indeformadas	
(Kopecky) e para montagem dos corpos de prova. Da esquerda	

para a direita: amostrador Kopecky, cilindro para realização do	
ensaio, cilindro compactador Proctor Normal.	373
Figura 4 20 Cilindros utilizados nos ensaios pelo Método III.	375
Figura 4 21 Calibrações específicas das sondas EC-10 para os solos do	
Talude utilizando-se o Método I. No canto inferior esquerdo	
observa-se a análise comparativa de todas as curvas de	
calibração obtidas.	380
Figura 4 22 Calibrações específicas das sondas EC-10 para os solos do	
Talude utilizando-se o Método II (cores) e o Método I (em	
azul). No canto inferior esquerdo observa-se a análise	
comparativa de todas as curvas de calibração obtidas.	382
Figura 4 23 Curvas w x pd obtidas para o solo VE e calibrações por valor de	
ρd.	384
Figura 4 24 Curvas w x pd obtidas para o solo V e calibrações por valor de	
ρd.	385
Figura 4 25 Curvas w x pd obtidas para o solo R e calibrações por valor de	
ρd.	386
Figura 4 26 Curvas w x pd obtidas para o solo A e calibrações por valor de	
ρd.	387
Figura 4 27 Curvas w x pd obtidas para o solo VA e calibrações por valor de	
ρd	388
Figura 4 28 Resultados de calibrações para o solo VE utilizando-se o	
Método III. Os gráficos A, B, C e D apresentam a relação pd	
versus RAW para os diferentes valores de θ obtidos, o quadro	
E apresenta a relação geral entre pd versus RAW para todos os	
valores de θ e o quadro F apresenta a calibração resultante.	390
Figura 4 29 Resultados de calibrações para o solo R utilizando-se o Método	
III. Os gráficos A, B, C e D apresentam a relação pd versus	
RAW para os diferentes valores de θ obtidos, o quadro E	
apresenta a relação geral entre pd versus RAW para todos os	
valores de θ e o quadro F apresenta a calibração resultante.	391
Figura 4 30 Resultados de calibrações para o solo VA utilizando-se o	
Método III. Os gráficos A, B e C apresentam a relação pd	
versus RAW para os diferentes valores de θ obtidos, o quadro	

D apresenta a relação geral entre pd versus RAW para todos os	
valores de θ e o quadro E apresenta a calibração resultante.	392
Figura 4 31 Resultados de calibrações para o solo V utilizando-se o Método	
III. Os gráficos A, B e C apresentam a relação pd versus RAW	
para os diferentes valores de θ obtidos, o quadro D apresenta a	
relação geral entre ρd versus RAW para todos os valores de θ e	
o quadro E apresenta a calibração resultante.	393
Figura 4 32 Resultados de calibrações para o solo A utilizando-se o Método	
III. Os gráficos A, B e C apresentam a relação pd versus RAW	
para os diferentes valores de θ obtidos, o quadro D apresenta a	
relação geral entre ρd versus RAW para todos os valores de θ e	
o quadro E apresenta a calibração resultante.	394
Figura 4 33 Calibração com Método III, comparadas à equação de	
calibração de fábrica.	395
Figura 4 34 Resultados de todos os pontos de calibração para os diferentes	
solos estudados, comparados à equação de calibração de	
fábrica.	396
Figura 4 35 Comparação dos diferentes métodos de calibração das sondas	
EC-10 para os solos do Talude utilizando-se o Método I (azul)	
Método II (cores claras) e o Método III (cores escuras),	
Método IV (Preto).	397
Figura 4 36 Gráficos para o ponto de monitoramento 1TS (solo VA),	
utilizando as diferentes equações de calibração obtidas, nas	
profundidades de 0.25 m, 0.50 m e 0.75 m, no período de	
27/10/2008 a 9/11/2008.	398
Figura 4 37 Gráficos para o ponto de monitoramento 4TM (solo VE),	
utilizando as diferentes equações de calibração obtidas, nas	
profundidades de 0.25 m, 0.50 m e 0.75 m, no período de	
20/11/2008 a 23/11/2008.	399
Figura 4 38 Gráficos para o ponto de monitoramento 3TI (solo R),	
utilizando as diferentes equações de calibração obtidas, nas	
profundidades de 0.25 m, 0.50 m e 0.75 m, no período de	
30/08/2008 a 03/10/2008.	400

PUC-Rio - Certificação Digital Nº 0421305/CA

Figura 4 39 Gráficos para o ponto de monitoramento 4TS (solo V),	
utilizando as diferentes equações de calibração obtidas, nas	
profundidades de 0.25 m, 0.50 m e 0.75 m, no período de	
30/08/2008 a 01/10/2008.	401
Figura 4 40 Gráficos para o ponto de monitoramento 4TI (solo A),	
utilizando as diferentes equações de calibração obtidas, nas	
profundidades de 0.25 m, 0.50 m e 0.75 m, no período de	
30/08/2008 a 01/10/2008.	402
Figura 4 41 Componentes da Calha Parshall e terminologia para medidas de	
projeto (adaptado de ASTM 1941:1975).	405
Figura 4 42 Precipitação pluvial (mm/h) no dia 14/12/2007.4	408
Figura 4 43 Detalhes da Calha Parshall CONTECH.	409
Figura 4 44 Transmissor de nível ultra-sônico LU-20 5001, destacando-se a	
relação Altura/Raio da sua área de atuação e suas	
características.	411
Figura 4 45 Detalhes do suporte do transmissor ultra-sônico na Calha	
Parshall, bem como seu posicionamento e campo de atuação no	
fundo da calha.	413
Figura 4 46 Transmissores LU-20 5001 acoplados às Calhas CPARSHALL,	
conectados ao logger ALMEMO® 2890-9 e ao PC. A caixa	
d'água é usada para calibrar o transmissor para diferentes	
níveis da Calha Parshall.	414
Figura 4 47 Resultados da Calibração dos Transmissores LU-20 acoplados	
às Calhas Parshall. Aquisição de dados com Datalogger	
ALMEMO® 2890-9.	415
Figura 4 48 A esquerda: categorias de processos de movimentação de	
partículas em um canal de fluxo (adaptado de EPA, 1997); à	
direita – foto retratando processo de deposição no fundo do	
canal da Parcela II após uma chuva intensa.	417
Figura 4 49 Transporte de sedimentos em correntes hídricas. Seqüência de	
um evento de chuva ocorrido no dia 19 de janeiro de 2009,	
retratando as diferentes concentrações de sedimentos presentes	
no escoamento superficial durante o evento erosivo. A,B,C,D,E	
 – seqüência de evolução de entrada das primeiras enxurradas. 	

