Discussão e Conclusões

Neste capítulo são discutidos os resultados obtidos por meio do estudo da influência da resolução espacial e temporal no mapeamento óptico da atividade elétrica cardíaca. Também são apresentadas as conclusões, e as perspectivas e trabalhos futuros gerados por meio deste estudo.

Este capítulo foi dividido em três partes: Influência da resolução espacial e temporal em mapeamentos ópticos da atividade cardíaca; Conclusões; e Perspectivas e Trabalhos Futuros.

5.1

Influência da Resolução Espacial e Temporal em mapeamentos ópticos da atividade cardíaca

Neste trabalho, por meio de estudos experimentais e simulados, é feita a análise da influência da resolução espacial e temporal na morfologia de potenciais de ação ópticos (OAP) e na identificação de padrões da propagação da atividade elétrica cardíaca em mapas ópticos.

A visualização da propagação da atividade elétrica em mapeamentos ópticos realizados em corações isolados procura identificar os padrões normais e patológicos da condução do estímulo elétrico no tecido cardíaco. No entanto, essa identificação pode ser prejudicada pela resolução espacial utilizada durante a medição do sinal de fluorescência emitido pelas células cardíacas.

Em tecidos cardíacos, um padrão de excitação circular e reentrante é associado a frentes de onda interagindo com bloqueios ou obstáculos estruturais. Ambas as interações envolvem dispersão da corrente local em frente de ondas convexas, com a diminuição da velocidade de condução local, e uma mudança na ativação de correntes de despolarização localizadas [19,74-76]. Portanto, a curvatura da frente de onda é um fator importante para a determinação de diminuição da velocidade de condução, bloqueios na condução e arritmias reentrantes. Na maioria dos casos, a diminuição da velocidade ou bloqueio da

condução ocorre de forma localizada no tecido, enquanto a condução da atividade elétrica se mantém em outros locais. Essa heterogeneidade da condução é um fator importante para a iniciação de excitações circulares e a possibilidade de ocorrência de arritmias reentrantes.

As análises qualitativas realizadas neste trabalho por meio da visualização de mapas da ativação elétrica do coração e da morfologia do potencial de ação (apresentados na seção 4.4.1) mostraram que a maior resolução espacial dos mapas permite uma melhor visualização da curvatura da frente de onda da propagação da atividade elétrica. Da mesma forma, baixas resoluções espaciais prejudicam a visualização da curvatura da frente de onda e a identificação e localização de bloqueios, além de distorcer os registros de potenciais de ação locais dificultando a análise do comportamento eletrofisiológico do tecido, pois altera parâmetros eletrofisiológicos.

Correlações entre parâmetros eletrofisiológicos da morfologia do *upstroke* e a orientação da frente de onda da propagação da atividade elétrica determinam uma relação linear entre V_F^* e o parâmetro $\overline{\phi}$ da frente de onda que está se propagando. Segundo Zemlin *et al.* [14], valores do parâmetro $V_F^* \sim 0,4$ indicam frentes de onda movendo-se paralelas a superfície do coração, valores de $V_F^* \sim$ 0,2 indicam frentes de onda que se afastam da superfície do coração e valores de $V_F^* \sim 0,6$ indicam frentes de onda que se aproximam da superfície cardíaca.

As análises quantitativas realizadas neste trabalho para estimar a influência da resolução espacial em parâmetros do *upstroke* dos potenciais de ação simulados ($T_{S(max)}$, $V_{S(max)}$ e V_{S}^{*}) e experimentais ($T_{F(max)}$, $V_{F(max)}$ e V_{F}^{*}), apresentadas na seção 4.4, mostraram que a redução da resolução espacial deforma o sinal, modificando os valores dos parâmetros morfológicos calculados.

A integração espacial da atividade elétrica por meio da simulação de um grupo de 125 células (AP_{avg}) apresentou diferenças nos valores dos parâmetros do *upstroke* em relação à célula única (Tabela 1). A Tabela 5 mostra os parâmetros do *upstroke* ($T_{S(max)}$, $V_{S(max)}$ e V_S^*) dos potenciais de ação simulados para uma célula (AP_{cell}) e para o grupo de 125 células (AP_{avg}) com resolução temporal de 0,1ms.