F,G – aspecto da parcelas sendo lavada pela enxurrada. H –	
aspecto do canal no final do evento, podendo-se evidenciar um	
início de acúmulo de sedimentos mesmo com um canal livre.	418
Figura 4 50 Curva de Distribuição Granulométrica dos sólidos presentes nas	
enxurradas da Parcela 2.	421
Figura 4 51 Total de Sólidos Suspensos de amostras de enxurradas no	
período de 30/08/2008 a 21/10/2008 com a utilização da sonda	
TDS SC-100.	423
Figura 4 52 Acoplagem de instrumentação para medição de concentração de	
sedimentos nas parcelas de erosão.	427
Figura 4 53 Arquitetura dos sistemas radiculares de acordo com a	
nomenclatura proposta por Pritchett: A - Pivotante; B -	
Fasciculado; C – Superficial (adaptado de Pritchett, 1979).	435
Figura 4 54 Classes de orientação de crescimento de raízes pivotantes	
(adaptado de Carneiro, 1995).	435
Figura 4 55 Classificação de Menzie das deformações de raízes pivotantes	
(adaptado de Carneiro, 1995).	435
Figura 4 56 Desenvolvimento diferenciado de plantios por hidrossemeio ao	
longo do comprimento da rampa dos taludes. Acima fotos da	
Rodovia Rio Juiz de Fora, abaixo à esquerda observa-se a	
Parcela 3 e à direita um hidrossemeio em talude na Rodovia	
Rio Santos realizado em fevereiro de 2008.	437
Figura 4 57 Diagrama representativo das componentes: resistência	
superficial (rs) e resistência aerodinâmica (ra).	441
Figura 4 58 Determinação da Declinação magnética para cálculo do Norte	
Verdadeiro.	446
Figura 4 59 Abrigo Meteorológico no Campo Experimental do Galeão.	446
Figura 4 60 Posicionamento dos pontos de monitoramento e das baterias de	
sensores ao longo dos três terços no talude, para as quatro	
parcelas estudadas.	449
Figura 4 61 Pontos de monitoramento relacionados aos diferentes camadas	
de solos existentes na face do talude.	450
Figura 4 62 Posicionamento dos subhorizontal GMS para insersão no talude.	451
Figura 4 63 Processo de inserção no talude com o gabarito.	451

Figura 4 64 Posicionamento dos sensores no talude, com cores para	
identificação das profundidades de instalação.	452
Figura 5 1 Pluviômetros ECRN utilizados na avaliação da intercepção.	464
Figura 5 2 Localização da Estação Meteorológica no Morro do Radar,	
dentro da área patrimonial do Aeroporto Internacional do Rio	
de Janeiro.	465
Figura 5 3 Valores de pluviosidade anual registrados de 1997 a 2007 na	
Estação Meteorológica da GEORIO na Ilha do Governador.	467
Figura 5 4 Dados mensais e diários de precipitação pluvial referentes aos	
anos de 2005, 2006 e 2007, provenientes da Estação	
Meteorológica da GEORIO situada na Ilha do Governador.	468
Figura 5 5 Monitoramento in situ da precipitação com Pluviômetros ECRN	
da Decagon e DAVIS/Campbell.	471
Figura 5 6 Monitoramento dos Pluviômetros ECRN da Decagon, registros	
da GEORIO, dados da Estação Campbell e Fases do	
monitoramento.	472
Figura 5 7 Valores de precipitação horários, diários e mensais referentes ao	
período de monitoramento na Área Z.	473
Figura 5 8 Precipitação horária no período anterior e durante o	
monitoramento segundo GEORIO e dados da Área Z.	474
Figura 5 9 Classes de chuvas (mm/24hs) para o período de monitoramento.	475
Figura 5 10 Classes de chuvas para intervalos de aquisição de mm/h e	
mm/15 min.	476
Figura 5 11 Sistematização das classes de chuvas para intervalos de coleta	
de dados de mm/24hs e mm/h, no decorrer das diferentes	
épocas avaliadas.	478
Figura 5 12 Correlações entre os pluviômetros da DC1 e DC2 e entre a	
média dos pluviômetros da Decagon e o pluviômetro DAVIS.	481
Figura 5 13 Correlações entre a média dos pluviômetros DC e o pluviômetro	
DAVIS para entre para precipitações inferiores a 10 mm/h e	
entre valores obtidos na Área Z e na Estação da GEORIO.	482
Figura 5 14 Parâmetros meteorológicos para o cálculo do Balanço Hídrico.	486
Figura 5 15 Dados do balanço energético de superfície de 21-05-09 a 29-07-	
09.	487

Figura 5 16 Rosas de ventos para o período de monitoramento SET - DEZ	
2008.	488
Figura 5 17 Rosas de ventos para o período de monitoramento MAR 2009 -	
SET 2009.	489
Figura 5 18 Quadro comparativo - intercepção pelas copas Embrapa -	
Biomanta.	492
Figura 5 19 Sobrevivência e mortalidade de mudas no talude, bem como as	
substituições de acordo com as diferentes posições no talude.	494
Figura 5 20 Mudas utilizadas na Área Z – nódulos rizóbio/sistemas	
radiculares.	495
Figura 5 21 Variabilidade da altura das leguminosas arbóreas e arbustivas	
implantadas na Parcela I após 12/14 meses de plantio.	499
Figura 5 22 DAP das leguminosas arbóreas e arbustivas implantadas na	
Parcela I após 12/14 meses de plantio.	500
Figura 5 23 DAB (cm) das leguminosas arbóreas e arbustivas implantadas	
na Parcela I após 12/14 meses de plantio.	501
Figura 5 24 Altura das mudas (m) de acordo com as numerações referentes	
às diferentes posições das covas, 12/14 meses após o	
transplantio.	502
Figura 5 25 Aspecto visual de sistema radicular da Mimosa	
caesalpiniaefolia.	505
Figura 5 26 Quadrícula utilizada na aquisição de imagens (quadros de 0.20	
por 0.25m).	506
Figura 5 27 Processamento das imagens referentes a cada quadrícula no	
SIARCS. Algumas posições foram desconsideradas pelo baixo	
padrão na binarização.	506
Figura 5 28 Aspectos morfológicos do sistema radicular da Acacia	
auriculiformis após a exposição do perfil.	508
Figura 5 29 Quadrícula utilizada na aquisição de imagens do perfil referente	
ao sistema radicular da Acacia auriculiformis, visando sua	
análise através do SIARCS. Observa-se o posicionamento do	
perfil no contato das camadas R e A1.	508
Figura 5 30 Processo de aquisição de imagens e binarização para a	
interpretação no SIARCS.	509

Figura 5 31 Aspecto visual da Parcela III durante o período de emergência	
das espécies. Observa-se o desenvolvimento maior dos	
rebentos nas regiões de acúmulo.	510
Figura 5 32 Emergência de espécies em diferentes posições do talude e	
também no talude acima (TII), onde foi aplicado o mesmo	
tratamento no mesmo dia.	511
Figura 5 33 Sistemas radiculares encontrados em associação nos primeiro	
0.1m do solo na Parcela III.	513
Figura 5 34 Aspectos da emergência das diferentes espécies implantadas.	515
Figura 5 35 Aspectos da emergência das espécies a atravessamento na	
biomanta.	516
Figura 5 36 Emergência e florescimento simultâneo devido à época de	
plantio.	516
Figura 5 37 Crescimento do nabo forrageiro e da crotalária nos estágios	
iniciais após o atravessamento da biomanta. No detalhe	
observa-se a realocação da biomanta, que ocorreu após sua	
movimentação para reinstalação de instrumentos no subsolo.	517
Figura 5 38 Abertura do perfil e avaliação do sistema radicular do guandu -	
Parcela IV.	518
Figura 5 39 Resultados das avaliações do sistema radicular do guandu	
incluindo a binarização, determinação da área radicular,	
afinamento e determinação do comprimento radicular.	520
Figura 5 40 Taxas de recobrimento no dia 19-02-08, estimadas através do	
SIARCS.	522
Figura 5 41 Taxas de recobrimento no dia 29-05-09, estimadas através do	
SIARCS.	523
Figura 5 42 Gráficos de dispersão referentes às taxas de recobrimento no	
decorrer do período de monitoramento obtidas através do	
processamento digital de imagens.	526
Figura 5 43 Altura das arbóreas na Parcela I em função da taxa de	
recobrimento.	526
Figura 5 44 Altura das arbóreas na Parcela I em função da taxa de	
recobrimento.	527

Figura 5 45 Altura das arbóreas na Parcela I em função da taxa de	
recobrimento.	527
Figura 5 46 Altura das arbóreas na Parcela I em função da taxa de	
recobrimento.	528
Figura 5 47 Altura das arbóreas na Parcela I em função da taxa de	
recobrimento.	528
Figura 5 48 Funções médias de crescimento das arbóreas na Parcela I em	
função da taxa de recobrimento.	529
Figura 5 49 Altura na Parcela III em função da taxa de recobrimento.	529
Figura 5 50 Altura na Parcela IV em função da taxa de recobrimento.	530
Figura 5 51 determinação do IAF da Mimosa caesalpiniaefolia abatida para	
avaliações de biomassa.	534
Figura 5 52 determinação do IAF da Acácia auriculiformis abatida para	
avaliações de biomassa.	535
Figura 5 53 Desenvolvimento do IAFativo em função dos dias após o	
transplantio, com base nas taxas de recobrimento para o	
período de monitoramento, para a Mimosa caesalpiniaefolia na	
Parcela I.	536
Figura 5 54 Desenvolvimento do IAFativo em função dos dias após o	
transplantio, com base nas taxas de recobrimento para o	
período de monitoramento, para a Acácia auriculiformis na	
Parcela I.	537
Figura 5 55 Variação do IAF médio na Parcela I em função do DAT,	
próximo aos pontos de monitoramento do subsolo.	537
Figura 5 56 Variação do IAF de uma Crotalária com emergência após	
fevereiro de 2009.	538
Figura 5 57 IAF estimado para a Parcela III no decorrer do período de	520
monitoramento.	539
Figura 5 58 IAF x DAE estimado pata a Parcela IV no decorrer do periodo	7 4 1
de monitoramento.	541
Figura 5 59 Estabilidade da equação para determinação de E10 de PM em	
termos de calor latente em relação aos resultados obtidos	E 1 1
atraves da formulação convencional.	544

Figura 5 60 Determinação da Evapotranspiração Máxima da Cultura (ETm	
em mm/dia) para as parcelas em estudo.	546
Figura 5 61 Determinação do Kc nas parcelas em estudo.	547
Figura 5 62 Perdas de Solo e Balanços Hídricos Superficiais para o período	
completo de avaliação.	551
Figura 5 63 Perdas de Solo e Balanços Hídricos Superficiais para a	
primavera de 2007.	553
Figura 5 64 Precipitações em mm/24hs e mm/h para a primavera de 2007.	555
Figura 5 65 Perdas de Solo e Balanços Hídricos Superficiais para o verão de	
2007-2008.	557
Figura 5 66 Perdas de Solo e Balanços Hídricos Superficiais para o outono	
de 2008.	560
Figura 5 67 Medições referentes ao dia 07-04-08 realizadas no dia 08-04-08	
08h30min visando evitar a perda de dados de novas chuvas.	561
Figura 5 68 Dia 27-03-08 após uma precipitação de 106 mm/24hs no	
decorrer do dia 26-03-08.	562
Figura 5 69 Perdas de Solo e Balanços Hídricos Superficiais para o inverno	
de 2008.	564
Figura 5 70 Coleta de amostra e aferição dos níveis nas caixas coletora em	
outubro de 2008.	565
Figura 5 72 Perdas de Solo e Balanços Hídricos Superficiais para o verão	
2008-2009.	568
Figura 5 73 Visualização das parcelas durante o dia 22-01-09.	569
Figura 5 74 Perdas de Solo e Balanços Hídricos Superficiais para o outono	
de 2009.	572
Figura 5 75 Perdas de Solo e Balanços Hídricos Superficiais para o inverno	
de 2009.	573
Figura 5 76 Resultados do monitoramento do nível na Calha Parshall	
referente à Parcela II através da utilização do sistema de	
aquisição de dados Ahlborn 2890-9.	577
Figura 5 77 Resultados do monitoramento referente ao Evento I de	
escoamento registrado na calha da Parcela II no dia 4 de	
fevereiro de 2009.	578

Figura 5 78 Resultados de monitoramento referente ao Evento II de	
escoamento registrado na calha da Parcela II no dia 8 de	
fevereiro de 2009.	579
Figura 5 79 Resultados do monitoramento do nível na Calha Parshall	
referente à Parcela II através da utilização do sistema de	
aquisição de dados Ahlborn 2890-9.	581
Figura 5 80 Resultados do monitoramento do nível na Calha Parshall	
referente à Parcela II dias 12 e 13 de março.	582
Figura 5 81 Resultados do monitoramento do nível na Calha Parshall	
referente à Parcela II durante a madrugada do dias 13 para 14	
de março de 2009.	583
Figura 5 82 Aspectos da instrumentação para monitoramento automatizado	
da erosão e do escoamento superficial adaptado para parcelas	
de controle de erosão.	587
Figura 5 83 Calibração dos turbidímetros com sedimentos provenientes das	
enxurradas da Parcela II.	588
Figura 5 84 Resultados do monitoramento dos níveis das Calhas Parshall	
após a adaptação da estação hidrossedimentológica.	590
Figura 5 85 Comparação entre resultados de simulações utilizando-se	
parâmetros da USLE e valores medidos em campo.	592
Figura 5 86 Pontos de monitoramento dos FDR, comprimento dos fios e	
número de registros de horas monitoradas.	597
Figura 5 87 Caixas de armazenamento dos loggers invadidas por cobras e	
roedores no período de monitoramento e as novas portas de	
PVC instaladas visando uma melhor vedação (abaixo do PVC	
foi ainda colocada uma vedação de borracha no contato com a	
base de alvenaria). Observa-se acima uma cobra comendo um	
camundongo que estava na caixa anteriormente após a abertura	
das mesmas para a aquisição dos dados.	600
Figura 5 88 Perfis de Sucção e Teor de Umidade Volumétrico - Parcela I/	
Período Completo.	606
Figura 5 89 Perfis de Sucção e Teor de Umidade Volumétrico - Parcela II/	
Período Completo.	607
	 Figura 5 78 Resultados de monitoramento referente ao Evento II de escoamento registrado na calha da Parcela II no dia 8 de fevereiro de 2009. Figura 5 79 Resultados do monitoramento do nível na Calha Parshall referente à Parcela II através da utilização do sistema de aquisição de dados Ahlborn 2890-9. Figura 5 80 Resultados do monitoramento do nível na Calha Parshall referente à Parcela II dias 12 e 13 de março. Figura 5 81 Resultados do monitoramento do nível na Calha Parshall referente à Parcela II durante a madrugada do dias 13 para 14 de março de 2009. Figura 5 82 Aspectos da instrumentação para monitoramento automatizado da erosão e do escoamento superficial adaptado para parcelas de controle de erosão. Figura 5 83 Calibração dos turbidímetros com sedimentos provenientes das enxurradas da Parcela II. Figura 5 84 Resultados do monitoramento dos níveis das Calhas Parshall após a adaptação da estação hidrossedimentológica. Figura 5 86 Pontos de monitoramento dos FDR, comprimento dos fios e número de registros de horas monitoradas. Figura 5 87 Caixas de armazenamento dos loggers invadidas por cobras e roedores no período de monitoramento e as novas portas de PVC instaladas visando uma melhor vedação (abaixo do PVC foi ainda colocada uma vedação de borracha no contato com a base de alvenaria). Observa-se acima uma cobra comendo um camundongo que estava na caixa anteriormente após a abertura das mesmas para a aquisição dos dados. Figura 5 89 Perfis de Sucção e Teor de Umidade Volumétrico - Parcela I/ Período Completo.