Resolução	Parâmetros						
Espacial	T _{S(max)} (ms)		V _{S(max)} (mV)		Vs*		
<u>Célula Única</u>	2,7	(Ref.)	5 <i>,</i> 37	(Ref.)	0,72	(Ref.)	
<u>Média de 125 células</u>	3,3	22,22%	-39,17	842,70%	0,25	65,40%	
(Ref.) = Valor de referência							

Tabela 5: Parâmetros $T_{S(max)}$, $V_{S(max)}$ e V_S^* do *upstroke* dos potenciais de ação simulados para uma célula (AP_{cell}) e para o grupo de 125 células (AP_{avg}), com resolução temporal de 0,1ms.

O valor de V_S^* para AP_{avg} possui uma diferença de 65,40% em relação à AP_{cell} . A integração espacial de 125 células modifica o valor de V_S^* , prejudicando a interpretação do direcionamento das frentes de onda. O parâmetro V_S^* para AP_{cell} de 0,7168 é o valor de referência e indica que as frentes de onda se aproximam da superfície do coração, por outro lado, V_S^* para AP_{avg} é de 0,2480, conduzindo à interpretação de que as frentes de onda se afastam da superfície do coração espacial em potenciais de ação simulados causou alterações em valores de parâmetros morfológicos levando a resultados que possuem interpretações eletrofisiológicas opostas.

O ruído contido no sinal experimental é mais uma fonte de distorção na morfologia do potencial de ação óptico. Desta forma, o estudo da distorção causada pelo ruído por meio de sinais simulados ajuda a quantificar essa distorção e analisar efeitos causados por processamentos digitais utilizados para melhorar a qualidade do sinal.

A Tabela 6 apresenta sequencialmente os efeitos causados nos potenciais de ação simulados: AP_{cell} , com resolução temporal de 0,1ms; AP_{avg} , com resoluções temporais de 0,1ms e 2,0ms; AP_{avg} com resolução de 2,0ms e adição de ruído; e AP_{avg} com resolução de 2,0ms, adição de ruído e aplicação do processamento digital (filtragem por Butterworth e interpolação por Spline Fit). Os efeitos são avaliados por meio dos parâmetros $T_{S(max)}$, $V_{S(max)}$ e V_S^* do *upstroke* do potencial de ação simulado. Tabela 6: Parâmetros $T_{S(max)}$, $V_{S(max)}$ e V_S^* do *upstroke* dos potenciais de ação simulados de AP_{cell} com resolução temporal de 0,1ms; AP_{avg} com resolução temporal de 0,1ms e 2,0ms; AP_{avg} com resolução temporal de 2,0ms com adição de ruído; e AP_{avg} com resolução temporal de 2,0ms e aplicação de processamento digital (filtragem por Butterworth e interpolação por Spline Fit).

Resolução	Parâmetros Eletrofisiológicos						
Temporal	T _{S(max)} (ms)		V _{S(max)} (mV)		Vs*		
	<u>Célula Única</u>						
0,1 ms	2,7	(Ref.)	5,27	(Ref.)	0,72	(Ref.)	
	Média de 125 células						
0,1 ms	3,3	22,22%	-39,17	842,70%	0,25	65,40%	
2,0 ms	4,0	48,15%	-24,95	573,08%	0,40	44,52%	
Média de 125 células com adição de ruído*							
2,0ms	6,0	122,22%	04,99	5,38%	0,61	14,94%	
<u>Média de 125 células com adição de ruído e após aplicação de Butterworth e Spline Fit**</u>							
2,0ms	3,7	37,04%	-19,66	472,77%	0,51	29,03%	
* Ruído branco gaussiano **Butterworth (or.4 Fc 88Hz) e Spline Fit aplicados no potencial de ação médio do grupo de 125 célula com ruído e com resolução temporal de 2,0ms (Ref.) = Valor de referência							

Os valores dos parâmetros $T_{S(max)}$, $V_{S(max)}$ e V_S^* do AP_{cell} foram usados como referência para análise dos efeitos da integração espacial, da redução da resolução temporal, da adição de ruído e do processamento digital. O sinal integrado espacialmente com adição de ruído apresentou menor variação do parâmetro V_S^* em relação à referência (AP_{cell}), sendo que este fato se deve à alteração extrema que o mesmo apresentou no parâmetro $T_{S(max)}$ (122,22%), resultando em $V_{S(max)}$ mais elevado e, coincidentemente, mais próximo ao valor 5,27 mV de referência.