Figura 5 90 Perfis de Sucção e Teor de Umidade Volumétrico – Parcela III/	
Período Completo.	608
Figura 5 91 Perfis de Sucção e Teor de Umidade Volumétrico – Parcela IV/	
Período Completo.	609
Figura 5 92 Perfis de Sucção e Teor de Umidade Volumétrico -	
Profundidade 0.25 m / Todas as Parcelas/ Período Completo.	617
Figura 5 93 Perfis de Sucção e Teor de Umidade Volumétrico -	
Profundidade 0.50 m / Todas as Parcelas/ Período Completo.	618
Figura 5 94 Perfis de Sucção e Teor de Umidade Volumétrico -	
Profundidade 0.75 m / Todas as Parcelas/ Período Completo.	619
Figura 5 95 Perfis de Sucção e Teor de Umidade Volumétrico -	
Profundidade 0.90 m / Todas as Parcelas/ Período Completo.	620
Figura 5 96 Perfis médios sazonais de sucção e umidade volumétrica nos	
diferentes pontos de monitoramento do talude referentes às	
diferentes estações do ano monitoradas.	626
Figura 5 97 Perfis médios mensais de sucção e umidade volumétrica nos	
diferentes pontos de monitoramento do talude referentes às	
diferentes estações do ano monitoradas.	627
Figura 5 98 Monitoramento em escala temporal detalhada aos 0.25m em	
todos os tratamentos e terços de avaliação para duas diferentes	
épocas.	632
Figura 5 99 Variabilidade das sucções, temperatura e teores de umidade	
volumétrica aos 0.50m entre os dias 12 e 15 de março de 2009.	635
Figura 5 100 curvas de retenção de umidade determinadas em laboratório	
pelo método do papel filtro ajustadas pelo método de van	
Genüchten (1980), correlacionadas à valores de sucção e	
umidade registrados em diferentes pontos de monitoramento	
referentes às respectivas camadas de solos.	637
Figura 5 101 curvas de retenção de umidade determinadas em laboratório	
pelo método do papel filtro ajustadas pelo método de van	
Genüchten (1980), correlacionadas à valores de sucção e	
umidade registrados em diferentes pontos de monitoramento	
referentes às respectivas camadas de solos.	638

Figura 5 102 Exemplo de uma curva de estresse hídrico convencional para	
ajustar a evapotranspiração máxima das culturas para	
determinação da ETrc com estresse hídrico.	641
Figura 5 103 Detalhamento dos saldos diários, saldos acumulados diários e	
mensais e a ETrc em relação à ET0 e à ETm para o período de	
monitoramento.	643
Figura 5 104 Balanços hídricos e saldos diários de fluxos.	644
Figura 5 105 Resultados de balanços hídricos relacionados às taxas de	
recobrimento nas diferentes parcelas em estudo durante o	
período de avaliação.	646
Figura 5 106 Malha de Elementos finitos (0.5m nos maiores quadrados)	
utilizada na simulação dos fluxos na Parcela I.	649
Figura 5 107 Funções de permeabilidade para as camadas presentes no perfil	
estratigráfico, determinadas a partir das curvas de retenção de	
umidade experimentais, utilizando-se os métodos de ajuste de	
Fredlund et al. (1994) e van Genüchten (1980).	652
Figura 5 108 Comparação entre os resultados de campo obtidos através do	
monitoramento dos GMS e FDR e os resultados das simulações	
numéricas referentes aos mesmos pontos de monitoramento na	
Parcela I.	655
Figura 5 109 Resultados das simulações numéricas referentes aos pontos de	
monitoramento na Parcela I para as simulações utilizando-se	
para a determinação das funções de permeabilidade os métodos	
de Fredlund et al. (1994) e van Genüchten (1980).	656
Figura 5 110 Comparação entre os saldos diários e balanços hídricos	
mensais obtidos através dos resultados de monitoramento de	
campo e de simulações numéricas no VADOSE/W2007.	657
Figura 5 111 Equipotenciais de poro-pressões no perfil transversal da	
Parcela I referentes aos dias 12, 13, 14 e 15 de março de 2009.	659

Lista de tabelas

Tabela 2 1 Normais Climatológicas do Estado do Rio de Janeiro (INME)	
Tabela 2 2 Associações de Fácies Sedimentares da Formação Macacu	(de
Ferrari, 2001).	92
Tabela 2 3 Categorias de materiais e tipos de escavações (adaptado	de
Shimizu 2002 e Iwasa & Frendrich, 1998).	119
Tabela 2 4 Especificações técnicas da escavadeira hidráulica CAT 315C-	L. 124
Tabela 2 5 Fatores médios de conversão de volumes para diferentes cama	ıdas
de solos.	125
Tabela 2 6 Gramíneas utilizadas para recuperação de áreas degradada	as e
controle de erosão (adaptado de Pereira, 2006).	134
Tabela 2 7 Árvores fixadoras de N2 com potencial para uso em RA	AD,
aspectos silviculturais e de adaptação ambiental (de Franc	o et
al, 1992).	138
Tabela 2 8 Especificações técnicas dos implementos utilizados durante	e as
obras de execução das práticas mecânicas na Área Z.	142
Tabela 2 9 Dimensões dos taludes de corte e aterro, terraços e bacias	de de
sedimentação implantados na Área Z.	144
Tabela 2 10 Lista de mudas utilizadas na revegetação da Área Z (fornec	idas
pelo Viveiro Ecobrand, Seropédica, RJ).	150
Tabela 2 12 Características químicas da apara de grama, resultante	da
manutenção do gramado do Aeroporto Internacional do Rio) de
Janeiro (Fonte: op cit, 2004).	153
Tabela 2 13 Materiais utilizados na construção das parcelas de controle	e de
erosão.	164
Tabela 2 14 Modelo para organização dos dados volume de escoame	ento
superficial nas parcelas de erosão, obtidos a partir das leit	uras
de nível nos Latões e nas caixas coletoras.	167
Tabela 2 15 Modelo para organização dos dados de concentração	de
sedimentos nas amostras de enxurradas das parcelas de eros	ão. 167