Para o parâmetro $T_{S(max)}$, o processamento digital aplicado no AP_{avg} com resolução temporal de 2,0ms e adição de ruído não só atenuou a distorção causada pelo ruído, resultou em valores dos parâmetros que não só retornam para o sinal original sem ruído (AP_{avg} com resolução temporal de 2,0ms), mas também se aproximam dos resultados gerados com melhor resolução temporal, já que a distorção dos parâmetros $V_{S(max)}$ e V_S^* para AP_{cell} com 2,0ms de resolução são bem maiores do que os resultados obtidos após processamento do sinal com integração espacial (AP_{avg}), baixa resolução temporal (2,0 ms) e adicionado de ruído.

As variações nos valores dos parâmetros $T_{S(max)}$, $V_{S(max)}$ e V_S^* ao reduzirse a resolução temporal (Tabela 5, Tabela 6 e Tabela 8) ou espacial (Tabela 7) são menores para os sinais com integração espacial (AP_{avg} e OAP experimental), que apresentam maior inclinação do *upstroke*, do que as variações observadas para os sinais do AP_{cell}, com maior velocidade de despolarização. Hyatt *et al.* [17] determinaram que em mapeamentos ópticos em tecidos cardíacos possuindo várias camadas (como é o caso de medições em corações isolados) a duração do *upstroke* de potenciais de ação ópticos é aproximadamente uma ordem de magnitude maior que a duração do *upstroke* de potenciais de ação medidos por meio de microeletrodos no mesmo local, como mostra a Figura 29.

Figura 29: Duração do upstroke de potenciais de ação, medidos por meio de mapeamento óptico (linhas sólidas) e por meio de microeletrodos (linha tracejada), como função da velocidade de condução da frente de onde plana. A variação da velocidade se deve à variação do acoplamento elétrico das células na direção de propagação. A duração do upstroke do potencial de ação óptico para uma onda plana se afastando (linha preta, circulo sólido) e perpendicular (linha cinza, quadrado sólido) à superfície do tecido, e dos potenciais de ação medido eletricamente (linha tracejada), que foram iguais para os dois casos(onda plana se afastando e perpendicular a superfície). Figura adaptada da referência 17.

Como apresentado na seção 4.1.2, a integração espacial contribui para a menor inclinação do *upstroke* do potencial de ação óptico em relação a potenciais de ação medidos por meio de microeletrodos. O potencial de ação simulado para uma integração espacial de um grupo de 125 células apresentou uma velocidade de despolarização aproximadamente 20 vezes inferior (28 mV/ms) à do upstroke do potencial de ação para uma célula; e duração do potencial de ação 5% maior do que a do potencial de ação para uma célula . Utilizando uma aproximação linear do *upstroke*, o ângulo de inclinação obtido para o potencial de ação gerado pela integração espacial em relação ao ângulo de inclinação para uma célula foi reduzido em aproximadamente 4% (Figura 15 e Figura 16).

As variações nos valores dos parâmetros V_F^* (experimentais) foram menores que as variações encontradas nos parâmetros V_S^* (simulados), apresentados na seção 4.4, provavelmente devido à menor inclinação do *upstroke* dos potenciais de ação ópticos quando comparados aos sinais simulados. As variações observadas nos valores dos parâmetros $T_{F(max)}$ de OAP experimentais para os pixels + e O, com diferentes resoluções espaciais, são um pouco mais elevadas que as variações nos valores dos parâmetros V_F^* de OAP para os pixels e não apresentam uma variação sistemática com a redução da resolução espacial.

Ao comparar as diferenças entre cada um dos parâmetros $T_{F(max)}$, $V_{F(max)}$ e V_F^* dos pixels "+" e "O" para as resoluções espaciais de 0,4mm, 0,8mm, 1,2mm, 1,6mm e 3,2mm obtêm-se variações que ultrapassam 300%, como mostra a Tabela 7.

Tabela 7: Diferença entre Parâmetros $T_{F(max)}$, $V_{F(max)}$ e V_F^* calculados para os potenciais de ação ópticos entre os pixels + e O, processados por Butterworth e Spline Fit obtendo resolução temporal de 0,1ms para resoluções espaciais de 0,4mm, 0,8mm, 1,2mm, 1,6mm e 3,2mm.

Resolução			Parâ	metros			
Espacial	T _{F(ma}	T _{F(max)} (ms)		V _{F(max)} (mV)		V _F *	
Diferença entre os parâmetros dos pixels "+" e "O"							
0,4 mm	1,0	(Ref.)	-1,17	(Ref.)	-0,02	(Ref.)	
0,8 mm	3,3	230,00%	0,92	178,31%	0,02	176,23%	
1,2 mm	2,0	100,00%	1,13	196,33%	0,02	198,77%	
1,6 mm	1,6	60,00%	1,71	246,20%	0,07	378,69%	
3,2 mm	0,7	30,00%	-0,41	64,73%	-0,06	133,20%	
(Ref.) = Valor de referência							

Os valores das diferenças entre cada um dos parâmetros $T_{F(max)}$, $V_{F(max)}$ e V_F^* dos OAPs dos pixels "+" e "O" para as resoluções espaciais de 0,4mm, 0,8mm, 1,2mm, 1,6mm e 3,2mm não apresentam comportamento sistemático ao reduzir a resolução espacial. Desta forma, parâmetros eletrofisiológicos que dependem de dois pixels do mapa óptico da atividade elétrica cardíaca, como a velocidade de condução, também têm seus valores alterados.

Ao comparar as diferenças entre cada um dos parâmetros $T_{F(max)}$, $V_{F(max)}$ e V_F^* dos OAPs dos pixels "+" e "O" para as resoluções temporais 0,1ms, 0,2ms,

0,3ms, 0,4ms, 0,5ms e 1,0ms obtidas por meio de processamento digital do sinal com resolução temporal de 2,0ms, as diferenças foram mais distorcidas com a menor interpolação do processamento, e mais intensa para o parâmetro V_F^* (201,23%), como mostra a Tabela 8.

Tabela 8: Diferença entre Parâmetros $T_{F(max)}$, $V_{F(max)}$ e V_F^* calculados para os potenciais de ação ópticos entre os pixels + e O com resolução espacial de 0,4mm e processados por Butterworth e Spline Fit obtendo resoluções temporais de 0,1ms, 0,2ms, 0,3ms, 0,4ms, 0,5ms e 1,0ms.

Resolução	Parâmetros					
Temporal*	T _{F(max)} (ms)		V _{F(max)} (mV)		V _F *	
Dife	rença ent	re os parâm	etros dos	pixels "十" (e " <i>O</i> "	
0,1 ms	1,0	(Ref.)	-1,17	(Ref.)	-0,02	(Ref.)
0,2 ms	1,0	0,00%	-1,17	0,00%	-0,02	2,87%
0,3 ms	1,1	10,00%	-0,80	31,34%	-0,01	45,49%
0,4 ms	1,0	0,00%	-1,17	0,00%	-0,01	52,87%
0,5 ms	0,9	10,00%	-1,49	27,41%	-0,04	61,89%
1,0 ms	1,4	40,00%	0,26	122,12%	0,02	201,23%
*Butterworth (or.4 Fc 88Hz) e Spline Fit aplicados no potencial de ação óptico com resolução						
temporal de 2,0ms.						
(Ref.) = Valor de refei	rência					

No caso das diferentes resoluções temporais, os valores das diferenças entre cada um dos parâmetros $T_{F(max)}$, $V_{F(max)}$ e V_F^* dos pixels "+" e "O", mostrados na Tabela 8, também apresentam variações ao reduzir-se a resolução temporal. De forma similar, parâmetros eletrofisiológicos que dependem de dois pixels do mapa óptico da atividade elétrica cardíaca, como a velocidade de condução, também tem seus valores alterados.