Tabela 2 16 Modelo para organização de dados para determinação de perdas	
de solo (g; g/m ² ; ton/ha) e água (L; ES (mm/24hs); Inf	
(mm/24hs).	167
Tabela 2 17 Vantagens de técnicas de bioengenharia de solos na recuperação	
de áreas degradadas (adaptado de Gray & Sotir, 1996; Schieltz,	
1996; Coppin & Richards, 1990).	169
Tabela 2 18 Mudas utilizadas na Parcela I.	178
Tabela 2 19 Mudas utilizadas na Parcela III.	191
Tabela 2 20 Biomantas doadas pela Empresa Deflor para pesquisas em	
revegetação e bioengenharia de solos na Área Z. Foram	
fornecidos diferentes tipos de biomantas visando a sua	
aplicação nas diferentes condições geotécnicas existentes no	
talude.	207
Tabela 2 22 Mudas utilizadas na Parcela IV.	209
Tabela 2 23 Cronograma executivo da etapa de diagnóstico do estado de	
degradação das terras.	217
Tabela 2 24 Cronograma executivo das etapas de construção de taludes,	
execução de práticas mecânicas, edáficas e vegetativas de RAD	
no entorno.	218
Tabela 2 25 Cronograma executivo de construção de parcelas de erosão e	
aplicação de técnicas de bioengenharia de solos na Área Z.	219
Tabela 2 26 Resumo de proposta de parametrização para a Equação	
Universal de Perda de Solo - USLE.	231
Tabela 2 27 Fator C e P em para os diferentes tratamentos testados no	
talude.	232
Tabela 3 1 Critério para classificação da transição entre horizontes	
pedológicos em termos de nitidez/ contraste e espessura	
sugerido por SBCS/SNLCS (1982).	250
Tabela 3 2 Transição entre camadas/ horizontes de solos em termos	
topográficos segundo SBCS/SNLCS (1982).	251
Tabela 3 3 Identificação dos perfis para extração de blocos indeformados na	
face do talude.	258
Tabela 3 4 Identificação das amostras adicionais em função dos diferentes	
pontos de coleta na face do talude.	258

Tabela 3 5 Propostas para classificação dos espaços porais.	272
Tabela 3 6 Resumo das propriedades índice dos diferentes solos avaliados.	276
Tabela 3 7 Resumo de dados estatísticos referentes aos resultados da Figura	
3 17.	278
Tabela 3 8 Limites de Atterberg com material passante nas peneiras #40 e	
#200.	280
Tabela 3 9 Atividade das argilas, classificação SUCS e parâmetros de	
entrada.	281
Tabela 3 10 Número de ensaios, valor máximo, mínio e valores médios	
representativos das análises de pH em H2O e em KCL [entre	
colchetes], bem como os respectivos Δ pH médios para as	
diferentes camadas de solo.	282
Tabela 3 11 Número de ensaios e valores médios representativos das	
análises de complexo sortivo para as diferentes camadas de	
solo. Resultados em cmolc/dm ³ para todos os parâmetros	
exceto V (expresso em porcentagem).	283
Tabela 3 12 Número de ensaios e valores médios (entre colchetes)	
representativos das análises de Fósforo Assimilável (mg/dm3) e	
Carbono Orgânico (g/kg).	284
Tabela 3 13 Resultados de Análises de ataque sulfúrico.	284
Tabela 3 14 Resultados das análises de fluorescência de Raios-X	
(Semiquantitativa).	285
Tabela 3 15 Valores de Ksat obtidos a partir de diferentes ensaios de	
permeabilidade para as camadas de solo avaliadas (valores em	
cm/s).	291
Tabela 3 16 Deformações verticais ocorridas nos anéis submetidos à	
saturação pelo método de imersão e seus respectivos índices	
físicos antes e depois dos ensaios.	293
Tabela 3 17 Distribuição percentual das classes de diâmetros de poros de	
acordo com diferentes propostas de classificação.	298
Tabela 3 18 Parâmetros de ajuste referentes à equação de van Genüchten	
para as curvas de retenção das camadas VE e R.	302
Tabela 3 19 Parâmetros de ajuste referentes à equação de van Genüchten	
para a curva de retenção bimodal da camada V.	303

Tabela 3 20 Parâmetros de ajuste referentes à equação de van Genüchten	
para a curva de retenção bimodal da camada A.	304
Tabela 3 21 Parâmetros de ajuste referentes à equação de van Genüchten	
para a curva de retenção bimodal da camada VA.	305
Tabela 3 22 Sumário de parâmetros hidráulicos das diferentes camadas de	
solo avaliadas importantes para modelagem de fluxos em	
meios porosos.	307
Tabela 3 23 Graus de dispersividade segundo (op. cit, 1976).	316
Tabela 3 24 Porcentagem de dispersão das diferentes camadas de solos	
avaliadas.	319
Tabela 3 25 Resultados de análises granulométricas com e sem uso de	
defloculante.	324
Tabela 3 26 Grau de Floculação das Argilas das diferentes camadas	
avaliadas.	325
Tabela 3 27 Porcentagem de dispersão das diferentes camadas de solo	
avaliadas.	325
Tabela 3 28 Determinação do Fator K da USLE (Wishmeier & Smith,	
1958).	328
Tabela 4 1 Características dos pluviômetros instalados na área de estudos.	349
Tabela 4 2 Resumo das características dos sensores montados na Estação	
Meteorológica Compacta SCI.	353
Tabela 4 3 Parâmetros medidos, unidades e dados gravados na primeira	
série de aquisição gerada no Short Cut.	354
Tabela 4 4 Parâmetros medidos, unidades e dados gravados na segunda série	
de aquisição gerada no Short Cut.	354
Tabela 4 5 Parâmetros medidos, unidades e dados gravados na segunda série	
de aquisição gerada no Short Cut.	355
Tabela 4 6 Quadro Comparativo dos métodos eletromagnéticos. Dados de	
Czarnomski et al. (2005) Noborio (1996); Campbell Sci. (1996	
e 2004).	367
Tabela 4 7 Planilha utilizada para determinação dos parâmetros de	
calibração (com resultados da calibração do solo roxo).	373
Tabela 4 8 Energias de compactação aplicadas nos diferentes ensaios de	
compactação dinâmica e nas diferentes etapas do ensaio.	376