A Tabela 9 resume o comportamento das alterações que ocorreram nos parâmetros eletrofisiológicos de tempo e voltagem do upstroke, para os sinais simulados ($T_{S(max)}$, $V_{S(max)}$ e V_S^*) e experimentais ($T_{F(max)}$, $V_{F(max)}$ e V_F) em função das variações de resolução espacial ou temporal. Tabela 9: Variação dos parâmetros eletrofisiológicos para os resultados simulados (A) e experimentais (B), em função da resolução espacial ou temporal.
A seta ↓ indica diminuição do valor e a seta, ↑ aumento do valor.

Α	Variação da Resolução	T _{S(max)}	V _{S(max)}	Vs*
Simulação AP _{cell}	↑resolução temporal	↑	↑	\uparrow
Simulação AP _{avg}	↑resolução temporal	\downarrow	\downarrow	\downarrow
Simulação AP _{avg} com resolução temporal de 2,0ms, adição de ruído e processamento digital	↑resolução temporal por interpolação	\downarrow	\downarrow	\downarrow
Simulação AP _{avg} → AP _{cell}	↑resolução espacial (125 células para uma célula)	\downarrow	↑ até resol. temp. de 0,3ms e ↓ para resoluções de 0,4 a 2,0ms	↑ até resol. temp. de 0,5ms e ↓ para resoluções de 1,0 e 2,0ms
В	Variação da Resolução	T _{F(max)}	V _{F(max)}	V_F^*
3,2mm→0,4mm* OAP do Pixel +	↑resolução espacial (experimental)	\uparrow	Ţ	¢
3,2mm→0,4mm* OAP do Pixel O	↑resolução espacial (experimental)	\uparrow	Ť	\uparrow
OAP do Pixel + 0,4mm	↑resolução temporal por interpolação (experimental)	1	Ţ	¢
OAP do Pixel O 0,4mm	↑resolução temporal por interpolação (experimental)	\uparrow	¢	\uparrow
*Butterworth (or.4 Fc 88Hz) temporal final de 0,1ms	e Spline Fit aplicados r	no potencio	al de ação óptico obtena	lo resolução

Nos resultados simulados (Tabela 9A), o aumento da resolução temporal (2,0ms para 0,1 ms) para o potencial de uma célula (AP_{cell}) resultou em elevação dos valores dos parâmetros do *upstroke* ($T_{S(max)}$, $V_{S(max)}$ e V_{S} *), mas o oposto foi observado ao se integrar espacialmente o sinal (AP_{avg}). O aumento da resolução espacial do sinal simulado, por meio da avaliação dos parâmetros AP_{avg} e AP_{cell} para as mesmas resoluções temporais, resultou em redução sistemática do valor do

parâmetro $T_{S(max)}$, mas os parâmetros $V_{S(max)}$ e V_S^* para resoluções temporais mais altas, cresceram com o aumento a resolução espacial, e, contrariamente, reduziram para as resoluções temporais menores.

Nos resultados experimentais (Tabela 9B), a variação dos parâmetros eletrofisiológicos do *upstroke* ($T_{F(max)}$, $V_{F(max)}$ e V_F^*) foi positiva para o aumento da resolução temporal e espacial, porém, não apresenta um comportamento gradual sistemático ao longo das resoluções intermediárias (Tabela 3 e Tabela 4).

Portanto, as resoluções temporais e espaciais influenciam nos resultados das medições de mapeamento óptico da atividade elétrica de corações isolados, podendo introduzir distorções na morfologia do potencial de ação óptico e nos parâmetros eletrofisiológicos dos potenciais de ação obtidos e na interpretação da propagação da frente de onda de ativação no tecido cardíaco.

5.2

Conclusões

No presente trabalho, o estudo dos efeitos das resoluções temporal e espacial no mapeamento óptico da atividade elétrica em corações isolados de coelho indica que resoluções inadequadas introduzem distorções na morfologia de potenciais de ação ópticos que resultam em variações não-lineares para diferentes parâmetros eletrofisiológicos. Desta forma, é necessário considerar a resolução da instrumentação e o processamento digital aplicado no sinal óptico na elaboração e interpretação dos resultados de um estudo eletrofisiológico.