Tabela 4 9 Organização dos dados para a execução dos ensaios com o	
Método III.	377
Tabela 4 10 Resultados das calibrações para os 5 camadas de solos	
estudados	379
Tabela 4 11 Equações de calibração obtidas com o Método I.	380
Tabela 4 12 Equações de calibração e respectivos valores de R^2 obtidas com	
o Método II.	382
Tabela 4 13 Equações de calibração e respectivos valores de R^2 obtidas	
através do Método III.	395
Tabela 4 14 Resumo de ensaios de caracterização dos solos.	397
Tabela 4 15 Dimensões dos componentes da Calha Parshall de acordo com	
os valores de W (dados de ASTM 1941:1975).	405
Tabela 4 16 Valores de n e K e limites de vazão para diferentes tamanhos de	
Calhas Parshall (ASTM 1941:1975).	407
Tabela 4 17 Relação entre nível H (mm) e vazão (m3/h) na Calha Parshall.	410
Tabela 4 18 Resolução e precisão da Sonda SC-100 para as diferentes	
unidades de aferição.	422
Tabela 4 19 Resultados de análises de TSS, Turbidez e pH, obtidos a partir e	
análises das enxurradas em campo, para o dia 19 de setembro	
de 2008.	425
Tabela 4 20 Características de alguns turbidímetros recomendados para	
instrumentação de parcelas de erosão.	425
Tabela 4 21 Classes de tamanho de raízes segundo IBGE (2005).	433
Tabela 4 22 Classificação da abundância de raízes no perfil de solo (de	
IBGE, 2005).	433
Tabela 4 23 Profundidades recomendadas para instalação de tensiômetros de	
acordo com a profundidade efetiva da zona ativa das raízes (de	
Moretti Filho, 1967).	448
Tabela 4 24 Distâncias de instalação das sondas EC-10.	454
Tabela 4 25 Distribuição das extensões utilizadas nos EC-10.	455
Tabela 4 26 Distâncias necessárias para a instalação dos GMS nos 48 pontos	
de monitoramento e os respectivos comprimentos de fios	
utilizados.	456

Tabela 4 27 Posicionamento das sondas GMS nos loggers Watermark para a	
aquisição dos dados.	456
Tabela 5 1 Intervalos de aquisição de dados referentes ao período de	
monitoramento avaliado na tese, para os diferentes tipos de	
instrumentos instalados no Talude.	462
Tabela 5 2 Fontes de dados de precipitação e séries de aquisição de dados	
utilizadas no decorrer do período de monitoramento.	469
Tabela 5 3 Siglas Adotadas, estação do ano, período monitorado e nº. de	
dias.	477
Tabela 5 4 Dados analíticos da sistematização de chuvas em mm/24hs.	479
Tabela 5 5 Dados analíticos da sistematização de chuvas em mm/h.	480
Tabela 5 6 Roteiro de cálculo para determinação da ETO em intervalos	
horários – dados de monitoramento.	483
Tabela 5 7 Roteiro de cálculo para determinação da ETO em intervalos	
horários – parâmetros e cálculo do déficit de pressão de vapor	
(es-ea).	483
Tabela 5 8 Roteiro de cálculo para determinação da ETO em intervalos	
horários - determinação da radiação extraterrestre e saldo de	
radiação.	484
Tabela 5 9 Determinação da ETO com base nas tabelas anteriores.	484
Tabela 5 10 Dados de intercepção dos principais eventos registrados após a	
instalação da instrumentação.	491
Tabela 5 12 Dados individualizados de Altura das arbóreas e arbustivas	
implantadas na Parcela I após 12/14 meses de plantio.	498
Tabela 5 13 Crescimento do Capim Vetiver na crista do talude e na Parcela	
Ι.	503
Tabela 5 14 Biomassa aérea dos indivíduos arbóreos abatidos na Parcela I.	504
Tabela 5 15 Biomassa radicular de Mimosa caesalpiniaefolia aos 537 dias	
após o transplantio e resultados analíticos das análises do perfil	
através do SIARCS.	507
Tabela 5 16 Biomassa radicular de Acacia auriculiformis aos 537 dias após	
o transplantio e resultados analíticos das análises do perfil	
através do SIARCS.	509

Tabela 5 17 Períodos de emergência das diferentes espécies plantadas na	
Parcela III.	511
Tabela 5 18 Dados morfométricos da vegetação instalada na Parcela III 12	
meses após a aplicação da hidrossemeadura.	512
Tabela 5 19 Avaliações de biomassa aérea na Parcela III.	514
Tabela 5 20 Dados morfométricos da vegetação estabelecida na Parcela III	
537 dias após o recobrimento do talhão com a biomanta.	518
Tabela 5 21 Resultados analíticos das avaliações do sistema radicular do	
guandu através da utilização do software SIARCS.	519
Tabela 5 22 Resumo das taxas de recobrimento obtidas através do	
processamento de imagens com o SIARCS.	524
Tabela 5 23 Recobrimento médio sazonal nas parcelas em estudo. .	524
Tabela 5 24 Variação mensal das taxas de recobrimento nas diferentes	
parcelas.	525
Tabela 5 25 Fator C para diferentes taxas de recobrimento nas Parcelas I, III	
e IV e de acordo com Pereira (1999) para diferentes taxas de	
recobrimento e tipos de vegetação.	530
Tabela 5 26 determinação do Fator P para as diferentes parcelas em estudo.	531
Tabela 5 27 Determinação de KLSCP para as parcelas em estudo no	
decorrer do período de monitoramento.	531
Tabela 5 28 Roteiro de cálculo utilizado para determinação da ETm em	
intervalos diários utilizando a equação 4-1.	542
Tabela 5 29 Roteiro de cálculo para determinação da ETO em intervalos	
diários – parâmetros e cálculo do déficit de pressão de vapor	
(es-ea).	542
Tabela 5 30 Roteiro de cálculo para determinação da ETO em intervalos	
diários – determinação da radiação extraterrestre e saldo de	
radiação.	543
Tabela 5 31 Resumo dos dados perdas de solo e balaços hídricos referentes	
ao período completo de avaliação.	550
Tabela 5 32 Erosão nas parcelas anteriormente à aplicação das técnicas de	
bioengenharia.	552
Tabela 5 33 Fator K e erosão medida nas parcelas no período anterior à	
aplicação das técnicas de bioengenharia.	554

Tabela 5 34 Resumo de dados do dia 22 de fevereiro de 2008.	558
Tabela 5 35 Comparação das perdas de solo, taxas de recobrimento e	
controle de erosão após um ano de monitoramento.	563
Tabela 5 36 Comparação das perdas de solo, taxas de recobrimento e	
controle de erosão após um ano de monitoramento.	569
Tabela 5 37 Comparação das perdas de solo, taxas de recobrimento e	
controle de erosão referente aos invernos de 2008 e 2009.	571
Tabela 5 38 Detalhes do escoamento superficial na Parcela II relativos aos	
eventos de erosão monitorados nas caixas coletoras nos meses	
de fevereiro e março de 2009.	575
Tabela 5 39 Dados dos primeiros eventos de escoamento monitorados na	
Calha Parshall da Parcela II.	580
Tabela 5 40 Precipitação (mm/15min) e registros de escoamento superficial	
nas caixas coletoras referentes aos primeiros eventos	
monitorados na Calha Parshall da Parcela II.	580
Tabela 5 41 Dados de monitoramento na Calha Parshall da Parcela II	
referentes aos eventos III e IV.	584
Tabela 5 42 Precipitação (mm/15min) e registros de escoamento superficial	
nas caixas coletoras referentes aos eventos III e IV	
monitorados na Calha Parshall da Parcela II.	584
Tabela 5 43 Equações de calibração dos transmissores de nível LU-20 para	
adaptação na Estação Hidrossedimentológica SOLAR.	586
Tabela 5 44. Simulação das perdas de solo em eventos de escoamento	
superficial medidos nas Calhas Parshall a partir da formulação	
do modelo WEPP.	594
Tabela 5 45 Loggers Em50, portas e pontos, distâncias, tipos de extensões	
utilizadas, comprimentos de fios e número de dias monitorados	
(de 10.032).	599
Tabela 5 46 Instabilidade no Logger WM5 em abril de 2009.	603
Tabela 5 47 Equações de calibração utilizadas no monitoramento das	
diferentes camadas de solo presentes no talude.	604
Tabela 5 48 Dados resultantes das análises de balanços hídricos no talude.	645