A aplicação de processamento digital pode diminuir as distorções causadas pela influência das resoluções espacial e temporal nos parâmetros eletrofisiológicos do *upstroke* do potencial de ação. A combinação de Butterworth e *Spline Fit* mostrou ser confiável para reduzir o ruído enquanto melhora a estimativa de parâmetros do potencial de ação, como a derivada máxima do *upstroke*. Entretanto, os valores para as características de cada processamento, como ordem e frequência de corte, devem ser adaptados considerando as medições experimentais e sua instrumentação.

A integração espacial contribui para a menor inclinação do *upstroke* do potencial de ação óptico e as variações nos valores dos parâmetros V_S^* , ao

reduzir-se a resolução temporal ou espacial, são menores para *upstrokes* de potenciais de ação cuja inclinação é menor, isto é, *upstrokes* cuja velocidade de despolarização é mais lenta.

Maiores resoluções espaciais dos mapas ópticos permitem melhores visualização da curvatura da frente de propagação da atividade elétrica. Enquanto baixas resoluções espaciais prejudicam a visualização da curvatura da frente de onda e a identificação e localização de bloqueios, além de distorcer os registros de potenciais de ação locais dificultando a análise do comportamento eletrofisiológico do tecido.

A combinação de estudos da influência do espalhamento de fótons em mapas ópticos da atividade elétrica de um volume de tecido cardíaco, realizados recentemente [15-16], com o estudo apresentado neste trabalho descreve a soma das principais distorções do potencial de ação óptico em relação ao potencial de ação medido por microeletrodos.

5.3

Perspectivas e Trabalhos Futuros

Modelagem matemática da propagação da atividade elétrica no tecido cardíaco por meio de autômato celular:

Modelagens matemáticas com objetivo de simular mapeamentos ópticos da atividade elétrica no coração podem contribuir para análise dos efeitos das resoluções temporais e espaciais para propagações com diferentes padrões e direções da frente de onda de ativação.

Modelos de autômato celular que descrevem a propagação do potencial de ação em uma porção planar do tecido cardíaco, incorporando a anisotropia da condução elétrica do tecido e período refratário da ativação da célula cardíaca, possibilitam a análise de diversos padrões de propagação (normais e anormais). Combinando o estudo dos efeitos da integração espacial nos modelos de autômato celular será possível investigação da influencia da forma e direção da frente de onda nas distorções do registro do potencial causadas pela redução da resolução espacial.

Caracterização eletrofisiológica evolutiva de células-tronco ao longo da diferenciação direcionada a cardiomiócitos:

Estudos clínicos com transplante de células-tronco adultas em órgãos e tecidos vêm sendo realizados e os resultados vêm se apresentando promissores. No Brasil pesquisas têm sido desenvolvidas nesta área e transplantes transendocárdicos de células-tronco adultas para tratamento de insuficiência cardíaca crônica e infarto do miocárdio têm sido realizados com sucesso. Estes tratamentos são realizados através do implante de células-tronco nãodiferenciadas. No entanto, a eficiência do transplante destas células ainda nãodiferenciadas é reduzida, sendo que a eficácia do tratamento pode ser significativamente elevada por meio do implante de células-tronco previamente diferenciadas em direção à linhagem cardiomiogênica e, em um caso ideal, modeladas em um tecido *in vitro*.

Em trabalho futuro pretende-se realizar estudos por meio de técnicas de medição óptica e modelagens matemáticas para avaliação e identificação da evolução eletrofisiológica das células-tronco adultas direcionadas a cardiomiócitos, ao longo dos vários estágios de diferenciação e organização espacial.

O esquema da montagem experimental da técnica de medição óptica, que se encontra em estágio final de implementação na PUC-Rio, está apresentado na Figura 30. As células estimuladas eletricamente e coradas com corante potenciométricos serão excitadas por uma fonte de luz e a fluorescência será adquirida por uma fotomultiplicadora acoplada a um microscópio biológico invertido epifluorescente.

Figura 30: Esquema da montagem experimental da técnica de medição óptica na PUC-Rio.

O presente trabalho desenvolvido poderá contribuir para a análise e interpretação dos registros ópticos experimentais da resposta elétrica de célulastronco ao longo de sua evolução eletrofisiológica para cardiomiócitos. Estes estudos têm por objetivo acompanhar a eficácia do processo de diferenciação induzido, e, assim, contribuir para o pré-condicionamento e adequação de células para o implante terapêutico.