Lista de quadros

Quadro 2 1 Detalhamento da espécie Acacia holosericea A. Cunn. ex G.	
Don	181
Quadro 2 2 Detalhamento da espécie Acacia auriculiformis A. Cunn. ex	
Benth.	182
Quadro 2 3 Detalhamento da espécie Albizia guachapelle (Kunth) Dugand	183
Quadro 2 4 Detalhamento da espécie Cratylia argentea (Desvaux) O. Kuntze	184
Quadro 2 5 Detalhamento da espécie Mimosa caesalpiniaefolia Benth.	185
Quadro 2 6 Detalhamento da espécie Cajanus cajan (L.) Millsp.	193
Quadro 2 7 Detalhamento da espécie Calopogonium mucunoides Desv.	194
Quadro 2 8 Detalhamento da espécie Raphanus sativus 1	
Quadro 2 9 Detalhamento da espécie Avena strigosa Schreb.	
Quadro 2 10 Detalhamento da espécie Crotalaria juncea L.	
Quadro 2 11 Detalhamento da espécie Setaria sphacelata (Schumach.).	
Quadro 2 12 Detalhamento da espécie Brachiaria humidicola (Rendle)	
Schweick.	199
Quadro 2 13 Detalhamento da espécie Melinis minutiflora P. Beauv.	
Quadro 3 1 Aspectos da seqüência deposicional, camadas de solo sob o	
ponto de vista geotécnico, transições e descrição pedológica.	253
Quadro 3 2 Descrição da mineralogia das areias para as diferentes camadas	
de solo estudadas. Na última coluna observa a descrição	
detalhada da mineralogia da fração areia dos diferentes materiais,	
sendo estimada também a percentagem média de cada mineral	
encontrado.	288
Quadro 3 3 Resultados do ensaio de desagregação.	314
Quadro 3 4 Resultados dos ensaios de dispersividade.	318

Lista de Abreviaturas e Símbolos

А	Área drenada
А	Perda anual de solo (USLE)
a	Percentual de matéria orgânica (USLE)
А	Solo Amarelo
a	Parâmetro do modelo de van Genüchten (1980)
a	Parâmetro de Erodibilidade da USLE
A1	Primeira camada do Solo Amarelo
A2	Segunda Camada do Solo Amarelo
AASC	American Association of State Climatologists, EUA
ABNT	Associação Brasileira de Normas Técnicas
AC	Área de Copas
ADR	Amplitude Domain Reflectometry
AE	Fluxo evaporativo total
AF	Área Foliar
AIRJ	Aeroporto Internacional do Rio de Janeiro Galeão/ Tom Jobim
AN	Argila Naturalmente Dispersa
APENA	Associação Portuguesa de Engenharia Natural
ARSU	Aterro de Resíduos Sólidos Urbanos
AT	Argila Total
Aw	Classificação Climática de Köeppen – Tropical Chuvoso
b	Parâmetro de Erodibilidade da USLE
С	Coeficiente de deflúvio (adimensional)
С	Teor de Carbono Orgânico
С	Cobertura vegetal (USLE)
с	Parâmetro de Erodibilidade da USLE
С	Corrente
Ca ⁺⁺	Cátion Cálcio
CMP	Common Midpoint
CNPDIA	Embrapa Instrumentação Agropecuária
c _p	Calor específico do ar
CSS	Concentração de Sedimentos em Suspensão

CTC	Capacidade de Troca Catiônica
CV	Coeficiente de Variação
DAB	Diâmetro de Base
DAC	Diâmetro de Copas
DAE	Dias Após a Emergência
DAP	Diâmetro na Atura do Peito
DAT	Dias Após o Transplantio
DEC	Departamento de Engenharia Civil
D _i	Taxa de erosão entressulcos (WEPP)
DIA	Dias Após Aplicação
DIN	Sistema Nacional Alemão de Especificações na Construção
DL	Datalogger
DNIT	Departamento Nacional de Infraestrutura de Transportes
D _r	Taxa de erosão ravinar (WEPP)
d _r	Inverso da Distância Relativa Sol-Terra
D _{rc}	Potencial de destacamento (WEPP)
E	Energia cinética de cada evento de chuva (WEPP)
e	Índice de vazios
e ₀	Pressão de Saturação de Vapor a Temperatura do Ar
eo (Thr)	Pressão de Saturação de Vapor a Temperatura do Ar Thr
ea	Média Horária da Pressão de Vapor Atual
Ec	Energia de Compactação
EFIB	Federação Européia de Engenharia Natural
EG	Etilenoglicol
EMA	Estação Meteorológia Automatizada
EMBRAPA	Empresa Brasileira de Pesquisa Agropecuária
Embrapa Solos	EMBRAPA – Centro Nacional de Pesquisa de Solos
EPA	Environmental Protection Agency
ES	Escoamento Superficial
ET	Evapotranspiração
ET ₀	Evapotranspiração de Referência
ETA	Estação de Tratamento de Água
ETAR/APOIO	Estação de Tratamento de Esgoto do AIRJ
ETE	Estação de Tratamento de Esgoto

ET _{mc}	Evapotranspiração Máxima da Cultura
ET_{pc}	Evapotranspiração Potencial da Cultura
ET _{rc}	Evapotranspiração Real da Cultura
EUPS	Equação Universal de Perda de Solo
FAO-PM	Método da FAO de Penman & Monteith
FDR	Frequency Domain Reflectometer
F _{NOZZLE}	Variação da energia de irrigação por aspersão (WEPP)
FTE	Micronutrientes - Fertilizante Nacional
FTU	Formazin Turbidity Unit
G	Carga de sedimento em um ponto x (m) da encosta (WEPP)
G	Fluxo de Calor do Solo
GCL	Geossinthetic Clay Liner
GEORIO	Instituto de Geotécnica do Município do Rio de Janeiro
GF	Grau de Floculação das Argilas
GMS	Granular Matrix Sensor
GPR	Ground Penetrating Radar
Gs	Densidade Relativa dos Grãos
Gsc	Constante Solar
i	Intensidade máxima de chuva (WEPP)
Ι	Intensidade de chuva
I ₃₀	Máxima intensidade de chuva ocorrida num período de 30 minutos
IA	Índice de Atividade de Skempton
IAF	Índice de Área Foliar
IAF _{ativo}	Índice de Área Foliar Ativo
Ie	Intensidade efetiva da chuva (WEPP)
i _i	Intensidade de precipitação para cada intervalo de tempo (WEPP)
Inf	Infiltração
INFRAERO	Empresa Brasileira de Infra-estrutura Aeroportuária.
INMET	Instituto Nacional de Meteorologia
IP	Índice de Plasticidade
J	Dia Juliano
К	Fator de erodibilidade dos solos (USLE)
k	Coeficiente de transporte de sedimento (WEPP)
K^+	Cátion Potássio

Kc	Coeficiente de Cultivo
K _i	Erodibilidade entressulcos (WEPP)
Ki	Índice de Intemperismo
Kr	Parâmetro de erodibilidade em sulcos (WEPP)
Kr	Índice de Intemperismo
Ks	Permeabilidade aferida
Ksat	Permeabilidade Saturada
Kw	Permeabilidade uma determinada poro-pressão
LL	Limite de liquidez
Lm	Longitude local [graus a Oeste de Greenwich]
LP	Limite de plasticidade
LS	Fator topográfico (USLE)
Lz	Longitude do centro da zona de fuso [graus a Oeste de Greenwich]
m	Parâmetro do modelo de van Genüchten (1980)
MA	Microagregado
Mg^{++}	Cátion Magnésio
МО	Matéria Orgânica
MP	Metal Polivalente
n	Porosidade
n	Parâmetro do modelo de van Genüchten (1980)
n ₀	Porosidade total
N_2	Nitrogênio
NA	Amostra Aquecida
Na ⁺	Cátion Sódio
NBR	Norma Brasileira
Nc	Número de camadas de solo (ensaio de compactação)
Ng	Número de Golpes (ensaio de compactação)
NG	Norte Geográfico
NM	Norte Magnético
NRCS	National Resource Conservation Service
NTU	Unidades Nefelométricas
NV	Direção do vento
OACI	Organização de Aviação Civil Internacional
OBS	Optical Backscattering

OMM	Organização Mundial de Meteorologia
Р	Práticas Conservacionistas/ manejo (USLE)
PCD	Plataforma de Coleta de Dados
PERM	Permanent Erosion and Revegetation Materials
pН	Potencial hidrogeniônico
PMP	Ponto de Murcha Permanente
PRAD	Projeto de Recuperação de Áreas Degradadas
Q	Vazão
q	Vazão por largura unitária do sulco (WEPP)
R	Fator de Erosividade das Chuvas (USLE)
R	Raio hidráulico do escoamento
R	Solo Roxo
R	Red – cor do solo (Munsell)
R _a	Radiação Extraterrestre
r _a	Resistência aerodinâmica
RAD	Recuperação de Áreas Degradadas
RAW	Valor Não-processado
RECP	Rolled Erosion Control Product
RH	Umidade relativa
RH _{armin}	Umidade Relativa do Ar Mínima
RH _{armax}	Umidade Relativa do Ar Máxima
$\mathrm{RH}_{\mathrm{hr}}$	Umidade Relativa do Ar na Hora
rl	Resistência estomática de uma folha bem iluminada
R _n	Radiação Líquida na Superfície
R _{nl}	Radiação Solar de Ondas Longas
R _{ns}	Radiação Solar de Ondas Curtas
R _s	Espaçamento médio interravinar (WEPP)
R _s	Radiação Solar Global Medida
r _s	Resistência superficial
R _{so}	Radiação Solara Global à Céu Aberto
RUSLE	Revised Universal Soil Loss Equation
S	Declividade da ravina (WEPP)
S	Soma de Bases Trocáveis
S	Grau de Saturação

SBCS	Sociedade Brasileira de Ciência do Solo
Sc	Correção Sazonal
SDRRR	Taxa de chegada de sedimento
SE	Superfície Específica
\mathbf{S}_{f}	Fator de declividade do solo em entressulcos (WEPP)
SIARCS	Sistema Integrado para Análise de Raízes e Cobertura do Solo
SPAC	Soil-plant-atmosphere Continnum
SRJ	Solo Residual Jovem
SRM	Solo Residual Maduro
SSC	Suspended Sediments Concentration
ST	Sem tratamento
SUCS	Sistema Unificado de Classificação de Solos
Т	Total de Bases
T _{base}	Temperatura de Base
T _c	Capacidade de transporte de sedimento do escoamento (WEPP)
TDS	Total de Sólidos Dissolvidos
TDT	Time Domain Transmission
TERM	Temporary Erosion and Revegetation Materials
Tmax	Temperatura Máxima
T _{max} , _K	Temperatura Máxima Absoluta em 24hs
$T_{\text{méd}}$	Tmeperatura média do ar
T_{min}	Temperatura Mínima
T _{min} , _K	Temperatura Mínima Absoluta em 24hs
T_{nw}	Tensão superficial – fluido não molhante
Ts	Temperatura do solo
TSS	Total de Sólidos Suspensos
$T_{\rm w}$	Tensão superficial – fluido molhante
uz	Média Horária da Velocidade do Vento
u ₂	Velocidade do Vento à 2 metros do solo
USDA	United States Department of Agriculture
USLE	Universal Soil Loss Equation
USLE V	Universal Soil Loss Equation Solo Vermelho
USLE V V	Universal Soil Loss Equation Solo Vermelho Saturação por Bases

V	Volume
VA	Solo Vermelho-Amarelo
VE	Solo Vermelho-Escuro
V_{f}	Velocidade de sedimentação da classe (diâmetro) de sedimento
V_{f}	Voltagem Final
V _s	Volume de Solo
Vt	Volume Total
Vw	Volume de Água
W	Largura média das ravinas da vertente (WEPP)
W	Teor de Umidade
WARR	Wide Angle Reflection and Refraction
WCR	Water Content Reflectometer
WEPP	Weather Erosion Prediction Project
Whig	Umidade higroscópica
Wi	Umidade inicial
Wr	Umidade higroscópica
Ws	Umidade correspondente à saturação
Y	Yellow
Y	Porcentagem passante nas peneiras 7, 14, 25, 50, 100, 200 (WEPP)
у	Variável dummy de integração (WEPP)
YR	Yellow-red – cor do solo (Munsell)
Z_h	Altura das medições de umidade
Zm	Altura das medições dos ventos
Z _{oh}	Índice rugosidade governando a transferência de calor e valor
Zom	Índice rugosidade governando a transferência de calor e valor

Lista de Símbolos Gregos

α	Albedo
β_r	Coeficiente de turbulência induzida pelas gotas (WEPP)
γ	Peso específico
γ	Constante Psicrométrica
Δ	Inclinação da Curva de Saturação de Vapor D'água
δ	Declinação Solar
3	Razão entre peso molecular do vapor d´agua e do ar seco
ε _v	Deformação Vertical
θ	Teor de Umidade Volumétrico
λ	Calor Latente de Vaporização
ρ_d	Massa específica seca
ρ_s	Massa específica do solo
ρ_t	Massa específica total
τ	Tensão de cisalhamento efetiva nas partículas do solo (WEPP)
$ au_{ m c}$	Força tractiva crítica (resistência ao cisalhamento) crítica (WEPP)
Φ	Diâmetro
Ψ	Sucção
φ	Latitude
σ	Constante de Stefan-Boltzmann
ω ₁	Ângulo de Incidência Solar ao Início do Período
ω ₂	Ângulo de Incidência Solar ao Final do Período